
Math 3331 − ODEs − Sample Final Solutions

1.
dy
dx

=
x
y
+

1
y
+ x+ 1.

Solution: After factoring, the equation separates

dy
dx

=

(
1
y
+ 1
)
(x + 1),

y
y + 1

dy = (x + 1)dx,

y− ln |y + 1| =
1
2

x2 + x + c.

2. x
dy
dx

+ 2 y = x2y2.

Solution: The equation is Bernoulli, so we put in standard form

x
dy
dx

+ 2 y = x2y2,

dy
dx

+
2
x

y = x y2,

1
y2

dy
dx

+
2
x

1
y

= x.

We let u = 1
y so du

dx = − 1
y2

dy
dx and substituting gives

−du
dx

+
2
x

u = x,

du
dx
− 2

x
u = −x,

(
the integrating factor is µ =

1
x2

)
d

dx

(
1
x2 u

)
= −1

x
.
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Integrating gives

1
x2 u = c− ln | x |,

u = x2 (c− ln | x |) ,
1
y

= x2 (c− ln | x |) ,

y =
1

x2 (c− ln | x |) .

3.
dy
dx
− y = 2ex, y(0) = 3.

Solution: The equation is linear and already in standard form. The integrating factor is
µ = e−x. Thus,

d
dx
(
e−x y

)
= 2,

e−x y = 2x + c, from the IC c = 3,

e−x y = 2x + 3,

y = (2x + 3)ex.

4.
dy
dx

=
1− 2xy2

1 + 2x2y
, y(1) = 1.

Solution: The equation is exact. The alternate form is

(2xy2 − 1)dx + (2x2y + 1)dy = 0,

and it is an easy matter to verify

∂M
∂y

= 4xy =
∂N
∂x

,

so z exists such that

∂z
∂x

= M = 2xy2 − 1 ⇒ z = x2y2 − x + A(y),

∂z
∂y

= N = 2x2y + 1 ⇒ z = x2y2 + y + B(x),
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so we can choose A and B giving z = x2y2 − x + y and the solution as x2y2 − x + y = c.
Since y(1) = 1, this give c = 1 and the solution x2y2 − x + y = 1.

5.
dy
dx

= (ln y− ln x + 1)
y
x

.

Solution: The equation is homogeneous. We re-write it as

dy
dx

=
(

ln
y
x
+ 1
) y

x
.

If we let y = xu so dy
dx = x du

dx + u then

x
du
dx

+ u = (ln u + 1)u,

which separates

du
u ln u

=
dx
x
⇒ ln ln u = ln x + ln c ⇒ u = ecx.

Therefore,
y
x
= ecx or y = xecx,

2. Solve the following

(i) y′′− 5y′+ 6y = 0, y(0) = 1, y′(0) = 0

Soln: The CE is m2− 5m+ 6 = 0 so (m− 2)(m− 3) = 0 giving m = 2, m = 3. The solution
is

y = c1e2x + c2e3x

The IC’s gives c1 + c2 = 1, 2c1 + 3c2 = 0. Solving gives c1 = 3, c2 = −2 leading to the
solution

y = 3e2x − 2e3x

(ii) y′′+ 2y′+ 10y = 0, y(0) = −1, y′(0) = 4
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Soln: The CE is m2 + 2m + 10 = 0 giving m = −1± 3i. The solution is

y = c1e−x cos 3x + c2e−x sin 3x

The IC’s gives c1 = −1,−c1 + 3c2 = 4. Solving gives c1 = −1, c2 = 1 leading to the
solution

y = −e−x cos 3x + e−x sin 3x

(iii) 4y′′− 4y′+ y = 0, y(0) = 0, y′(0) = 1

Soln: The CE is 4m2 − 4m + 1 = 0 so (2m− 1)(2m− 1) = 0 giving m = 1/2, m = 1/2.
The solution is

y = c1e1/2x + c2xe1/2x

The IC’s gives c1 = 0, c2 = 1 leading to the solution

y = xe1/2x

3. (i) Solve (
x2 − 2x

)
y′′ −

(
x2 − 2

)
y′ + 2(x− 1)y = 0,

given that y1 = x2 is one solution.

Soln: Let y = x2u so y′ = x2u′ + 2xu and y′′ = x2u′′ + 4xu′ + 2u. Substituting and
simplifying gives

x(x− 2)u′′ − (x2 − 4x + 6)u′ = 0

Letting u′ = v so u′′ = v′ gives

(x(x− 2))v′ − (x2 − 4x + 6)v = 0.

Separating gives
dv
v

=
x2 − 6x + 4

x(x− 2)
,

which integrates to

v =
(x− 2)ex

x3 .

Since u′ = v this integrates once more giving

u =
ex

x2

and since y = x2u we obtain the second solution y = ex. Thus the general solution is

y = c1x2 + c2ex
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5. (ii) Solve
xy′′ − (x + 1)y′ + y = 0,

given that y1 = ex is one solution.

Soln: Let y = exu so y′ = exu′ + exu and y′′ = exu′′ + 2xxu′ + exu. Substituting and
simplifying gives

xu′′ + (x + 1)u′ = 0

Letting u′ = v so u′′ = v′ gives

xv′ + (x− 1)v = 0.

Separating gives
dv
v

=
1− x

x
,

which integrates to
v = xe−x.

Since u′ = v this integrates once more giving

u = −(x + 1)e−x

and since y = exu we obtain the second solution y = −(x + 1). Thus the general solution
is

y = c1ex + c2(x + 1)

noting that we absorbed the −1 into c2.

4. Solve using any method (reduction of order, method of undetermined coefficients or
variation of parameters)

(i) y′′ − 6y′ + 9y =
e3x

x2 ,

The homogeneous equation is

y′′ − 6y′ + 9y = 0

The characteristic equation for this is m2− 6m + 9 = 0 giving m = 3, 3. Thus, the comple-
mentary solution is

y = c1e3x + c2xe3x.

If we were to use variation of parameters

y = ue3x + vxe3x. (1)
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If we were to use reduction of order,

y = ue3x. (2)

We will do both.

Variation of parameters
Taking the first derivative, we obtain

y′ = u′e3x + 3ue3x + v′e3x + (3x + 1)ve3x,

from which we set

u′e3x + v′e3x = 0, (3)

leaving

y′ = 3ue3x + (3x + 1)ve3x. (4)

Calculating one more derivative gives

y′′ = 3u′e3x + 9ue3x(3x + 1)v′e3x + (9x + 6)ve3x. (5)

Substituting (1), (4) and (5) into the original ODE and canceling gives

3u′e3x+ ���
9ue3x + (3x + 1)v′e3x +�������

(9x + 6)ve3x

−����18ue3x −
��������
6(3x + 1)ve3x

+ �
��

9ue3x +����9xve3x =
e3x

x2 (6)

or

3u′e3x + (3x + 1)v′e3x =
e3x

x2 . (7)

Equations (3) and (7) are two equations for u′ and v′ which we solve giving

u′ = −1
x

, v′ =
1
x2 .

Integrating each respectively gives

u = − ln | x |, v = −1
x

and from (1) we obtain the particular solution

y = − ln |x| e3x − e3x
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noting that the piece e3x can be absorbed into the complementary solution. This then
gives rise to the general solution

y = c1e3x + c2xe3x − ln |x| e3x.

Reduction of Order
Taking the first derivative of (2), we obtain

y′ = u′e3x + 3ue3x, (8)

and one more derivative

y′′ = u′′e3x + 6u′e3x + 9ue3x. (9)

Substituting (2), (8) and (9) into the original ODE and canceling gives

u′′e3x+����6u′e3x +���
9ue3x

−����6u′e3x −����18ue3x

+���
���
9ue3x =

e3x

x2 (10)

or

u′′e3x =
e3x

x2 . (11)

After we cancel the e3x, we integrate twice giving u = − ln |x|+ c1x + c2 leading to the
solution

y = ue3x = (− ln |x|+ c1x + c2) e3x. (12)

4. Solve using any method (reduction of order, method of undetermined coefficients or
variation of parameters)

(ii) y′′ − y′ = 2x− 3x2

Soln: The homogeneous equation is y′′ − y′ = 0 The associated CE is m2 −m = 0 giving
m = 0, 1. The two independent solutions are y1 = e0 = 1 and y2 = ex. Thus, the
complementary solution is

y = c1 + c2ex

Here we will use the method of underdetermined coefficients. One would guess a par-
ticular solution of the form yp = Ax2 + Bx + C but since y = 1 is a part of the com-
plementary solution we need to bump the particular solution up by one. Thus, we try
yp = Ax3 + Bx2 + Cx. Substituting into the DE and comparing coefficients gives

x2) −3A = −3

x) 6A− 2B = 2

1) 2B− C = 0
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Solving gives A = 1, B = 2 and C = 4 giving yp = x3 + 2x2 + 4x and the general solution
as

y = c1 + c2ex + x3 + 2x2 + 4x.

5(i)

dx̄
dt

=

(
1 1
2 0

)
x̄ (13)

then the characteristic equation is∣∣∣∣ 1− λ 1
2 −λ

∣∣∣∣ = λ2 − λ− 2 = (λ + 1)(λ− 2) = 0,

from which we obtain the eigenvalues λ = −1 and λ = 2.

Case 1: λ = −1
In this case we have (

2 1
2 1

)(
c1
c2

)
=

(
0
0

)
,

from which we obtain upon expanding 2c1 + c2 = 0 and we deduce the eigenvector

c̄ =
(

1
−2

)
,

so one solution is

x̄1 =

(
1
−2

)
e−t.

Case 2: λ = 2
In this case we have (

−1 1
2 −2

)(
c1
c2

)
=

(
0
0

)
,

from which we obtain upon expanding c1 − c2 = 0 and we deduce the eigenvector

c̄ =
(

1
1

)
from which we obtain the other solution

x̄1 =

(
1
1

)
e2t.

The general solution to (13) is then given by

x̄ = c1

(
1
−2

)
e−t + c2

(
1
1

)
e2t.
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2(ii)
Consider

dx̄
dt

=

(
1 −1
1 3

)
x̄, x̄(0) =

(
5
−2

)
(14)

then the characteristic equation is∣∣∣∣ 1− λ −1
1 3− λ

∣∣∣∣ = λ2 − 4λ + 9 = (λ− 2)2 = 0,

from which we obtain the eigenvalues λ = 2 and λ = 2 − repeated. As in problem 2(i)
we find the eigenvector associated with this
Case 1: λ = 2
In this case we have (

−1 −1
1 1

)(
c1
c2

)
=

(
0
0

)
,

from which we obtain upon expanding c1 + c2 = 0 and we deduce the eigenvector

c̄ =
(

1
−1

)
so one solution is

x̄1 =

(
1
−1

)
e2t.

For the second independent solution we seek a second solution of the form

x̄2 = ūte2t + v̄e2t. (15)

As shown in class, ū = c̄ and ~v satisfies(
−1 −1

1 1

)(
v1
v2

)
=

(
1
−1

)
, (16)

or −v1 − v2 = 1. Here, we’ll choose

v̄ =

(
−1

0

)
Therefore, the second solution is

x̄2 =

(
1
−1

)
e2t +

(
−1

0

)
e2t

and the general solution

x̄ = c1

(
1
−1

)
e2t + c2

[(
1
−1

)
t e2t +

(
−1

0

)
e2t
]

,
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Imposing the initial condition gives

c1

(
1
−1

)
+ c2

(
−1

0

)
=

(
5
−2

)
.

This gives c1 − c2 = 5 and −c1 = −2 so c1 = 2 and c2 = −3. The general solution then
becomes

x̄ = 2
(

1
−1

)
e2t − 3

[(
1
−1

)
t e2t +

(
−1

0

)
e2t
]

,

2(iii)

dx̄
dt

=

(
6 −1
5 4

)
x̄. (17)

The characteristic equation is∣∣∣∣ 6− λ −1
5 4− λ

∣∣∣∣ = λ2 − 10λ + 29 = 0.

Using the quadratic formula, we obtain λ = 5± 2i (so α = 5 and β = 2). For the eigen-
vectors, we wish to solve(

6− (5 + 2i) −1
5 4− (5 + 2i)

)(
v1
v2

)
=

(
0
0

)
,

or (
1− 2i −1

5 −1− 2i

)(
v1
v2

)
=

(
0
0

)
,

which means solving
5v1 − (1 + 2i)v2 = 0.

One solution is

v̄ =

(
1 + 2i

5

)
=

(
1
5

)
+

(
2
0

)
i.

So here

Ā =

(
1
5

)
~B =

(
2
0

)
.

With α = 5 and β = 2 gives

~x1 =

[(
1
5

)
cos 2t−

(
2
0

)
sin 2t

]
e5t, ~x2 =

[(
1
5

)
sin 2t +

(
2
0

)
cos 2t

]
e5t.

The general solution is just a linear combination of these two

~x = c1

[(
1
5

)
cos 2t−

(
2
0

)
sin 2t

]
e5t + c2

[(
1
5

)
sin 2t +

(
2
0

)
cos 2t

]
e5t.
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6. Let A = A(t) be the amount of salt at any time. Initially the tank contains pure water
so A(0) = 0. The rate in is ri = 5 gal/min and rate out ro = 10 gal/min meaning the
volume in the tank is decreasing so

V = V0 + (ri − ro)t = 500 + (5− 10)t = 500− 5t

The change in salt at any time is given by

dA
dt

= rici − roco

where ci and co are concentrations in and out. Since we are given that ci = 2 lb/gal and
co = A(t)/V(t) then we have

dA
dt

= 2 · 5− 10 · A
500− 5t

= 10− 2A
100− t

This is linear so

dA
dt

+
2A

100− t
= 10

The integrating factor is µ = exp
(∫ 2

100− t
dt
)

= exp (−2 ln |100− t|) = 1/(100− t)2

so

d
dt

(
A

(100− t)2

)
=

10
(100− t)2

Integrating gives

A
(100− t)2 =

10
(100− t)

+ c

The initial condition A(0) = 0 gives c = −1/10 and finally giving the amount of salt at
any time

A = 10(100− t)− 1
10

(100− t)2.

When the tank is empty V = 0 which happens at t = 100 and A(100) = 0.

7. Let P = P(t) be the population of rabbits. The differential equation is

dP
dt

= kP(1000− P)
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Separating gives

dP
P(1000− P)

= kdt

or

1
1000

(
1
P
+

1
1000− P

)
dP = kdt

and multiplying by 1000 (
1
P
+

1
1000− P

)
dP = 1000kdt

We can absorb the 1000 into the k. Integrating gives

ln P + ln(1000− P) = kt + ln c

or

P
1000− P

= cekt (18)

Using the initial condition gives P(0) = 100 gives c = 1/9 and further P(1) = 120 gives
k = .204794. Solving (18) for P gives

P =
1000e.204794t

e.204794t + 9
.

To answer the questions P(2) = 143.36 so after two weeks there are 143 rabbits and the
value of t when P = 900 is t = 21.46 or roughly 21 and a half weeks.

8. Assuming Newton’s law of cooling we have

dT
dt

= k (T∞ − T)

subject to T(0) = 160 and T(20) = 150. Here T∞ = 70. Separating the DE gives

dT
70− T

= kdt

which we write as
dT

T − 70
= −kdt

as T is greater than the room temperature 70. Integrating gives

ln T − 70 = −kt + ln c
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or
T = 70 + ce−kt

Using T(0) = 160 gives c = 90 and using T(20) = 150 gives k = .005882. Thus, the
temperature at any time is given by

T = 70 + 90e−.005882t.
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