
IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1504 | P a g e

A Systematic Review of Software Maintenance Cost

Estimation Methods
Chamkaur Singh1, Dr. Neeraj Sharma2, Dr. Narender Kumar 3

1Research scholar of IKG Punjab Technical University, Kapurthala, Punjab, India
2Professor, Gian Jyoti Group of Institutions, Mohali, India

3Assistant Professor, HNB Garhwal University,Srinagar Garhwal Uttarakhand
(E-mail: dhillon.chamkaur@gmail.com)

Abstract— Accurately estimating the cost of software

projects is one of the most desired capabilities in software

development organizations. Accurate cost estimates not only

help the customer make successful investments but also assist

the software project manager in coming up with appropriate

plans for the project and making reasonable decisions during

the project execution. Although there have been reports that

software maintenance accounts for the majority of the

software total cost, the software estimation research has

focused considerably on new development and much less on

maintenance. The paper provides an indication of the state of

the art of software cost estimation (SCE). A suitable plan for

maintenance action should be organized while emerging the

software which is a significant feature of software

conservation. This strategy should state the methods in which

alterations are to be prepared. In this paper various factors of

software maintenance and methods for cost estimation are

discussed. The authors has defines various parameters of cost

estimation and literature review related to this is also

discussed. SCE models stands for software cost estimation

models which helps in estimating the cost for software. In this

paper various software estimation models such as COCOMO,

Putnam, Estimacs, before you leap, price-s and SLIM are

discussed in detail.

Keywords—Cost Estimation, Cocomo, Accuracy, SLOC,

Software Cost Estimation, Project control.

I. INTRODUCTION

Maintenance of software may be a terribly broad activity
that has enhancements in capabilities, error alteration,
optimization and removal of obsolete competences.
Modification is predictable and therefore, mechanisms should
be developed for dominant, evaluating and creating deviations.
So, any work done to amend the software package throughout
its usage is taken into account to be maintenance work. The
aim is to take care of the worth of software package over the
amount. the worth are often improved by increasing the client
base meeting, further needs and creating it a lot of economical
cost by mistreatment newer technology [1]. Software package
maintenance is a vital activity in software package engineering.
Over the decades, software package maintenance prices are
regularly reportable to account for a giant majority of software
package prices. This reality isn't stunning. On the one hand,
software package environments and needs square measure

perpetually ever-changing, that cause new code upgrades to
stay pace with the changes. On the opposite hand, the
economic advantages of software package apply have inspired
the software package trade to apply and enhance the present
systems instead of to create new ones. Therefore, it's vital for
project directors to predict and achieve the software package
preservation prices effectively.

A suitable plan for maintenance action should be organized
while emerging the software which is a significant feature of
software conservation. This strategy should state the method in
which alterations are to be prepared. The expensive to grow the
software should comprise the price due to any essential
alteration in the software. It means that maintenance charge is
not only due to deprived design but also due to the alteration in
client beliefs and environmental requirements in which the
structure has been established. Additional, software
maintenance is a strategy that comprises the range of
maintenance, the maintenance individual /group and price
estimation for software maintenance [3].

Variations in the software afterward it is distributed to the
end employer originate the software maintenance cost.
Software should be promoted according to the up gradation in
the technique. Moreover, there may be interior concerns in
software that needs repairs. Around 75 % of the total software
growth charge is usually maintenance cost. Various factors of
Software maintenance are discussed below:

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1505 | P a g e

Fig 1. Software maintenance

Corrective maintenance – Nearly 20% of the price is due to
fault alteration or problems in the software when it has been
distributed client. Corrective maintenance means if software
has been developed and client finds any errors or difficulties in
the software it is the responsibility of software team to recover
that error.

Adaptive maintenance – Almost 25 % of the cost is needed
for the variations in the software to stay effective in a altering
environment. It is most important for the soft wares that they
should adapt every environment. Any software is called to be
effective if it is able to adapt all types of environment. So if
software is giving in any problem in adaptation it is the
responsibility of team to recover it properly.

Perfective maintenance – Almost 5 % of the cost is needed
to upgrading software to recover the performance. Software is
effective only when it gives expected performance. Hence
perfective maintenance is needed when any problem related to
software’s performance occurs.

Enhancements – Around 50 % of the cost required for the
inventions to create the software up-to-date. If any updation is
required in the software then it is software team’s responsibility
to do that thing for clients.

A. Software cost estimation methods and tools [9]:

Various methods for estimating software growth costs are
available. Most of them are a mixture of the primary methods
that are discussed below:

(1) Estimates made by an expert.

 (2) Estimates based on reasoning by analogy.

(3) Estimates based on Price-to-Win.

(4) Estimates based on available capacity.

 (5) Estimates based on the use of parametric models.

There are two main Software cost estimation methods that
are discussed below:

 Fig 2. Software Estimation methods

(1) Top-down: In this method guesstimate of the complete
project is derivative from the worldwide features of the
product. The entire predictable budget is then divided amongst
the several mechanisms.

(2) Bottom-up: In this the cost of every different module is
predicted by the individual who will be liable for implementing
the module. The distinct estimated budgets are summed to
achieve the complete budget estimate of the scheme.

To compute the software maintenance price, many
prototypes have been established and several of them are
recycled by the corporations to compute the maintenance
budget. The table below indicates the use of different
techniques. The figs display that most of the companies use
facts from previous plans in some way. Clearly this an casual
way, since only 50% of the contributing groups record facts
from finished projects. Approximations based on skillful
judgment and the capability method proves to be reasonably
popular regardless of the drawbacks of these approaches.

TABLE I. Use of cost estimation techniques (an organization
can use more than one technique)

Methods Use (%)

Expert judgment 25.5

Analogy method 60.8

Price-to-Win 8.9

Capacity problem 20.8

Parametric models 13.7

In the previous 3 periods, several software estimation
prototypes and approaches have been suggested and recycled,
such as COCOMO, SLIM, Price-S etc.

These are vital for software designers and their
corporations, since it can afford cost mechanism, delivery
accurateness, amongst many extra welfares for them.
Numerous measureable prototypes of software cost estimation
have been established and are created on the basis of size
measure, like Line of Code (LOC) and Function Point (FP). It
is clear that the correctness of size estimation straightly
influence the correctness of cost estimation.

The size measures are discussed below

LOC: Source lines of code (SLOC), also called lines of
code (LOC), is a software metric used to calculate the size of a
computer program by calculating the total lines in the text of
the program's source code.

Function point: It is a "unit of measurement" to state the
quantity of business functionality an data system as a product
delivers to a client. Function points are very important to
calculate a functional size measurement (FSM) of the software.

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1506 | P a g e

II. WHAT MAKES SOFTWARE COST ESTIMATION

SO DIFFICULT?

There are many causes that are listed below:

 (1) There is a scarcity of knowledge on completed package
comes. This sort of knowledge will support project
management in creating estimates.

(2) Estimates are usually done in haste, while not associate
degree appreciation for the hassle needed to try to a reputable
job. Additionally, too usually it is the case that associate degree
estimate is required before clear specifications of the system
needs are created. Therefore, a typical state of affairs is that
estimators are being pressured to put in writing associate
degree estimate too quickly for a system that they are doing not
absolutely perceive.

(3) Clear, complete and reliable specifications are
troublesome to formulate, particularly at the beginning of a
project. Changes, diversifications and additions are a lot of the
rule than the exception: as a consequence plans and budgets
should be custom-made too.

(4) Characteristics of package and package development
create estimating troublesome. for instance, the amount of
abstraction, complexity, quality of product and method,
innovative aspects, etc.

(5) An excellent variety of things have associate degree
influence on the hassle and time to develop package. These
factors are referred to as 'cost drivers'. Examples are size and
complexness of the package, commitment and participation of
the user organization, expertise of the event team. normally
these value drivers are troublesome to work out operative[10].

(6) Fast changes in data technology (IT) and therefore the
methodology of package development are a tangle for a
stabilization of the estimation method. for instance, it's
troublesome to predict the influence of latest workbenches,
fourth and fifth generation languages, prototyping methods,
and so on.

(7) An associate degree reckoner (mostly the project
manager) cannot have abundant expertise in developing
estimates, particularly for big comes. what number 'large'
comes will somebody manage in, for instance, 10 years?

A. Literature Review

Authors Description

Boehm et

al. (2000)

has tried to favorably estimate SLIM Model. SLIM is one of

the widespread software maintenance budget estimation

models and is extensively popular in the manufacturing for

cost estimation. The study has exposed that SLIM method is

relatively multipurpose and contributes precise outcomes in

most of the circumstances. Though, it has been exposed that

this method does not provide removed code as a maintenance

activity. Henceforth, in this condition the outcomes attained

via SLIM are not trustworthy.

Sneed et

al. (2004)

Discussed a cost method for software maintenance and

development depends on static and inconstant costs. The

study has involved constraints which are derivative from

fixed, variable flaws and output investigation of the software.

Additionally, the varieties of jobs protected by this technique

involves fault correction, practical improvement,

monotonous modification and practical makeover. Though,

the author has exposed that the projected method does not

provide exact outcomes in case of recycling and repairing of

web applications.

De Lucia

et al.

(2005)

Introduced an empirical study for structuring corrective

maintenance effort estimation models. The study was

supported variable regression toward the mean techniques.

The authors prompt that completely different task sorts ought

to be enclosed to enhance value estimation models. The task

sorts prompt embody group A, B and kind C. group A

considerations ASCII text file modification. B relates to

fixing of knowledge misalignments and kind C

considerations intervention not comprised within the

previous classes. it's additional been projected that if task

sorts for maintenance activities area unit troublesome for any

project, then alternative models that area unit supported

coarse-grained metrics ought to be used. Scope of this study

is proscribed to corrective maintenance.

Nguyen et

al. (2010)

has evaluated numerous fashionable package maintenance

value estimation models and offered an extension of

COCOMO II model. He has discovered that the varied

existing models suffer from weaknesses regarding restricted

selection of input metrics and restricted scope of

maintenance activities. The author has evaluated and given

the extended version of COCOMO II model for effort and

size estimation of package maintenance comes. The author

has used regression approach to create the estimation model.

it's been emphasised that the planned model is used for the

organizations wherever knowledge isn't ample to calibrate

numerous estimation models. This extended version of

COCOMO II model additionally considers SLOC metric of

deleted code in its size metric. However, the author has

cautioned that this model is proscribed to purposeful

sweetening and fault correction activities of maintenance.

Hence, the model needs further improvement to support

reengineering, language and knowledge migration,

performance improvement and alternative value effective

activities.

Marounek

et al.

presented a method for strength estimation in software

maintenance. This method relies on an existing supposition

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1507 | P a g e

(2012) by Jorgensen that around 83 to 84 %of all the estimation is

completed by skillful prediction and estimation prototypes

are not involved due to their complication. The suggested

procedure is based on the addition of PERT formula around

excellence of estimator and knowledge. Additionally, it is to

be illustrious that this method relies on expert prediction.

Therefore, the possibility of this method is also restricted.

III. SOFTWARE COST ESTIMATION MODELS

Before In this segment, one approximation method,
specifically SCE prototypes, will be deliberated and the values
of SCE prototypes defined, creating a difference among sizing
and productivity models. The features of some famous models
will also be specified.

A. The principles of SCE models

Models in these days are two-stage prototypes. The first
phase is a size and another phase offers a output adjustment
aspect. In the Initial phase an approximation about the size of
the product to be established is found. In practice numerous
sizing methods are included. The most famous sizes these days
are function points and lines of code. On the other hand new
sizing methods like 'software science 'and DeMarco's Bang
technique have been described. The outcome of a sizing model
is the size/volume of the software to be established, conveyed
as the number of lines of source code, number of statements, or
the number of functions points. In another phase it is predicted
how much time and effort it will cost to cultivate the software
of the expected size. Initially, the estimate of the size is
transformed into an estimate in minimal man-months of effort.
As this minimal effort have no benefit of information regarding
the particular features of the software artifact, the method the
software-product will be established and the production means,
a number of cost manipulating factors (cost drivers) are
included to the model. The outcome of these cost drivers must
be predictable [11]. This outcome is frequently called a
productivity adjustment factor. Some prototypes, like FPA, are
focused more on the sizing phase. Others, like COCOMO
model" it focus on the productivity phase and some
apparatuses, such as Before You Leap conglomerate two
prototypes to cover both phases. Fig 3 displays the two phases
in SCE models.

Fig 3. Cost Estimation Phases

B. An overview of SCE models

In the previous 10 centuries a amount of SCE prototypes
have been established. This segment does not provide an
exhaustive management of all the models: the overview is
restricted to one instance of a sizing prototype, one
productivity model, some models which are related from an
ancient opinion, well documented and inside the experience of
the author, and certain models which present fresh thoughts.

Fig 4. SCE Models

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1508 | P a g e

The Constructive Cost Model (COCOMO): It is the finest
recognized and most obvious model presently accessible. The
central attention in COCOMO is upon estimating the effect of
15 cost drivers on the growth effort. Beforehand this can be
done, o software size estimation must be presented. COCOMO
does not include the sizing estimation stage:

it only contributes numerous equations based on 63 finished
projects at TRW. The equations signify the associations among
size and effort and among effort and growth time. The
equations are shown in Table 2.

TABLE II. COCOMO equations

Development mode Man-month

Development time

(nominal)

Man-month

Development time

(nominal)

Organic 3.2*KDSP1.05 2.5*MM (nom) 0.38

Semi-detached 3.0*KDSI1.12 2.5*MM (nom)0.35

Embedded 2.8*KDSI1.20 2.5*MM (nom) 0.32

There are 3 modes: the organic mode which is steady
development surroundings, less innovative, comparatively
minor size; the embedded mode which is increasing within
tight constraints, innovative, difficult, high instability of
requests; and the semi-detached mode which exists among
organic and embedded mode.

Function point analysis (FPA): FPA has been established
by Albrecht of IBM, and made extensively obtainable via the
consumer clusters Guide and Segment. Albrecht was watching
for a technique to evaluate productivity in software
development. For that purpose he established FPA as an
alternate portion to the number of lines of code. The technique
is programming language or fourth generation tool
independent.. The idea of FPA is modest and is founded on the
number of 'functions' the software has to achieve.

SLIM : It is one of the greatest important cost estimation
models that has been in the advertise for years. The model was
initially established in the 1970s by Larry Putnam of
Quantitative Software Measurement, and its measured
formulas and investigation were distributed in 1992. As the
model is branded, the following advancements of the model
organizations and mathematical formulations are not accessible
in the open domain [12]. Usually, the SLIM model assumes
that the recruitment outline keep an eye on a form of Rayleigh
probability distribution of project staff buildup over time. The
Rayleigh staffing level at time t is offered as

Where K is the total lifecycle effort and td the schedule to
the peak of the staffing curve. The quality 2 dt KD = is
considered staffing complexity of the project. The total lifespan

effort is planned using the project size S, the technology factor
C, and td, and is defined as

 SLOC: The model involves the real SLOC as a unit of
project size. Function points and user-defined metrics like
number of units, screens, etc. can be involved, but they have to
be transformed to real SLOC using a ‘gear factor’. SLIM
calculates fresh code and altered code, but it eliminates erased
code. Obviously, the model assumes that fresh code and
improved code have the same effect on the maintenance effort.

PRICE-S: The PRICE-S model stands for Programming
Review of Information Costing and Evaluation—Software. It is
established and sustained by RCA PRICE Schemes. An
significant drawback with respect to COCOMO and FPA is
that the fundamental ideas and thoughts are not openly clear
and the employers are offered with the method as a black box.
The consumer of PRICE directs the idea to a time-sharing
computer in the USA, UK, or France and acquires back his
estimations directly. Even though this drawback and the
extraordinary rental price, there are various operators,
particularly in America. There is, still, an significant
inspiration for American corporations to consume the model.

The PUTNAM model: This SCE method was established
by Putnam in 1974. He founded his model on the effort of
Norden. For numerous plans at IBM, Norden planned
frequency dispersals, in which he presented how many persons
were distributed to the growth and repairs of a software artifact
during the life-cycle. The arcs he made fixed very well with the
Rayleigh arcs. His answers were just experiential. He originate
no clarifications for the outline of the effort arc. On the
assumptions of Norden, Putnam expressed his model.

Before You Leap (BYL): BYL is a profitable bundle based
on a link-up among FPA and COCOMO. BYL initiates with a
evaluation of the quantity of net function points. This quantity
is then transformed into source lines of code, taking in account
the language used. For Cobol, for example, one function point
is equal to 105 SLOC, for LISP it is 64, etc. This guesstimate
of the size in SLOC is exactly the essential idea for COCOMO
and the COCOMO part of BYL, taking into account the effect
on effort of the 15 COCOMO cost drivers, computes the
estimates of costs and span scale.

Estimacs: Estimacs has been established by H. Rubin and
Computer Acquaintances, and is obtainable as a software
platform [15]. The approach contains nine units: a function
point unit; a risk unit; an effort unit, etc. The greatest
significant and broad unit is Effort. The consumer has to
response 25 queries. These queries are partially connected to
the complication of the consumer-organization and partially to
the complication and size of the software to be established. The
method Estimacs decodes the idea to an estimation of effort is
not clear. Like several other prototypes, Estimacs is a 'closed
model'.

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1509 | P a g e

IV. CONCLUSION AND FURURE SCOPE

Maintenance of software may be a terribly broad activity
that has enhancements in capabilities, error alteration,
optimization and removal of obsolete competences.
Modification is predictable and therefore, mechanisms should
be developed for dominant, evaluating and creating deviations.
A suitable plan for maintenance action should be organized
while emerging the software which is a significant feature of
software conservation. This strategy should state the method in
which alterations are to be prepared. The expensive to grow the
software should comprise the price due to any essential
alteration in the software. It means that maintenance charge is
not only due to deprived design, but also due to the alteration in
client beliefs and environmental requirements in which the
structure has been established. In this paper various factors of
Software maintenance are discussed and methods and tools for
cost estimation are also discussed. The authors has defines
various parameters of cost estimation and literature review
related to this is also discussed. SCE models stands for
software cost estimation models which helps in estimating the
cost for software. In this various software estimation models
such as COCOMO, Putnam, Estimacs, before you leap, price-s,
SLIM are discussed in detail. In future one of the cost
estimation models will be implemented.

REFERENCES

[1] Banker, R. D., Datar, S. M. and Kemerer, C. F. (1987),“Factors

affecting software maintenance productivity: an exploratory
study”, Proceedings of 8th international conference on
Information system. Pittsburgh S, pp. 160–175.

[2] Boehm B.W., Abts C. andChulani S. (2000), “Software
development cost estimation approaches: A survey”, Journal of
Annals of Software Engineering, 10(1-4), pp. 177-205.

[3] Buchmann, Irene, Sebastian Frischbier and Dieter Putz (2011),
“Towards an estimation model for software maintenance costs”,
Proceedings of (CSMR), 15th European Conference on Software
Maintenance and Reengineering, Oldenburg, Germany, pp. 313
– 316.

[4] Choudhari, Jitender and Suman, Ugarsen (2012), ”Phase wise
effort estimation for software maintenance: an extended
SMEEM model”, Proceedings of the CUBE International
Information Technology Conference, Pune, pp. 397-402.

[5] De Lucia A., Pompella E., and Stefanucci S. (2005), “Assessing
effort estimation models for corrective maintenance through
empirical studies”, Journal of Information and Software
Technology, 47(1), pp. 3–15.

[6] Dehaghani SM and Hajrahimi N. (2013),”Which factors affect
software projects maintenance cost more”, Journal of Acta
Informatica Medica, 21(1), pp. 63-64.

[7] Grubb, Penny and Armstrong, A. (2003), “Software
maintenance: concepts and practice”, Singapore: World
Scientific Publishing Company.

[8] Jorgensen, M. (1995), “Experience with the accuracy of
software maintenance task effort prediction models”, Journal of
IEEE Transactions on Software Engineering, 21(8), pp. 674-
681.

[9] Lehman, M.M., J.F. Ramil, P.D. Wernick, D.E. Perry and W.M.
Turski (1997), "Metrics and laws of software evolution - the
nineties view", IEEE International Symposium on Software
Metrics (METRICS'97), Los Alamitos, CA,, pp.20-32.

[10] Lientz, B. and Swanson, E.(1980), “Software maintenance
management”, Boston, MA: Boston Addison-Wesley Longman.

[11] Marounek, P. (2012), “Simplified approach to effort estimation
in software maintenance”, Journal of systems integration, 3(3),
pp. 51-63 in Jorgensen, M. (1995), “Experience with the
accuracy of software maintenance task effort prediction
models”, Journal of IEEE Transactions on Software
Engineering, 21(8), pp. 674-681.

[12] Nguyen, Vu (2010). “Improved size and effort estimation
models for software maintenance”, An Unpublished Ph.D.
Dissertation, University of Southern California, Los Angeles,
CA, viewed 20 December 2014,
<http://csse.usc.edu/csse/TECHRPTS/ PhD_ Dissertations/
files/Nguyen_Dissertation.pdf.>.

[13] Ramin, Moazeni, Daneil Link and Barry Boehm (2014),
“COCOMO II parameters and IDPD: bilateral relevance”,
Proceedings of the International Conference on Software and
System Process , China,. Pp. 20-24.

[14] Sharma, T. N., A. Bhardwaj and G.R. Kherwa (2012),
“Statistical analysis of various models of software cost
estimation”, International Journal of Engineering Research and
Applications (IJERA), 2(3), pp.683-685, viewed 27 December
2014, <www.ijera.com> .

[15] Sneed, H.M. (2004), "A cost model for software maintenance
and evolution", Proceedings of IEEE 20th International
Conference on Software Maintenance, Chicago, USA pp. 264 –
273.

[16] Syavasya, C. V. S. R. (2013), “An approach to find maintenance
costs using cost drivers of Cocomo intermediate model”,
International Journal of Computational Engineering Research,
3(1), pp. 154–158.

