## Name

Complete the table to represent each number in three different forms. The first one is done for you.

| Standard Form | Multiplication Expression Using Only 10 as a Factor | Exponential Form |
| :---: | :---: | :---: |
| 1.100 | $10 \times 10$ | $10^{2}$ |
| 2. 1,000 |  | $10^{3}$ |
| $3.10,000$ |  |  |
| 4. | $10 \times 10 \times 10 \times 10 \times 10$ |  |
| 5. |  | $10^{6}$ |

Write each product or quotient in exponential form.
6. $100 \times 100=$ $\qquad$
7. $10,000 \div 10=$ $\qquad$
8. $100 \times 10^{4}=$ $\qquad$
9. $100,000 \div 10^{2}=$ $\qquad$
10. Consider the expression shown.
$1,000 \times 10^{3}$
How does the exponent help you think about shifting the digits in the first factor to find the product?
11. Use words and equations to explain how $10^{5}$ is different from $10 \times 5$.

Rewrite each expression by using an exponent. Then find the product or quotient and write it in standard form.



Find each product or quotient and write it in standard form.
14. $8 \times 10^{4}=$ $\qquad$ 15. $500,000 \div 10^{5}=$ $\qquad$
16. $39,000 \div 10^{2}=$ $\qquad$ 17. $400 \times 10^{3}=$ $\qquad$
18. $620 \times 10^{4}=$ $\qquad$ 19. $9,180,000 \div 10^{3}=$ $\qquad$
20. Explain how you found the quotient in problem 16.
21. Yuna finds $300 \times 10^{3}$. Explain Yuna's strategy.

## Yuna's Way

$$
\begin{aligned}
300 \times 10^{3} & =3 \times 10 \times 10 \times 10^{3} \\
& =3 \times 10^{5} \\
& =300,000
\end{aligned}
$$

