Math 3331 — ODEs — Sample Final Solutions
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Solution: After factoring, the equation separates

. _ <$+1) (x+1),

dx
Ldy = (x+1)dx,
y+1
y—Injy+1| = %x2+x—|—c.

dy _ 2.2
2. x%—FZy—xy.

Solution: The equation is Bernoulli, so we put in standard form

Yy 2,2
Jyoy =
Yoty Y
dy 2 _ 2
dx Y T Y
1dy 21
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y>dx xy
Welet u = %sog—;’ = —%g—zand substituting gives
_d_u_|_z = X
dx = x ’
du 2 he o £ o1
a—;u = —x, | theintegrating factor 1s‘u—;
d 1u 1
dx \ x2 x



Integrating gives

1
2t = c—In|x]|,
u = x*(c—1In|x]),
1
- = x*(c—1In|x)),
Yy
1
y _=

x2(c—1In|x])

QY o _
3.5—]/—26, y(0) = 3.

Solution: The equation is linear and already in standard form. The integrating factor is

u =e *. Thus,
da , _
ey =2
ey = 2x+¢, fromthelCc =23,
ey = 2x+3,
y = (2x+3)e".
d_y_l—ny2 (1) =1
Tdx 1+ 2x%y’ A=

Solution: The equation is exact. The alternate form is

(2xy? — 1)dx + (2x*y +1)dy = 0,

and it is an easy matter to verify

a_M—4x —a_N
dy YT o
so z exists such that
0
£ = M=2x*-1 = z=x%2—x+A(y),
g—; = N=2x*y+1 = z=x**+y+B(x),



so we can choose A and B giving z = x?y? — x + y and the solution as x?y> — x +y = c.
Since (1) = 1, this give ¢ = 1 and the solution x*y> — x +y = 1.

y

x.

dy
5. vl (Iny —Inx+1)

Solution: The equation is homogeneous. We re-write it as
y = <1n Y + 1) Y
dx X x
If welety = xu so Z—Z = xg—z+uthen
d
x% +u=(Inu+1)u,

which separates

du :d_x = Ihnhu=Ihx+Inc = u=_e"*
ulnu X

Therefore,

=e* or y=xe”,

R

2. Solve the following

(i) y'-5/+6y=10, y0) =1, y(0) = 0

Soln: The CE is m? —5m +6 = 0so (m —2)(m — 3) = 0 giving m = 2, m = 3. The solution
is
y = c1e®* 4 e

The IC’s gives c1 +c2 = 1,2c1 + 3c2 = 0. Solving gives ¢; = 3,cp = —2 leading to the
solution
y = 3¢*¥ — 2%

(i) yv"+2y'+10y = 0, y(0)= -1, ¥ (0)=4



Soln: The CE is m? + 2m + 10 = 0 giving m = —1 = 3i. The solution is

y = c1e” *cos3x + cpe” ¥ sin 3x

The IC’s gives c; = —1,—c1 + 3c; = 4. Solving gives c; = —1,cp = 1 leading to the

solution
y=—e “cos3x+e *sin3x

(iii) 4y"—4y'+y = 0, y(0)= 0, y'(0)=1

Soln: The CE is 4m? —4m +1 = 0so (2m —1)(2m — 1) = 0 givingm = 1/2,m = 1/2.

The solution is

1/2x 1/2x

y =rcre + coxe

The IC’s gives ¢; = 0,c; = 1 leading to the solution
y = xel/Zx
3. (i) Solve

<x2 — Zx) y' - (xz - 2) Yy +2(x—1)y =0,

2 is one solution.

given that y; = x

Soln: Lety = x?
simplifying gives
x(x —2)u" — (x* —4x +6)u’ =0

Letting u’ = vso u” = v/ gives
(x(x —=2))0" — (x> —4x +6)v = 0.

Separating gives
do x> —6x+4
v x(x—2) "7

which integrates to

usoy = x*u' +2xu and vy’ = x*u” + 4xu’ + 2u.

Substituting and

and since y = x*u we obtain the second solution y = e*. Thus the general solution is

y = cyx% 4 cpe”



5. (ii) Solve
xy’ = (x+1)y' +y =0,

given that y; = e” is one solution.
Soln: Lety = e*usoy’ = e*u' +e*u and y’ = e*u” + 2x*u’ + e*u. Substituting and

simplifying gives
xu + (x+1)u' =0

Letting u’ = vso u” = v/ gives
xv' + (x —1)v = 0.

Separating gives

dv  1—x
v x
which integrates to
v=uxe .

Since u’ = v this integrates once more giving
u=—(x+1)e"

and since y = ¢*u we obtain the second solution y = —(x + 1). Thus the general solution
is
y=cie* +cp(x+1)

noting that we absorbed the —1 into c;.

4. Solve using any method (reduction of order, method of undetermined coefficients or
variation of parameters)

(i) "—6y +9 _er
Y6y + 9% = 5,

The homogeneous equation is
y' -6y +9y =0

The characteristic equation for this is m? — 6m + 9 = 0 giving m = 3, 3. Thus, the comple-
mentary solution is

y = 16> + coxe®.
If we were to use variation of parameters

y= ue* 4 vxed”*. (1)



If we were to use reduction of order,

We will do both.

Variation of parameters
Taking the first derivative, we obtain

y = u'e® + 3ue® +v'e¥ + (3x + 1)ve™,
from which we set
uleSx + Z)l€3x =0,
leaving
r—3 3x 3x
Y = 3ue> + (3x + 1)ve™.
Calculating one more derivative gives
Y = 3u'e> + 9ue (3x + 1)0'e® + (9x + 6)ve™.
Substituting (1), (4) and (5) into the original ODE and canceling gives
31/ + 9ue + (3x + 1)v/e™ —I—W
— 18" — 6(3x+1)0e

3x
+ 9ue™ + 9xve™ = ex_z
or
e3x
3u'e™ + (3x +1)v/e™ = —.
X

Equations (3) and (7) are two equations for 1’ and v' which we solve giving

Integrating each respectively gives

1
u=—In|x|, v=—-—=
X
and from (1) we obtain the particular solution
3x

y = —Injx|e¥ —e

()

(3)

(4)

(5)

(6)

(7)



3x

noting that the piece ¢>* can be absorbed into the complementary solution. This then

gives rise to the general solution

y = 1% + coxe® —In |x| &3,

Reduction of Order
Taking the first derivative of (2), we obtain
y = u'e3* 4 3ue®, (8)
and one more derivative
v = u"e¥ + 6u'e® + ue®*. )

Substituting (2), (8) and (9) into the original ODE and canceling gives

"+ 61 e + Que®*
— 6u'e" — 18ue”"
3
Y > (10)
or
3y e3x

u'er = 2 (11)

After we cancel the €3, we integrate twice giving u = — In|x| + ¢1x + ¢, leading to the
solution

y=ue = (—1In|x| +c1x + ) . (12)

4. Solve using any method (reduction of order, method of undetermined coefficients or
variation of parameters)

(i) ' —y = 2x—3x°

Soln: The homogeneous equation is ¥/ —y’ = 0 The associated CE is m?> — m = 0 giving
m = 0,1. The two independent solutions are y; = ¢ = 1 and y, = e*. Thus, the
complementary solution is
Yy =1+ cpe”

Here we will use the method of underdetermined coefficients. One would guess a par-
ticular solution of the form y, = Ax?+ Bx + C but since y = 1 is a part of the com-
plementary solution we need to bump the particular solution up by one. Thus, we try
yp = Ax® + Bx? 4 Cx. Substituting into the DE and comparing coefficients gives

x?) —3A=-3
x) 6A—2B= 2
1) 2B—-C= 0



Solving gives A = 1,B = 2 and C = 4 giving y, = x> + 2x? 4 4x and the general solution
as
y = cy +coe” +x° +2x% + 4x,

5()

£ (10)s

then the characteristic equation is

1-A 1 | _ 12 _ oy
‘ 5 _A’—A—/\—2—(A+1)(A 2) =0,
from which we obtain the eigenvalues A = —1and A = 2.

Casel: A = —1
In this case we have

(21)(5)=(0):

from which we obtain upon expanding 2c; + c; = 0 and we deduce the eigenvector

so one solution is

Case2: A =2
In this case we have

(2 ) (2)-(9)

from which we obtain upon expanding c¢; — c; = 0 and we deduce the eigenvector

- ()

from which we obtain the other solution

The general solution to (13) is then given by

f:cl(_;>et+cz(i)ezt.



2(ii)
Consider

%Z(i_;)f’ x(o):<_§) (14)

then the characteristic equation is

1-A -1
1 3—-A

‘:/\2—4/\+9: (A—=2)2=0,

from which we obtain the eigenvalues A = 2 and A = 2 — repeated. As in problem 2(i)
we find the eigenvector associated with this

Casel: A =2
-1 -1 C1 - 0
1 1 Co o 0 !

In this case we have
from which we obtain upon expanding c; + c; = 0 and we deduce the eigenvector

so one solution is

X = < _} )EZt.

For the second independent solution we seek a second solution of the form
Xy = dte? + e, (15)

As shown in class, i1 = ¢ and ¥ satisfies

(7 )(e)=(4) L

or —v; — vy = 1. Here, we’ll choose

Therefore, the second solution is

()2 (3)7

and the general solution



Imposing the initial condition gives

() ra(5)=(=2)

This gives ¢y —c; = 5and —c; = —2s0 ¢; = 2 and ¢; = —3. The general solution then
becomes

o T\ o 1 ot 1\ 2

x—Z(_l)e 3[(_1)te+ 0 e,
2(iii)

dx 6 —1 ) _
The characteristic equation is
6—A -1 -
‘ 5 4_/\‘—)\—10/\—1—29—0.

Using the quadratic formula, we obtain A = 5+ 2i (sox = 5 and B = 2). For the eigen-
vectors, we wish to solve

(5 G ) ()= (o)
(1_52i —1_—121')(:2 ):<8>'

50, — (1 +2i)7]2 =0.

or

which means solving

One solution is
So here

With « =5 and B = 2 gives

X1 = [( é )cosZt— ( 3 )sinZt] e, X = {( é )sin2t+ < 3 ) cosZt} e,

The general solution is just a linear combination of these two
S 1 2\ . 5t 1 . 2 5¢
X=0 {( 5 )cos2t— ( 0 ) s1n2t} e+ {( 5 ) sin 2t + ( 0 )cos2t} e’

10



6. Let A = A(t) be the amount of salt at any time. Initially the tank contains pure water
so A(0) = 0. The rate in is r; = 5 gal/min and rate out , = 10 gal/min meaning the
volume in the tank is decreasing so

V = Vo + (r;i — ro)t = 500 + (5 — 10)t = 500 — 5¢

The change in salt at any time is given by

dA

dt
where ¢; and ¢, are concentrations in and out. Since we are given that c; = 2 Ib/gal and
co = A(t)/V(t) then we have

dA A
ar — 2010500 5
2A
T
This is linear so
dA 2A
ar P01
The integrating factor is 4 = exp < 1002_ tdt) = exp (—2In|100 — ¢|) = 1/(100 — t)?

SO

d A _ 10
dt \ (100 — )2 )~ (100 — ¢t)2
Integrating gives

A 10 e
(100 — £)2 (100 — ¢t)

The initial condition A(0) = 0 gives ¢ = —1/10 and finally giving the amount of salt at
any time

1
A =10(100 — ) — 5(100 — £)>2.

When the tank is empty V = 0 which happens at t = 100 and A(100) = 0.

7. Let P = P(t) be the population of rabbits. The differential equation is

P

— = kP(1000 — P)

11



Separating gives

dP
P(1000 — P) kdt
or
1 /1 1
1000 (ﬁ 1000 = P) AP = kdt
and multiplying by 1000

1 1
(ﬁ + 1000——P> dP = 1000kdt

We can absorb the 1000 into the k. Integrating gives
In P +In(1000 — P) = kt +Inc

or

r
o00—p °¢ (18)

Using the initial condition gives P(0) = 100 gives ¢ = 1/9 and further P(1) = 120 gives
k = .204794. Solving (18) for P gives

10006'204794t
P = 0204794t { g

To answer the questions P(2) = 143.36 so after two weeks there are 143 rabbits and the
value of t when P = 900 is t = 21.46 or roughly 21 and a half weeks.

8. Assuming Newton’s law of cooling we have

dT
dt
subject to T(0) = 160 and T(20) = 150. Here To, = 70. Separating the DE gives

k(Tw —T)

dT
0T — kdt
which we write as AT
T—70 = —kdt

as T is greater than the room temperature 70. Integrating gives

InT —70 = —kt +1Inc

12



or
T =70+ ce

Using T(0) = 160 gives ¢ = 90 and using T(20) = 150 gives k = .005882. Thus, the
temperature at any time is given by

T = 70 + 90e %%,

13



