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Abstract—Experimental research methods describe standards 
to safeguard scientific integrity and reputability. These methods 
have been extensively integrated into traditional scientific 
disciplines and studied in the philosophy of science. The field of 
cybersecurity is just beginning to develop preliminary research 
standards and modeling practices. As such, the science of 
cybersecurity routinely fails to meet empirical research criteria, 
such as internal validity, external validity, and construct validity. 
These standards of experimentation enable the development of 
metrics, create assurance of experimental soundness, and aid in 
the generalizability of results. To facilitate such empirical 
experimentation in cybersecurity, we propose the adaptation of 
camouflaged cyber simulations as an approach for cybersecurity 
research. This research tool supports this mechanistic method of 
experimentation and aids in the construction of general 
cybersecurity research best practices.  
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I. INTRODUCTION 
 Cybersecurity currently suffers from an array of empirical 
experimentation problems due to a lack of research 
methodology standards [1], [2]. Other scientific disciplines have 
formal procedures to address experimentation problems such as 
selection bias, recency, and sampling bias [3]. Researchers in 
cybersecurity have increasingly discussed the importance of 
standardized methodology for experimentation, but 
standardized methodologies have been slow to emerge [4]. This 
lack of standardization then perpetuates reactive rather than 
proactive science. This paper examines the utility of using cyber 
simulations as a mechanism for empirical studies in 
cybersecurity. This paper examines: (1) the status of 
experimentation in cybersecurity, (2) the need for a robust 

method for scientific experimentation, and (3) how cyber 
simulations can be used as an effective empirical approach.  

II. CURRENT METHODOLOGICAL GAPS IN CYBERSECURITY 
EXPERIMENTATION 

 One of the fundamental elements of any discipline is the 
method by which it establishes and evaluates propositions as 
reliable and sound [5]. Scientific disciplines usually require 
rigorous standards for experimentation to preserve research 
integrity and ensure findings are objective and reliable [6]. 
Professions that depend on trust in the scientific and research 
and development process, such as medicine or architecture, 
require by virtue methodological integrity checks and robust 
experimental best practices in order to assure operational safety 
and security. Dependable research and science guides 
technological development and best practices. Cybersecurity, 
like other other applied fields, relies on this chain of trust to 
ensure fidelity.   

 Many subfields in computer science have developed formal 
methods of proof both for theoretical constructs and for 
empirical approaches which evaluate observed findings. Yet, the 
broader field of cybersecurity lacks such a unifying 
methodology or structure [7]. An initial response to this absence 
might be to assume that the methods unique to each subfield will 
work together in the aggregate to create a single methodology of 
cybersecurity. This  approach, however, wrongly assumes that 
the constituent methods will be compatible and will not create 
problematic overlap in their composition. Such an approach 
invokes the fallacy of composition [8], as some norms of a given 
set (e.g., cryptography) do not directly infer patterns of its 
superset (e.g., cybersecurity). 

 Several recent papers have illuminated this gap in 
cybersecurity experimentation and have proposed methods or 
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standards for normalization. Hatleback and Spring describe the 
need for a mechanistic approach to cybersecurity 
experimentation [9] and propose using a Cyber Kill-Chain [10] 
as one such model. Maxion [11] discusses the plague of 
confounding variables with loose experimental procedures and 
how cybersecurity experimentation must strive for transparent 
reporting to increase the fidelity of scientific findings. Rossow 
et al. report [12] on a survey of malware research studies 
published in academic venues and discuss the methodological 
shortcomings of much of the work, specifically focusing on the 
lack of internal and external validity in the surveyed studies. 
This literature sample corroborates our claim that the field of 
cybersecurity needs empirical standardization and rigor.  

 Cybersecurity needs a standard methodology for 
experimentation and research evaluation. Three (non-
exhaustive) core tenets of scientific inquiry include internal 
validity, external validity, and construct validity [13]. These 
criteria are well established tenets of rigorous experimentation 
and safeguard scientific integrity. Internal validity asks the 
question of whether or not the evidence demonstrates a causal 
relationship or merely only a correlational one [14]. External 
validity asks whether evidence generalizes to other contexts and 
examples [14]. Construct validity asks whether the evidence 
presented supports the conclusions drawn from that evidence 
[13]. Any methodology (or science of) cybersecurity must 
rigorously apply these standards of empirical experimentation to 
mechanisms of scientific research so that the conclusions drawn 
are both accurate and applicable across the discipline. 
Accordingly, an experimental approach must be configurable to 
control and regulate the testing environment to ensure these 
principles are satisfied.  

III. THE NEED FOR A ROBUST MODEL FOR SCIENTIFIC 
EXPERIMENTATION 

 Existing empirical research in cybersecurity has been limited 
by various constraints on collecting data, such as the need to 
maintain security of production systems, the cost of deploying 
sensor networks, and privacy concerns [15]. These constraints 
exemplify just some of the limitations of experimenting on live 
production environments that drive researchers to explore other 
experimental methods. Common alternative measures include 
anecdotal examination (e.g., post-incident analysis) and static 
dataset analysis (e.g., network traffic or malware analysis). 
These approaches, however, risk generating variation in the 
empirical dependability of the experiment as they can inherently 
introduce induce experimental design flaws and bias. An 
example flaw would be generalizing results for risk management 
practices from anecdotal post-incident analysis. This 
methodology fails to account for Maxion’s concern regarding 
confounding variables, and general principles of external 
validity. 

 Overcoming these constraints is critical not only as a matter 
of scientific integrity, but also because these experimental 
findings form the foundation upon which professional fields 
develop best practices used to perform critical tasks. This gap in 
cybersecurity experimentation can be remedied through more 

robust experimental models that can be configured to emulate 
various cybersecurity scenarios and environments [16]. In 
theory, such models could be environments which simulate live 
production systems deployed in live public network 
environments (i.e., ”in the wild”)  to enable rigorous scientific 
testing. Such environments would be built employing a 
dynamically configurable design. This configurability allows 
for dynamic emulation of various environments in order 
properly to simulate specific architectures and systems for each 
given experiment. These configurations thus qualify as 
traditional experimental controls. In practice, these models are a 
substantially advanced re-invention of an old cybersecurity 
technology known as a honeypot, or (collectively) honeynets.  

 A honeypot is an intentionally vulnerable system designed 
to gather information on attacks that occur against it. 
Rudimentary (“low interaction”) honeypots generally gather 
limited data on a single attack vector with no or little dynamic 
system activity [17]. More advanced (“high interaction”) 
honeypots may introduce some automated system activity or 
examine multiple attack vectors [18]. Honeynets are networks 
of honeypots designed to emulate production environments for 
the purpose of studying attacker techniques without risking 
production systems or exposing the design of the experiment 
[19]. Historically, honeynets were limited as a model for 
experimentation due to resource constraints [20]. Once 
identified or “fingerprinted” by attackers, the empirical validity 
of a given set of honeynets would be weakened if not completely 
undermined [19]. Further, even some of the more sophisticated 
examples of high-interaction honeynets still failed to capture 
meaningful, comprehensive pictures of system activity because 
of their inherent limitation in emulation capabilities.   

 A high-fidelity simulation that is indistinguishable from a 
production environment can collect this type of comprehensive 
data. The failure to distinguish these types of data collection 
undermines the internal validity with a data collection tool by in 
a manner which can exclude alternate hypotheses regarding 
indicators and mechanisms of compromise [19]. This 
shortcoming was due in part to the limitations and cost of 
implementations based on static hardware and software. Today, 
advances in virtualization and automation technologies, along 
with their widespread adaptation into organizations of all sizes, 
have enabled the implementation of robust cyber simulations as 
virtualization and is no longer considered an inherent red flag to 
attackers. These advanced cyber simulations utilize 
virtualization and automation technologies for rapid 
deployment, configuration, and sophisticated emulation in order 
to avoid detection and fingerprinting. 

 Cyber simulations with proper implementation can be 
combined with advances in camouflage and data capture to fill 
the empirical gap of current cybersecurity scientific methods. 
Such systems are capable of full-scope data collection which 
addresses empirical validity issues by capturing the complete 
picture of system and attacker activity. At a high level, knowing 
the nature and scale of attack types would help an organization 
improve its cybersecurity defensive effectiveness, and how to 
deploy simulations to gather that information.  



 These simulations can improve the scope of information by 
collecting a full picture of system activity in real-time rather 
than, for example, being limited to network traffic. For example, 
consider the case of a hypothetical web-based travel business 
which conducts customer credit card transactions. Attackers 
would likely assume sensitive consumer financial data would 
exist within that organization, making the simulated business an 
attractive target. In this simulation example, all system state 
changes would be deterministic as the design only emulates 
human behavior, and thus critical files, logs, and other data 
could manageably be tracked by simulation monitoring 
functions.  Any deviations would necessarily be the result of 
“unplanned” changes, and could be flagged for analysis.  

 Detection of these changes can be accomplished through a 
variety of methods, for example in the case of files on the local 
system by employing hashing algorithms on a periodic schedule. 
Hash changes not anticipated by the simulation would trigger 
flags, which in turn would indicate that the underlying data and 
any other simulation observation data should be passed to the 
analytics system for analysis. Because the system is designed as 
a completely virtualized small business network, there is a 
“perfect whitelist” of traffic and activity that is considered the 
system baseline. By capturing network flow, system and 
application logs, and virtual machine “snapshots”, any aberrant 
activity can be tracked from start to finish as a deviation from 
that baseline. This creates a very high signal-to-noise ratio for 
anomaly detection and, thus, a strong likelihood of capturing the 
full picture of attacker system interaction. Thus, subsequent 
analysis can utilize full-scope and timely attack information 
allowing identification of both the vectors and vehicles used in 
a specific attack whereas a non-controlled environment 
introduces a litany of other variables that could alter and 
obfuscate conclusions due to scenario-specific externalities.  

 These simulations can also address the problems of recency 
and selection bias which currently limit post-incident analysis. 
For example, when ransomware is introduced into the wild, its 
initial impact can be have a devastating, crippling effect to 
personal and business systems.  As outlined in [21] the 
vulnerability lifecycle goes through several phases: innovation, 
commercialization, and social gain. Innovation reflects the 
discovery of a vulnerability [21].  Commercialization occurs 
after the initial use of a vulnerability but before said 
vulnerability has become well-known [21]. The final stage of the 
lifecycle occurs after the vulnerability has been addressed and 
properly patched; however, individuals or companies who do 
not update their security can still be vulnerable [21]. An old 
vulnerability can still be crippling if security is not kept up to 
date.   

 Once a vulnerability is identified, malware scanners can be 
updated with the ransomware’s unique signature to prevent a 
machine from being susceptible to the attack.    However,  a 
change to the ransomware’s code or function will thereby 
change the ransomware’s signature potentially allowing it to 
escape detection by malware scanners. Enterprising attackers 
may attempt to add to or modify the code to account for a new 
attack vector, to suit their intended target, or merely to avoid 

signature detection. Regardless of motivation, any such change 
would interfere with signature-based detection. Until the 
malware definitions are updated to include the variant, users can 
be susceptible to attack.  There variants can still cause harm even 
after a subsequent patch has been released  to the 
users.  Attackers continue to find new methods of leveraging 
existing technology to propagate an attack across a network. 
Some of these methods target legitimate means to administrate 
systems [22], thereby handicapping administrators and reducing 
the means to which automate an enterprise. 

 Identifying older variants from post-incident analysis thus 
may not provide sufficiently recent data to protect against 
present and future threats.  Furthermore, the use of “live” 
production systems to observe attacker activity requires risking 
the exposure of those systems to compromise.  Properly 
camouflaged cyber simulations, by contrast, would not expose 
production systems to this risk and could allow malware and 
other threats to fulfill their full lifecycle allowing both for real-
time and full-scope analysis of the attack process and 
vulnerability vectors. 

 Thus, properly-designed cyber simulations can address 
empirical validity concerns present with other existing methods 
of cybersecurity data collection. Since cyber simulations, by 
design, capture attacker data while allowing for errors generated 
by the user and local system, the empirical utility of collected 
data has a highly favorable signal-to-noise ratio. These controls 
help ensure internal validity by reducing the likelihood that user 
activity, local system error, and other non-attacker variables 
induce confounding variables like the ones Maxion describes. 
The camouflage functions of honeypots, which are designed to 
emulate production systems, bolster the external validity of data 
captured with properly-camouflaged cyber simulations. 
Effective camouflage ensures that captured attack data describes 
the actions of adversaries intent on compromising live 
production systems, thus making such findings more reliable 
and generalizable [23]. 

 Additionally, these configurable cyber simulations allow 
researchers to control the risk profile of systems 
dynamically.  This flexibility allows controlled, focused testing 
of different vulnerabilities (variables) in attack 
surfaces.  Variations in  attack surfaces thus become the 
experimental, or independent variables, which combines with 
the controls for internal and external validity described above to 
allow researchers to directly test potential relationships between 
attack surface variation and likelihood of system 
compromise.  This empirical design mechanism helps safeguard 
the construct validity of the experimental process, leading to 
more reliable recommendations for cybersecurity practices [24].  

 The process of creating iterative designs of the generic test 
environment to address specific cyber security hypotheses is 
akin to standard object-oriented programming processes.  The 
generic test environment is the class and each instance of the 
generic test environment is a separate hypothesis with its own 
environmental parameters.  These class parameters describe 
high-level features of an operational environment that shape 



normal behavior.  We consider this set of features the 
independent variables of the simulation design.  This design 
process is cyclically refined as data is collected, the hypothesis 
is modified, and the test instance is updated. (See Fig. 1) 

GENERIC TEST ENVIRONMENT 

 
 
Fig. 1.  Iterative design of testing envrionments 

IV. TESTING THE MECHANISM: THE CHAMELEON PROJECT 
 This paper introduces an approach to use camouflaged 
simulations as a cybersecurity data collection tool and describes 
preliminary findings. In the CyREN Laboratory at the 
University of Pittsburgh, the Chameleon Project configures 
virtualized cyber simulations that emulate live production 
systems to collect comprehensive data, including both full-scope 
system activity and network activity analysis. 

Data capture methods are implemented through logging sensors 
on hosts, network devices, and application services. This method 
of full-scope data collection uniquely distinguishes this cyber 
simulation platform from other cyber simulation technologies 
[18], [23], [24].  All the information is processed, analyzed, and 
archived into an open-source data analytics platform. The 
analysis platform enables researchers to identify critical events 
in the cyber simulation environment from various vantage 
points, aiding in incident detection and analysis. 

 The camouflage tactics of the Chameleon Project serve both 
to conceal the research intentions from attackers and to preserve 
external validity. It is imperative that these tactics remain 
hidden, and thus, only a high level overview is provided. 

 The Chameleon model seeks to emulate production 
environments in order to present potential adversaries with 
environments nearly indistinguishable from live production 
targets.  In contrast to traditional honeypots, which usually 

emulated single services [18]. The Chameleon cyber simulation 
emulates entire environments (hosts, network activity, and 
services) to simulate real world organizations, such 
as  businesses or governments, comprehensively 
and  realistically. This project aims to capture current or 
advanced malicious tactics by  deceiving attackers into 
believing emulated systems are valuable targets. Reliance on 
emulation techniques also supports the external validity 
criterion, as it acts as a control to ensure the project’s findings 
can be applied to real-world systems, many of which now 
employ virtualization in cloud-based services. 

 Over the course of the first year and a half, Chameleon has 
successfully attracted attacks appropriate to the size, scope, and 
complexity of its attack surface. Chameleon has successfully 
captured data regarding the character and methods of these 
attacks. While further analysis of this data is reserved for future 
work, initial results strongly indicate the viability of cyber 
simulations as an effective model for empirical cybersecurity 
research. 

V. FUTURE WORK 
 The analysis presented in this paper and the efficacy of the 
initial Chameleon tests suggest that investment in controlled 
experiments of broader scale is warranted using virtualized and 
camouflaged cyber simulations with environments like 
Chameleon. Future work will investigate the development of 
robust, scalable methods of deploying camouflaged cyber 
simulation systems as well as automating system activity and 
data collection. Such work will develop and test specific 
hypotheses regarding the efficacy of extant and proposed 
cybersecurity methods, practices, and tools. One specific 
example currently under study is the comparative efficacy of 
consumer-grade versus more advanced network perimeter 
defense tools. Chameleon cyber simulation models are well 
suited to conduct this empirical experiment  by emulating 
various production environments and testing security 
configurations dynamically. This type of research illustrates the 
advanced and unique modeling capabilities of Chameleon. 
Making scalable, custom modeling for small businesses is a 
future priority of the lab.   

 When designing these simulations, reviewing similar 
business models and existing sites that have been breached in 
the past is imperative to ensure realism and develop a storefront 
that presents a realistic target to would-be attackers. Simulations 
must include physical business locations that cannot be 
invalidated by reconnaissance and valid communication 
mediums (i.e., telephone numbers and emails) automated by 
scripts to operate like a legitimate business. To implement 
realistic personas, profiles will contain what an employee is 
expected to do as well as how he/she may actually work. Each 
employee will have their own personal interests, which will be 
based on a set of unique personalized standard applications. For 
instance, an employee may use iTunes or another multimedia 
player and the Chrome browser instead of Safari. Due to 
different employee working hours, the traffic generated will 
vary according to each employee and their profile. 



VI. CONCLUSION 
 While previous cyber simulation technologies attempted to 
enable reputable scientific modeling, the failure to implement 
proper controls and configurations prevented these instruments 
from meeting the scientific standards of experimentation. 
Chameleon cyber simulations overcome these shortcomings and 
achieves external validity through effective camouflage 
practices. Other cybersecurity collection methods currently fall 
short of meeting empirical soundness. 

 Consequently, the Chameleon project demonstrates the 
plausibility of properly camouflaged cyber simulations as an 
empirical model for scientific experimentation. This research 
enables the progress of a more methods-based approach to 
experimentation in the cybersecurity field. It reintroduces cyber 
simulations as a practical instrument for data collection 
and  investigates proper modeling techniques for cybersecurity 
research to meet empirical validity standards. In future work, 
this research will aid in informing cybersecurity risk 
management and decision making through evidence-based, 
customized modeling which is not presently possible due to the 
lack of features in the current cyber simulation models. 
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