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Summary  

Spatial transformation of irregularly sampled data to regularly sampled data is a challenging problem in 
many areas such as seismology. The least-squares spectral analysis (LSSA) is an alternative to the 
classical Fourier analysis that can analyze irregularly sampled data (data series). Although the LSSA takes 
into account the correlation among the sinusoidal base functions on an irregularly spaced series, it still 
suffers from the problem of “spectral leakage” that is leaking energy from one spectral peak into another. 
We propose an iterative method called “anti-leakage LSSA” to attenuate the spectral leakage and 
consequently reconstruct the data on a regularly spaced series. In this method, we first search for a 
spectral peak with the highest energy, and then we remove (suppress) it from the original data. In the next 
step, we search for a new peak with the highest energy in the residual data and remove both, the new and 
the old components simultaneously from the original data using the least-squares method. We repeat this 
procedure until all significant spectral peaks are estimated and removed simultaneously from the original 
data. In each step, if the frequency corresponding to a new peak with the highest energy is sufficiently 
close to a previous estimated frequency, then the previous frequency will be removed from the set of 
estimated frequencies to be estimated more accurately in the next step. We demonstrate the robustness 
of our method on an irregularly sampled synthetic data.  

 

Introduction 

Regularization (a typical spectral interpolation) of irregularly sampled (unequally spaced) data is a crucial 
problem in seismology. There are a number of algorithms proposed already to solve this problem such as 
Minimum Weighted Norm Interpolation (MWNI) (Liu and Sacchi, 2004), Anti-Leakage Fourier Transform 
(ALFT) (Xu et al., 2005; Xu et al., 2010) and Arbitrarily Sampled Fourier Transform (ASFT) (Guo et al., 
2015). These algorithms are established mainly on the basis of Fourier transform. For instance, the ALFT 
and ASFT estimate the Fourier coefficients of the data first by searching for the peak with maximum energy 
and subtracting its component from the data and then repeating the procedure again on the residual data 
until all the Fourier coefficients are estimated. This way the spectral leakages of Fourier coefficients 
emerged from the nonorthogonality of the global Fourier basis functions will be attenuated (experimentally).  
However, these methods usually cannot find the correct location of a peak with maximum energy from a 
preselected set of frequencies because of the correlation between the sinusoids, and so they do not 
efficiently reduce the leakages. This shortcoming becomes more severe when data has more components. 
Moreover, the trends and the covariance matrix associated with the data (if they exist) are not considered 
in these algorithms.  
The LSSA (Vaníček, 1969; Pagiatakis, 1999) improves these weaknesses. It basically estimates a 
frequency spectrum based on the least-squares fit of sinusoids to the data by accounting for measurement 
errors, trends and constituents of known forms. In the LSSA, since the selected frequencies are examined 
one at the time (out-of-context), the spectral leakages still appear which result in interpolation inaccuracy, 
although the nonorthogonality between the sine and cosine basis functions is taken into account for each 
frequency. In this contribution, we apply the idea of maximum energy in the LSSA to improve this 
shortcoming and show its outstanding performance in regularization. 
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Method 

Let 𝒇 = [𝑓(𝑥ℓ)] be the column vector of 𝑛 data points, where the 𝑥ℓ’s are (inherently) irregularly spaced. 

Let 𝝓 = [𝜙1, … , 𝜙𝑞] be the 𝑛 × 𝑞 matrix of constituents of known forms, and 𝝓𝑘 = [cos 2𝜋𝑘𝑥ℓ , sin 2𝜋𝑘𝑥ℓ] 

be the 𝑛 × 2 matrix of a fixed frequency 𝑘, where 𝑘 is in a preselected set of frequencies 𝑲 that is typically 
the set of all positive integers less than or equal to 𝑛/2. Suppose that 𝑪𝒇 is the covariance matrix associated 

with 𝒇 (if it exists) and let 𝑷 = 𝑪𝒇
−1. The algorithm for the anti-leakage LSSA is as follows: 

 

Step 1. Minimize the cost function  𝜓1(𝒄) = (𝒇 − 𝝓𝒄)𝑇𝑷(𝒇 − 𝝓𝒄) to compute the residual data 𝒈 = 𝒇 − 𝝓 �̂� 

and its norm 𝐿 = 𝒈𝑇𝑷𝒈, where �̂� = 𝑵−1𝝓𝑇𝑷𝒇, 𝑵 = 𝝓𝑇𝑷𝝓, and ‘𝑇’ indicates transpose.   

 

Step 2. Minimize the cost function 𝜓2(𝒄, 𝒄𝑘) = (𝒇 − 𝝓𝒄 − 𝝓𝑘𝒄𝑘)𝑇𝑷(𝒇 − 𝝓𝒄 − 𝝓𝑘𝒄𝑘) to find 𝑘0 in 𝑲 with the 

maximum energy defined by 𝑠(𝑘) = (𝒈𝑇𝑷𝝓𝑘𝒄�̂�)/𝐿, where  

𝒄�̂� = (𝝓𝑘
𝑇𝑷𝝓𝑘 − 𝝓𝑘

𝑇𝑷𝝓𝑵−1𝝓𝑇𝑷𝝓𝑘)
−1

𝝓𝑘
𝑇𝑷𝒈. 

 

Step 3. Eliminate the cosine and sine basis functions of a frequency ℎ in 𝝓 such that |ℎ − 𝑘0| < 𝑏 if exists. 
Assuming that the difference between any two consecutive actual frequencies of the components in the 

data is greater than one, we may choose 𝑏 = 0.5 to resolve the peaks and avoid singularity of 𝑵. 

 

Step 4. Repeat Step 1 to find ℎ in 𝑰 = [𝑘0 − 𝑏, 𝑘0 + 𝑏] such that 𝒈 with 𝝓𝑛𝑒𝑤 = [𝝓, cos 2𝜋ℎ𝑥ℓ , sin 2𝜋ℎ𝑥ℓ] 
has the lowest norm 𝐿 and then go to Step 2. Finding ℎ up to a chosen decimal place can be done by 

appropriate partitioning of 𝑰. Terminate the process if 𝐿 no longer decreases. Use the frequencies of all  
sinusoids listed in the final 𝝓 and their corresponding estimated amplitudes to regularize the data. 

 

In Steps 1 and 2, the method of least-squares has been used for the minimization. The frequencies of the 
constituents are real numbers. Removing the constituent of a particular frequency with maximum energy 
from the data reduces the leakages. On the other hand, the elimination of the basis functions of a frequency 
ℎ in Step 3 is crucial in the anti-leakage LSSA because considering the correlation between the sinusoids 

of different frequencies results in a more accurate ℎ in the next step. This correlation will be taken into 
account as the column dimension of 𝝓 increases in the process. The residual data 𝒈 approaches zero 
rapidly because the frequencies are accurately estimated recursively that also prevents increasing the 
column dimension of 𝝓 in many applications. We summarize the anti-leakage LSSA in the flowchart below.  
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Example 

We use the anti-leakage LSSA to regularize the data of size 128 given by Equation (13) (Xu et al. 2005) 
with three additional constituents: 

𝑓(𝑥ℓ) = 5 sin(25.6 𝑥ℓ) + 2.5 sin(128 𝑥ℓ + 1) + √3 sin(140 𝑥ℓ) + √2 + 𝜋𝑥ℓ, 

where 𝑥ℓ (ℓ = 1,2,3,…,128) is a random number in [0,1] generated by the MATLAB command “rand”. All the 
𝑥ℓ’s are sorted in ascending order. We choose the initial set of frequncies as 𝑲 = {1,2,3,…,64}, and we 
estimate the frequencies up to 4 decimal places. Also, we select the initial 𝝓 as 𝝓 = [𝟏, 𝒙] to account for the 

linear trend present in the data, where ‘𝟏’ and ‘𝒙’ are the column vectors of all ones and the 128 random 
numbers, respectively. Since there is no covariance matrix associated with the data, we do not consider the 
square weight matrix 𝑷 in the calculation. 

Note that the data has three frequency components with irrational frequencies 4.0743665, 20.3718327 and 
22.2816920, rounded to 7 decimal places. Table 1 shows the result of the anti-leakage LSSA. In the first 
iteration, the frequency 4.0384 is estimated that is approximately 0.036 different from its actual value 
4.0743665. This is a shortcoming of the existing methods such as the LSSA and ASFT caused by the 
presence of other constituents in the data. In the second and third iterations, the other two frequencies are 
estimated that by removing their corresponding components from the data simultaneously, the first frequency 
is better approximated and so forth (see the highlighted numbers in Table 1). The norm of the final residual 
data is 0.0036 which means a very high accuracy in regularization (see Figure 1). 

 

Table 1. The result of frequency estimation of the constituents of the irregularly sampled data after each iteration  

Iteration number 1st frequency 2nd frequency 3rd frequency Norm of residual  

First 4.0384   23.5040 

Second 4.0384 20.3057  13.3170 

Third 4.0384 20.3057 22.2947 3.5079 

Fourth 4.0748 20.3057 22.2947 2.2501 

Fifth 4.0748 20.3708 22.2947 0.3068 

Sixth 4.0748 20.3708 22.2818 0.0468 

Seventh 4.0748 20.3718 22.2818 0.0319 

Eighth (final) 4.0744 20.3718 22.2818 0.0036 

 

 
Figure 1. The irregularly sampled data (128 red dots) and its regularization using the anti-leakage LSSA (blue dots). 
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Conclusions 

We proposed a new algorithm to regularize irregularly sampled data by taking into account the covariance 
matrix associated with the data and constituents of known forms. This method applies the LSSA to search 
for frequency components with maximum energy and uses an iterative algorithm to estimate the actual 
frequencies of the components in the data and consequently reconstructs the data on a regularly spaced 
series. The synthetic example in this work showed the robustness and effectiveness of this method in 
regularization. In future work, we extend the method to higher dimension cases and apply it to irregularly 
sampled seismic data and will demonstrate its outstanding performance for trace interpolation.  
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