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Least-squares cross wavelet analysis and its applications in
geophysical time series
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Abstract The least-squares wavelet analysis, an al-

ternative to the classical wavelet analysis, was intro-

duced in order to analyze unequally spaced and non-

stationary time series exhibiting components with vari-

able amplitude and frequency over time. There are a few

methods such as cross wavelet transform and wavelet

coherence that can analyze two time series together.

However, these methods cannot generally be used to

analyze unequally spaced and non-stationary time se-

ries with associated covariance matrices that may have

trends and/or datum shifts. A new method of analyzing

two time series together, namely, the least-squares cross

wavelet analysis, is developed and applied to study the

disturbances in the gravitational gradients observed by

GOCE satellite that arise from plasma flow in the iono-

sphere represented by Poynting electromagnetic energy

flux. The proposed method also shows its outstanding

performance on the Westford-Wettzell very long base-

line interferometry baseline length and temperature se-

ries.
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1 Introduction

In many areas such as astronomy, geodesy, geophysics,

meteorology and glaciology, researchers usually deal

with non-stationary time series that are unequally

spaced and unequally weighted exhibiting data gaps,

trends and/or datum shifts (Wells et al. 1985; Brown

and Hwang 2012). It is not unusual to see that re-

searchers attempt to modify or edit the time series un-

der consideration to satisfy the well-established stan-

dard methods, such as Fourier transform and continu-

ous wavelet transform (Mallat 1999) by using, for in-

stance, interpolation to fill in the data gaps in the se-

ries. However, such modifications may cause significant

biases in the spectral peaks especially when the time

series is non-stationary (Kay and Marple 1981).

Foster (1996) proposed a novel approach for analyz-

ing astronomical time series that are unequally spaced.

His method, namely, the weighted wavelet Z-transform

(WWZ), is defined in terms of the estimated signal

to noise ratio using the least-squares method. There-

after, several other effective methods of analyzing non-

stationary and unequally spaced time series have been

proposed (Mathias et al. 2004; Amato et al. 2006).

The least-squares wavelet analysis (LSWA) is a new

method of analyzing non-stationary time series that

may be equally or unequally spaced (Ghaderpour and

Pagiatakis 2017). The LSWA is based on the well-

known least-squares spectral analysis (LSSA) intro-

duced by Vanicek (1969) but expanded to the time-

frequency domain. As such, the LSWA has all the de-
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sired properties of the LSSA and can be applied to any

unequally spaced and non-stationary time series with-

out any editing. More importantly, the LSWA com-

putes a normalized least-squares wavelet spectrogram

(LSWS), that is, the values of spectral peaks in the

spectrogram are between zero and one. The LSWA cal-

culates the spectrogram of a time series by fitting sinu-

soidal base functions to segments of the time series, and

so it decomposes the time series into the time-frequency

domain. The LSWA and WWZ are both excellent meth-

ods in determining the periodicities of constituents in

a time series because they are least-squares based. The

LSWA is defined in terms of the ratio of the estimated

signal to the sum of the estimated signal and noise

which allows one to search for hidden signals in a time

series.

In many applications, researchers want to investi-

gate the correlation or coherency between two time se-

ries, so that they can search for common constituents at

different time segments. There are several methods pro-

posed for analyzing two time series together such as the

least-squares self-coherency analysis (Abd El-Gelil et al.

2008; Abd El-Gelil and Pagiatakis 2009) and the cross

wavelet transform (Torrence and Compo 1998; Grinsted

et al. 2004). The least-squares self-coherency analysis

is based on the LSSA and is not suitable for analyzing

time series that have variability of amplitude and fre-

quency over time. On the other hand, the cross wavelet

transform (XWT) is based on the continuous wavelet

transform that is not defined for unequally spaced and

unequally weighted time series.

In this contribution, we first revisit the LSWA

to introduce the least-squares cross wavelet analysis

(LSCWA). Then we derive the stochastic surfaces (con-

fidence level surfaces) for the least-squares cross wavelet

spectrogram (LSCWS) that show which peaks are sta-

tistically significant at a certain confidence level. We

also discuss a special case of the LSCWA, called the

least-squares cross spectral analysis (LSCSA), along

with its least-squares cross spectrum (LSCS) and study

the phase differences in the LSCWS and LSCS. We

summarize the properties of these methods in Table 1.

We show the performance of our proposed method

on two synthetic time series. The method is also ap-

plied to Gravity field and steady-state Ocean Circula-

tion Explorer (GOCE) electrostatic gradiometer mea-

surement disturbances to determine their coherence

with the Poynting energy flux along two successive as-

cending satellite tracks during a magnetic storm (Ince

and Pagiatakis 2016) to show its superior performance

on the time series of different sampling rates. In an-

other application, the coherency between the Very Long

Baseline Interferometry (VLBI) baseline length series

from Westford to Wettzell with the temperature series

(recorded since 1984) is investigated to show the effect

of the temperature variation on the baseline length.

2 Least-squares wavelet analysis revisited

In this section, the LSWA is briefly revisited and will be

used in the cross analysis of two time series (for more

details see Ghaderpour and Pagiatakis 2017). Suppose

that f =
[
f(tj)

]
, 1 ≤ j ≤ n, is a discrete time series of

n data points; here the tj ’s are not necessarily equally

spaced. Let Ω = {ωk; k = 1, . . . , κ} be a set of spectral

frequencies of interest. For each j, 1 ≤ j ≤ n, and each

k, 1 ≤ k ≤ κ, define the segment of the time series

corresponding to pair (tj , ωk) as

y =
[
f
(
ti+j− 1

2 (L(ωk)+1)

)]
, (1)

where L(ωk) is a particular number depending on ωk
that we define later. Note that for each j and each k,

i runs from 1 to L(ωk) (except for the marginal seg-

ments), so segment y is a column vector of dimension

L(ωk). Now we use the sinusoidal base functions to de-

fine the following design matrix for pair (tj , ωk)

Φ =[
cos
(
2πωkti+j− 1

2 (L(ωk)+1)

)
, sin

(
2πωkti+j− 1

2 (L(ωk)+1)

)]
.

(2)

One may also use other base functions or wavelets to

define the design matrix; however, we use the sinusoidal

base functions to study the periodicity of the phenom-

ena directly. In order to resolve the frequency ωk for

short duration signatures in the time series, we may

define L(ωk) as

L(ωk) :=


⌊L1M

ωk

⌋
+ L0 if

⌊L1M

ωk

⌋
+ L0 is odd,

⌊L1M

ωk

⌋
+ L0 + 1 otherwise,

(3)

where symbol b∗c is the largest integer no greater than

∗, L0 is a fixed number of data points, L1 is a selected

number of cycles of the sinusoidal base functions, M is

a selected number of data points per unit time, and ωk
is the number of cycles per unit time (ωk ∈ Ω). For

instance, for an equally spaced time series recorded in

milliseconds, if frequency is in Hertz, then M = 1000

(data points per second), and if L1 = 2, then two cy-

cles of sinusoidal base functions of frequency ωk will be

fitted to a segment of the time series with L(ωk) data

points (see below). Also, L0 is the selected number of
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Table 1 Appropriate analyses methods for various types of time series without the need for their editing

Properties of one time series Appropriate analyses

Equally spaced, equally weighted, LSSA, Fourier transform,

stationary wavelet transform, WWZ, LSWA

Equally spaced, equally weighted, Wavelet transform,

non-stationary WWZ, LSWA

Unequally spaced and/or unequally weighted, WWZ,

non-stationary LSWA

Properties of two or more time series Appropriate analyses

Same sampling rates, equally spaced, LSCSA,

equally weighted, stationary XWT, LSCWA

Same sampling rates, equally spaced, XWT,

equally weighted, non-stationary LSCWA

Different sampling rates, equally/unequally spaced, LSCSA,

equally/unequally weighted, stationary LSCWA

Different sampling rates, equally/unequally spaced, LSCWA

equally/unequally weighted, non-stationary

additional samples considered in the least-squares fit

(the size of the windows increases by L0) to achieve the

desired time and frequency resolution in the LSWS.

For each k, 1 ≤ k ≤ κ, and each j, 1 ≤ j ≤ n, if

1 ≤ i+ j− (L(ωk) + 1)/2 ≤ n, then the size of y in Eq.

(1) (the same as the number of rows in Φ in Eq. (2)) is

R(j, k) :=
1

2

(
L(ωk

)
− 1
)

+ j, if 1 ≤ j < 1

2

(
L(ωk) + 1

)
,

L(ωk), if
1

2

(
L(ωk) + 1

)
≤ j ≤ n− 1

2

(
L(ωk)− 1

)
,

1

2

(
L(ωk) + 1

)
+ n− j, if n− 1

2

(
L(ωk)− 1

)
< j ≤ n,

(4)

which is the size of the window located at tj . Note that

when L1 = 0, L(ωk) and consequently R(j, k) are inde-

pendent from the choice of ωk.

Assume that P = C−1f is the weight matrix asso-

ciated with f . Let Py be the principal submatrix of P

of dimension R(j, k) which is a positive definite matrix.

Note that when P is fully populated, the correlations

between data points of the entire time series are con-

sidered in each Py.

If f contains constituents φ1, . . . , φq of known forms

but of unknown amplitudes (e.g., trends or sinusoids of

constant frequencies), then for each (tj , ωk), let

Φ =
[
φ1(ti+j− 1

2 (L(ωk)+1)), . . . , φq(ti+j− 1
2 (L(ωk)+1))

]
,

(5)

Φ =
[
Φ,Φ

]
, (6)

where Φ is given by Eq. (2). Note that Φ is the new

design matrix of order R(j, k)× (q + 2).

A practical approach in the LSWA is to first remove

(suppress) the known constituents from each segment

of f , and then analyze the residual segment ĝ of f . More

precisely, use the model y = Φ c to estimate c as

ĉ = N−1ΦTPyy, (7)

where N = ΦTPyΦ, and so ĝ = y−Φ ĉ. Then use the

model y = Φ c = Φ c + Φ c to estimate c as

ĉ = N−1ΦTPyĝ, (8)

where N = ΦTPyΦ − ΦTPyΦ N−1ΦTPyΦ as dis-

cussed in Ghaderpour and Pagiatakis (2017). Note that

c and c are column vectors of dimensions 2 and q, re-

spectively, and c is a column vector of dimension q + 2

defined as

c =

[
c

c

]
. (9)

Let J = ΦN−1ΦTPy. The LSWS is defined as

s(tj , ωk) =
ĝTPyJĝ

ĝTPyĝ
∈ (0, 1), (10)

where 1 ≤ j ≤ n and 1 ≤ k ≤ κ. Note that y

corresponds to the segment of time series which con-

sists of different constituents, and ĝ represents the con-

stituents of interest (signal) estimated by the least-

squares method.

We emphasize that using y = Φ c = Φ c + Φ c

to estimate c considers the correlation among the con-

stituents of known forms and the sinusoidal base func-

tions of cyclic frequency ωk. Using an alternative model

like ĝ = Φ c to estimate c ignores this correlation and
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may have significant impact on the location of the spec-

tral peaks in the spectrum or spectrogram (Craymer

1998; Ghaderpour and Pagiatakis 2017).

Foster (1996) and Ghaderpour and Pagiatakis

(2017) recommend to always consider at least the col-

umn of ones, [1], in Φ to make the mean values of the

segments approximately zero, especially for unequally

spaced time series, because the sinusoidal base func-

tions have zero mean. Omitting the column of ones

causes poor fitting of the sinusoidal base functions and a

false determination of the location of the spectral peak.

Foster (1996) and Ghaderpour and Pagiatakis

(2017) have also shown that when Py is considered

as a vector whose values are Gaussian function values,

the sinusoidal base functions will be adapted to Mor-

let wavelet in the least-squares sense. Other choices for

the covariance matrix may adapt the sinusoidal base

functions to other type of wavelets in the least-squares

sense, one of the reasons why the proposed approach

carries the word wavelet.

Appropriate selection of window size parameters L0

and L1 in Eq. (3) is crucial in the LSWA. If L1 > 0,

then the LSWA inherits similar time and frequency

resolutions as the continuous wavelet transform (Mal-

lat 1999), and the frequency resolution increases in

the spectrogram as L0 increases (Ghaderpour and Pa-

giatakis 2017). Therefore, depending on the scope of

analysis and also on the number of constituents of

known forms being estimated and removed from the

time series, one may empirically choose appropriate val-

ues for these parameters.

One may let R(j, k) = n and j = (n+ 1)/2, n odd,

in Eq. (10) to obtain the least-squares spectrum (LSS)

of the time series of n data points. In fact, the LSS
is a special case of the LSWS that is independent of

time and has only one segment (the entire time series).

The reader is referred to Wells et al. (1985), Pagiatakis

(1999) and Ghaderpour and Pagiatakis (2017) for more

details.

3 Least-squares cross wavelet analysis

In this section, the cross-spectrogram of two time series

(may be extended to more) with its stochastic surfaces

at a certain confidence level (usually 95% or 99%) is

introduced as well as the phase differences of common

constituents of the two time series.

3.1 Cross-spectrogram and its stochastic surface

A random variable X has the beta distribution with

parameters p1 > 0 and p2 > 0 on interval (0, 1), denoted

by βp1,p2 , if its probability density has the form

fX(x) =
1

B(p1, p2)
xp1−1(1− x)p2−1, (11)

where B(p1, p2) = Γ (p1)Γ (p2)/Γ (p1 +p2), and Γ is the

Gamma function (e.g., Gupta 2004; Craig et al. 2013).

It is shown in Ghaderpour and Pagiatakis (2017)

that the LSWS of time series f given by Eq. (10) follows

the beta distribution, in other words, s ∼ β1,</2, where

β stands for the beta distribution, < = R(j, k) − q −
2, and the symbol ∼ is used to show that a random

variable follows a distribution.

Suppose that time series f1 and f2 have been derived

from two statistically independent populations of ran-

dom variables following respectively the multidimen-

sional normal distributions N (0,Cf1) and N (0,Cf2),

where the covariance matrices Cf1 and Cf2 may be sin-

gular. Let Ω = {ωk; k = 1, . . . , κ} be a set of common

spectral frequencies for the two time series under con-

sideration.

Let s1 and s2 be the spectrograms corresponding to

f1 and f2, respectively. By the assumption, s1 and s2 are

statistically independent. For each pair (tj , ωk), denote

by Xs the cross-spectrogram of the two time series and

define it as the product of their spectrograms,

Xs = s1s2. (12)

Note that 0 < Xs < 1 because 0 < s1, s2 < 1. Since the

sampling rates and/or the times of the two time series

may not be the same, one may set the time vector in

Xs as the union of the sets of times of the first and

second time series. If tj is a time in the first time series

but not in the second (or vice-versa), then s1(tj , ωk) is

calculated within a window of size R1(j, k) located at

tj , and s2(tj , ωk) is calculated within a window of size

R2(j, k) located at tj , emphasizing that the center of

the window does not have to be located at a time in

which there exists a sample. For a pair (tj , ωk), if the

value of Xs is closer to one, then the two segments of

the two time series within the windows of sizes R1(j, k)

and R2(j, k) are highly coherent, and they are highly

incoherent if the value of Xs is closer to zero.

Suppose that q1 and q2 are the number of con-

stituents of known forms being considered in the cal-

culation of the spectrograms for f1 and f2, respectively.

Ghaderpour and Pagiatakis (2017) showed that s1 ∼
β1,<1/2 and s2 ∼ β1,<2/2, where <1 = R1(j, k)− q1 − 2

and <2 = R2(j, k)−q2−2. More precisely, from Eq. (11),

the probability distribution functions (PDF) of the in-

dependent random variables s1 and s2 are respectively
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as follows

fs1(u) =
<1

2
(1− u)<1/2−1, 0 < u < 1, (13)

fs2(v) =
<2

2
(1− v)<2/2−1, 0 < v < 1. (14)

Following similar methodologies in Glen et al. (2004),

the PDF of random variable Xs can be obtained. The

following transformation is a one-to-one mapping from

A =
{

(u, v); 0 < u < 1, 0 < v < 1
}

to B ={
(x, y); 0 < x < 1, 0 < y < 1

}
Xs = s1s2, Y = s2. (15)

Let T and K denote the transformation and the inverse

transformation, respectively. Therefore,

x = T1(u, v) = uv, y = T2(u, v) = v,

u = K1(x, y) = x/y, v = K2(x, y) = y. (16)

The Jacobian of the transformation is

J =
∂(u, v)

∂(x, y)
=
(∂u
∂x

)(∂v
∂y

)
−
(∂u
∂y

)(∂v
∂x

)
=
(1

y

)
(1)−

(−x
y2

)
(0) =

1

y
. (17)

Using Eq. (16) and the independency of s1 and s2,

fXs,Y (x, y) = |J |fs1,s2(u, v) =
1

y
fs1(x/y)fs2(y). (18)

Integration of Eq. (18) with respect to y over the ap-

propriate interval and using Eqs. (13) and (14) yield

the PDF of Xs

fXs
(x) =

∫ 1

x

fXs,Y (x, y) dy =

∫ 1

x

1

y
fs1

(x
y

)
fs2(y) dy

=
<1<2

4

∫ 1

x

1

y

(
1− x

y

)<1/2−1
(1− y)<2/2−1 dy,

(19)

where 0 < x < 1. One may numerically calculate

this integral using the well-known methods such as

Simpson quadrature and Gauss-Kronrod quadrature

(Hazewinkel 2001; Moler 2008; Shampine 2008). Fig-

ure 1 shows the PDF of Xs for selected values of <1

and <2.

Table 2 shows the critical values (cv) corresponding

to two significance levels α = 0.01 and α = 0.05 for

selected values of <1 and <2. It can be seen that the

critical values approach zero rapidly when <1 and <2

increase. Note that the area under the density curve

from its lower right tail to the left is computed to find

the critical value for a certain significance level because

the PDF becomes singular when approaching zero.

Fig. 1 Illustration of the PDF of Xs given by Eq. (19) for
some values of <1 and <2

Table 2 The critical values (cv) corresponding to the signif-
icance levels (α) and <i

<1 <2 α = 0.01 α = 0.05

2 2 cv = 0.862 cv = 0.701

4 3 cv = 0.624 cv = 0.436

4 6 cv = 0.452 cv = 0.290

10 10 cv = 0.186 cv = 0.105

20 30 cv = 0.043 cv = 0.022

100 101 cv = 0.003 cv = 0.002

Now let f1 and f2 be two time series of dimen-

sions n1 and n2, respectively. For each ωk ∈ Ω, as-

sume that s1 and s2 are the least-squares spectra cor-

responding to f1 and f2, respectively. Analogous to the

cross-spectrogram, define the least-squares cross spec-

trum (LSCS) as Xs = s1s2, where <1 = n1 − q1 − 2

and <2 = n2 − q2 − 2. The PDF of Xs is given by Eq.

(19). Note that the LSCS is independent of the sam-

pling rates because it decomposes the time series to the

frequency domain and not to the time-frequency do-

main.

3.2 Phase differences in the cross-spectrogram

When analyzing two time series together, researchers

are also interested in the phase differences between any

two constituents of interest of the same time-frequency

spectral value. To find the phase differences, note that

y = a sin (2πωt + θ)

=
[

cos (2πωt), sin (2πωt)
]
c = Φc, (20)

where c = a
[

sin θ, cos θ
]T

and Φ is the design matrix

given by Eq. (2). Following the same procedure in the

LSWA, one can see that Eq. (8) is the estimate for c. For

each pair (tj , ωk), let ĉ1 and ĉ2 be the two elements of
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ĉ given by Eq. (8). Therefore, â sin θ̂ = ĉ1 and â cos θ̂ =

ĉ2, and so â = (ĉ21 + ĉ22)0.5. Thus

θ̂ = 2 arctan

(
1− ĉ2/â
ĉ1/â

)
. (21)

Now for pair (tj , ωk), if θ̂1 and θ̂2 are the phase dif-

ferences of the constituents of f1 and f2 calculated

by Eq. (21), respectively, then define the phase differ-

ence corresponding to pair (tj , ωk) as ψ = θ̂2 − θ̂1,

where −2π < ψ < 2π. The phase difference for a

common constituent of a particular frequency indicates

how much the constituent of the second time series

lags (if −2π < ψ < −π or 0 ≤ ψ < π) or leads (if

−π ≤ ψ < 0 or π ≤ ψ < 2π) the constituent of the

first time series. Let σ2
1 and σ2

2 be the variances asso-

ciated with θ̂1 and θ̂2, respectively, estimated from the

least-squares estimation process. Applying the covari-

ance law to ψ = θ̂2− θ̂1, one may calculate the standard

deviation of ψ as σψ =
(
σ2
1 + σ2

2

)0.5
.

4 Analysis of two synthetic time series

We demonstrate the performance of the LSCSA and

LSCWA on two synthetic and inherently unequally

spaced time series given by

f1(ti) = cos

(
30

1.2− ti

)
+ g(ti) + w1, (22)

0 ≤ ti ≤ 1, 1 ≤ i ≤ 600,

where g(ti) = cos
(
25 · 2πti

)
for 200 ≤ i ≤ 300 and

g(ti) = 0, otherwise, and w1 is Gaussian white random

noise, and

f2(t′j) = cos
(
5 · 2πt′j

)
+ cos

(
25 · 2πt′j +

π

2

)
+ w2, (23)

0 ≤ t′j ≤ 1, 1 ≤ j ≤ 400,

where w2 is Gaussian white random noise. Note that

in the LSSA, LSWA, LSCSA, and LSCWA, the time

series do not have to contain white noise. In this exam-

ple, we consider white noise to see the performance of

these analyses because measurements in practice typ-

ically contain white noise. Time series f1 = [f1(ti)]

and f2 = [f2(t′j)] are illustrated in Fig. 2a with blue

and red colors, respectively. Assume that the unit time

for f1 and f2 is in days. The set of common frequen-

cies chosen in the analyses of the two time series is

Ω = {1, 2, . . . , 49} cycles per day (c/d).

The LSCS of the two time series detects two peaks

at cyclic frequencies 5 and 25 c/d (Fig. 2b). Figure 2b

also shows the phase differences of the constituents of

cyclic frequencies 5 and 25 c/d in f1 with respect to the

ones in f2 which are approximately close to −50◦ and

Fig. 2 (a) Two unequally spaced series given by Eqs. (22)
and (23) shown in blue and red, respectively, (b) The LSCS
of the two time series and (c) The LSCS of the two residual
time series after suppressing the peak at 5 c/d

+90◦, respectively, as expected from the synthetic time

series. In the next step, the peak at 5 c/d is suppressed

and the LSCS of the residual time series is shown in

Fig. 2c. It can be seen that the percentage variance of
the peak at 25 c/d increases, indicating more coherency

in the residual time series.

Since there are 600 and 400 samples per day for

f1 and f2, respectively, M1 = 600 and M2 = 400.

Note that since the time series are inherently unequally

spaced, no aliasing is expected to occur at high fre-

quencies, however, if at least one of the time series was

equally spaced, then it is recommended to choose half

of the sampling rate as the Nyquist frequency for the

cross-spectrogram. The cross-spectrograms of the two

time series and their residuals along with some selected

phase differences (arrows) are shown in Fig. 3 (L1 = 2

and L0 = 10 are selected for both time series). The an-

gles of white arrows on the cross-spectrogram with re-

spect to the horizontal axis show the phase differences.

Note that an arrow is in the first or second quadrant of

the trigonometric circle when 0◦ ≤ ψ < 180◦, and it is

in the third or fourth quadrant when −180◦ ≤ ψ < 0◦.

The coherency of the two original time series can

be observed in more details in Fig. 3a. The cross-
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Fig. 3 (a) The LSCWS of the time series shown in Fig. 2a
and (b) The LSCWS of the residual time series. The arrows
in the spectrogram show the phase differences

spectrogram shows that the hyperbolic chirp signal in

Eq. (22) is coherent with the cosine wave of 5 c/d in Eq.

(23) from 0 to 0.5 day interval. The percentage variance

of the corresponding peaks decreases as time increases

because the frequencies of the hyperbolic chirp in f1 in-

creases rapidly over time, showing less coherency with

the cosine wave of 5 c/d in f2 as time increases. It can

be seen from Fig. 3a that signal g(ti) in f1 and the co-

sine wave of 25 c/d in f2 are coherent in the time period

of approximately 0.3 − 0.5 day. Part of the hyperbolic

chirp at 25 c/d in f1 and the cosine wave of 25 c/d in f2
are also coherent in the time period of approximately

0.7− 0.8 day. Figure 3b is obtained by suppressing (re-

moving) the peaks at 5 c/d in the LSCWS that can be

done by adding the sine and cosine base functions of

5 c/d as two columns to Φ in Eq. (5) for f2. The co-

herency between signal g(ti) in f1 and the cosine wave

of 25 c/d in the residual f2 is significantly increased

(compare the percentage variance of the peaks in Fig.

3a and b from time 0.3 to 0.5 day at 25 c/d).

The phase difference of almost 90◦ can be observed

in the spectrogram from time 0.35 to 0.5 day at 25

c/d as expected. Note that the phase differences in the

LSCS may not be accurate for non-stationary time se-

ries as the sinusoids are being fitted to the entire time

series. For instance, the phase difference in the LSCWS

corresponding to time 0.77 d and frequency 25 c/d is

43.2◦, but it cannot be detected as such in the LSCS.

Moreover, the coherency between signal g(ti) in f1 and

cosine wave of frequency 25 c/d in f2 is more localized

and significant in Fig. 3b.

5 GOCE electrostatic gravity gradiometer

measurements and Poynting energy flux

Two different geophysical time series are analyzed to

demonstrate the performance of LSCWA when is ap-

plied to real, unequally spaced and unequally weighted

time series. The first time series is composed of gravita-

tional gradient disturbances observed by GOCE satel-

lite, whereas the second time series comprises Poynting

electromagnetic energy flux (plasma flow) in the iono-

sphere derived from equivalent horizontal ionospheric

currents and vertical currents. The hypothesis of this

analysis is that the electromagnetic energy flux in

the Earth’s thermosphere introduces undesirable dis-

turbances in GOCE electrostatic gravity gradiometer

(EGG) measurements as shown in Ince (2016) and Ince

and Pagiatakis (2016). The data sets are described and

their analyses are presented in this section.

5.1 GOCE electrostatic gravity gradiometer

The latest gravity field mission GOCE was one of

the three satellite missions, after CHAMP (challenging

mini-satellite payload) and GRACE (gravity recovery

and climate experiment), which has helped remarkably

to improve the accuracy and resolution of the Earth’s

global geopotential models from space. In order to map

the Earth’s gravitational field from satellite measure-

ments, the influence of all temporal gravitational and

non-gravitational accelerations acting on the satellite

should be measured and removed from the observations.

Preliminary analyses and literature search have

shown that the GOCE electrostatic gravity gradiometer

(EGG) measurements (Rummel et al. 2011) are affected

by some unknown non-gravitational sources around the

magnetic poles (Peterseim et al. 2011; Stummer et al.

2012; Siemes et al. 2012; Yi et al. 2013; Ince 2016; Ince

and Pagiatakis 2016). Ince (2016) demonstrated that

the source of these disturbances are related to solar ac-

tivity dependent ionospheric dynamics. Moreover, these

disturbances can reach up to a magnitude of about 3

to 5 times larger than the expected noise level (approx-

imately 11 milli-Eotvos, mE) of the gravity field com-

ponents at specific epochs. Ince and Pagiatakis (2016)

found that these specific epochs correspond to geomag-

netic storms due to the interaction between the inter-

planetary magnetic field and geomagnetic field.
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Fig. 4 Two satellite ascending tracks (green curves) over
Canada. The grid points represent the SEC grid

In order to understand the relation between the un-

desirable disturbances observed in gravitational gradi-

ents and plasma flow variations due to solar activity,

spherical elementary currents (SEC) are used for the co-

herency analysis (Amm 1997; Amm and Viljanen 1999;

Weygand et al. 2011). Based on the Laplace condition,

the summation of the diagonal components of the grav-

itational gradient tensor (GGT) (trace) should be zero.

It is worth mentioning that these variations affect the

EGG measurements around the auroral oval when the

ionospheric dynamics (plasma flow) are more intense.

In this example, the trace on which these spurious sig-

nals are more visible is investigated, and the selected

GOCE tracks are examined individually in which the

trace is subject to rapid changes (Fig. 4).

The sampling period of GOCE measurements is one

sample per second, and along track correlated errors are

not considered in this study (error in the GOCE gradi-

ents outside of the measurement bandwidth is colored).

The data sets we analyze do not have any gaps and they

are equally spaced. However, it is possible that GOCE

data in level zero or level one stage have gaps.

5.2 Equivalent ionospheric currents and Poynting

vector

The SEC system (SECS) methodology given in Amm

(1997) and Amm and Viljanen (1999) are used to de-

rive equivalent ionospheric currents (EIC) which are

based on the magnetic field disturbances measured at

the Earth’s surface (Weygand et al. 2011). The SECS

methodology furthermore upward continues the anoma-

lous magnetic field measurements from the ground to

an altitude of about 110 km. Equivalent currents (hor-

izontal currents) and spherical elementary current am-

plitudes (vertical currents) are provided in 10 s tempo-

ral resolution in a gridded format over North America

and West Greenland (see the grid points in Fig. 4). The

kriging method (using a variogram) is applied to inter-

polate the grid values into the satellite ground track

position (see green lines in Fig. 4) for the analyses (Ince

2016).

By using SEC values provided on a grid (see dots

in Fig. 4) interpolated into the satellite position, the

Poynting vector (Kelley 2009; Ince 2016) is computed

in the north-south and east-west directions along the

satellite track. The units of Poynting vector are Watt

per meter square (W/m2). In general, the direction of

the Poynting vector indicates the direction of the flow of

the electromagnetic energy that drives the ionospheric

currents.

The gravitational gradient tensor (GGT) trace and

the Poynting vector (series) of the first satellite track

are shown in Fig. 5a. The unit time for our analyses is

in hours and the sampling rate for original GGT trace

series is M1 = 3600 samples per hour. The sampling

rate for the Poynting series is M2 = 360 samples per

hour. Note that the Nyquist frequency of the Poynt-

ing series is 180 cycles per hour (c/h) which is different

from the one for the original GGT trace series of 1800

c/h. Therefore, the maximum frequency for the analy-

sis must not be greater than 180 c/h. In this analysis,

we choose Ω = {1, 2, . . . , 100}. The LSCS after remov-

ing the datum shift of the original GGT trace series

is shown in Fig. 5b. The original GGT trace and the

Poynting series of the second satellite track and their

LSCS (after removing the datum shift) are also shown

in Fig. 6.

Note that the XWT (Grinsted et al. 2004) would

require interfiling and editing of both time series to be

identical in their times and equally spaced, and it does

not consider the covariance matrices associated with the

time series. However, the LSCWA does not require the

series to have the same sampling rates and to be equally

spaced at identical times. The comparison between the

XWT and LSCWA for equally spaced time series of the

same sampling rates are shown below. This comparison

is made only for the first satellite track.

In order to apply the XWT, the GGT trace series of

the first satellite track should be decimated from 3600

to 360 samples per hour (M1 = 360) because the Poynt-

ing series has the sampling rate of 360 samples per hour.

To keep the useful information of the GGT trace series

as much as possible, a Gaussian filter is used in this

process (see Appendix 1). The result of the decimated

GGT trace series is illustrated in black in Fig. 5a, and it

can be observed that the decimated data points match

the data points of Poynting series in time.

Figure 7 shows the XWT of the decimated GGT

trace series and the Poynting series of the first satellite

track (the Morlet wavelet is used). The MATLAB
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Fig. 5 (a) The cross-track Poynting vector component in
W/m2, original and decimated GGT trace series in mE for
the first satellite track, and (b) The LSCS of original GGT
trace and cross-track Poynting vector component series with
99% confidence level

Fig. 6 (a) The original GGT trace series shown by blue and
the cross-track Poynting vector component series shown in
red for the second satellite track, and (b) The LSCS of the
original GGT trace and cross-track Poynting vector compo-
nent series with 99% confidence level

code to generate this figure was obtained from

www.mathworks.com/matlabcentral/fileexchange/

47985-cross-wavelet-and-wavelet-coherence. Note that

the XWT is in time-scale, and the scales are converted

to frequencies in this figure. The confidence level Z2(p)

associated with a probability p in the XWT may be

Fig. 7 The XWT of the decimated GGT trace and Poynt-
ing series of the first satellite track along with phase shifts
(arrows). The area within the thick contour is the significant
area at 99% confidence level. The cone of influence where the
edge effects might distort the results is shown as a light shade

calculated by inverting the following integral

p =

∫ Z2(p)

0

z K0(z) dz, (24)

where K0(z) is the modified Bessel function of order

zero (Torrence and Compo 1998; Ge 2008). From Eq.

(24), one can obtain Z2(0.95) = 3.999 and Z2(0.99) =

5.767. The latter value is used in Fig. 7.

The LSCWA for the first satellite track is applied

to three different cases, namely, the decimated GGT

without (as in the XWT above) and with considering

the covariance matrix and the original GGT trace se-

ries. Based on the constituents of low frequency and

short duration empirically observed in the time series,

the window size parameters are chosen as L1 = 1 and

L0 = 5 for both time series and Φ = [1] for the deci-
mated GGT trace series to remove its datum shifts.

Figure 8a shows the LSCWS of the decimated GGT

trace series by considering the covariance matrix gen-

erated by the Gaussian filtering process described in

Appendix 1. The significant peaks in the LSCWS are

those that are above the stochastic surface shown by

gray at 99% confidence level. The two-dimensional rep-

resentation of the LSCWS and its stochastic surface

(gray) and phase differences are shown in Fig. 8b. It

can be seen that the two time series are highly coher-

ent with approximately zero phase differences (see the

reddish area around 0.12 hour in Fig. 8b). This fact can

also be observed in Fig. 7. The very low coherence in

the interval 0.02− 0.1 hours is also expected due to the

lower power random character of the signals (Fig. 5a).

However, the significant peaks are much more localized

in the LSCWS than in the XWT because the LSCWS

is obtained from the spectrograms, decomposing the

time series directly to the time-frequency domain using

the least-squares method. Although the Morlet wavelet
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Fig. 8 (a) Three-dimensional representation of the LSCWS
of the Poynting and decimated GGT trace series shown in
Fig. 5a considering the covariance matrix with the stochastic
surface at 99% confidence level (gray), (b) its two-dimensional
representation with phase differences (arrows), and (c) The
LSCWS without considering the covariance matrix with
phase differences (arrows)

used in the XWT smooths the signal peaks in the spec-

trogram, it increases the bandwidth of the signal fre-

quencies in the spectrogram (poor time-frequency res-

olution, Ghaderpour and Pagiatakis 2017).

To verify the importance of the covariance matrix in

the analysis, an equally weighted analysis without con-

sidering the covariance matrix is also performed (Fig.

8c), and some of the cross-spectrogram values (denoted

by Xs(tj , ωk)) are shown in Table 3 and compared to

the values when the covariance matrix is considered (de-

noted by Xe
s (tj , ωk)). In Table 3, cv(tj , ωk) denotes the

critical values (%) corresponding to pair (tj , ωk) at 99%

confidence level. Comparing the values in the third and

fourth columns, one can observe the changes in percent-

age variances for the LSCWS. The first five and last

nine rows in this table correspond to some of the values

inside the left and right circles, respectively, shown in

Fig. 8b and c. Many of the peaks that are significant

in Fig. 8b are insignificant in Fig. 8c (inside the right

circle). On the other hand, many of the peaks that are

insignificant in Fig. 8b are significant in Fig. 8c (inside

the left circle).

Table 3 Comparison between some of the values in the
LSCWS with (third column) and without (fourth column)
considering the covariance matrix associated with the deci-
mated GGT trace series and the critical value (fifth column)
at 99% confidence level

tj ωk Xe
s (tj , ωk) Xs(tj , ωk) cv(tj , ωk)

0.058 19 3.82 9.16 5.9

0.058 20 3.84 9.01 5.9

0.058 22 4.37 9.45 7.02

0.061 25 8.03 10.13 8.5

0.061 26 7.45 8.98 8.5

0.153 23 11.73 6.45 7.02

0.158 21 5.94 4.95 5.9

0.158 28 16.36 9.02 10.5

0.164 36 29.4 7.71 13.28

0.164 37 29.32 8.47 13.28

0.167 36 33.99 7.52 13.28

0.167 37 34.22 8.65 13.28

0.169 36 20.72 6.61 13.28

0.169 37 22.49 7.97 13.28

For the original GGT trace series, the same window

size parameters are selected but M1 = 3600 (Fig. 9).

Since the window size for the original GGT trace series
is larger than for the decimated one, the critical val-

ues of the LSCWS of the original GGT trace series are

smaller than the ones for the decimated GGT trace se-

ries (Figs. 8b, 9a). This means that the spectral peaks

in the LSCWS for the decimated series are expected to

be stronger than the ones for the original series in order

to be statistically significant. Comparing Fig. 8b and c

with Fig. 9a, one can observe that Fig. 9a is closer to

Fig. 8b in terms of significant peaks (e.g., see inside

the circles). This indicates the crucial importance of

considering the covariance matrix associated with the

series when computing the spectrogram (the weighted

LSCWA).

The analysis of the original GGT trace series (Fig.

9a) shows that the effects of the marginal windows are

improved and more reliable results for the coherency

and the phase differences are obtained. We emphasize

that various filtering and decimating techniques may al-

ter the result of analysis, and so analyzing the original

series (raw data) will give more reliable results. There-
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Fig. 9 The LSCWS of the original GGT trace series and
the Poynting series with stochastic surface at 99% confidence
level (gray) along with the phase differences for (a) the first
satellite track and (b) the second satellite track

fore, for the second satellite track, we only illustrate the

LSCWS of the original GGT trace and Poynting series

(shown in Fig. 6a) in Fig. 9b.

There is a small negative phase difference around

cyclic frequency 20 c/h and time 0.12 − 0.14 h in Fig.

9a and b indicating that the ionospheric variations are

leading the disturbances in GGT trace series. The anal-

yses show that the variations observed in the two series

have a period of about 5 minutes. This corresponds to

spatial variations of around 2000 km. The ionospheric

variations of this spatial resolution were investigated

and presented in Ince and Pagiatakis (2016).

6 Westford-Wettzell VLBI baseline length and

atmospheric temperatures

In this section, the effect of atmospheric tempera-

ture on the VLBI baseline length estimates between

Westford in the USA and Wettzell in Germany

is investigated, and the coherency between the

temperature variations at the two stations and

the VLBI baseline are shown. The VLBI length

series and the associated variances are obtained

from www.ccivs.bkg.bund.de, and the temperature

time series for Westford and Wettzell are obtained from

http://ggosatm.hg.tuwien.ac.at/DELAY/SITE/VLBI/.

The VLBI series comprises 1733 unequally spaced

and unequally weighted baseline length estimates from

January 9th, 1984 at 19:12:00 universal time (UT) to

September 3rd, 2014 at 16:48:00 UT (Fig. 10a). In or-

der to see the effect of the atmospheric temperature

on the Westford-Wettzell baseline length, the temper-

atures are chosen close to, and in many cases identi-

cal to the times when the baseline length estimates

are available (Fig. 10b). Since there are 57 samples

per year (on average), M = 57. In order to compare

the results with the results in Ghaderpour and Pa-

giatakis (2017), the window size parameters are chosen

as L1 = 4 and L0 = 30, and the set of cyclic frequen-

cies is Ω = {0.1, 0.2, 0.3, . . . , 12} with unit of cycles per

annum (c/a). Selecting smaller window size parameters

will produce cross-spectrograms that are more localized

in time and more accurate in phase shifts; however, fre-

quency localization will be poorer (see Sect. 4).

The linear trend observed in Fig. 10a expresses the

lengthening of the baseline due to the relative tectonic

plate movement on which the two VLBI antennas are

mounted (Campbell 2004). Therefore, the linear trend

is the known constituent, so in Eq. (5), we let Φ = [1, t].

Figure 11 shows the (weighted) cross-spectrograms of

the VLBI series and each of the temperature series (af-

ter removing the trends) along with their stochastic sur-

faces at 99% confidence level. The coherency between

the two series at the cyclic frequency 1 c/a (365 days)

can be seen in the figure. From the cross-spectrograms,

one can observe that both temperature series show rela-

Fig. 10 (a) The unequally spaced VLBI baseline length evo-
lution since January 1984 with error bars (red), and (b) un-
equally spaced and equally weighted temperature series at
stations Westford (red) and Wettzell (blue) since January
1984
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Fig. 11 The LSCWS of the residual VLBI series and the
(a) Westford and (b) Wettzell temperature series with their
stochastic surfaces at 99% confidence level (gray) and phase
differences (white arrows)

tively small coherency at 1 c/a with the VLBI series for

the time period from 1984 to 1991. This small coherency

is due to large measurement errors for the VLBI series

in that period (Fig. 10a). Ghaderpour and Pagiatakis

(2017) show that considering the error bars of the VLBI

series improves the percentage variances of the spec-

tral peaks in the LSWS, and it results in improved co-

herency with the temperature series.

The VLBI series has approximately the same phase

shifts over time with both temperature series at 1 c/a

(the constituents of the temperature series at 1 c/a have

approximately zero phase shifts) indicating simultane-

ous contraction and expansion at both antennas which

results in significant periodic change in the baseline

length (see arrows). The small negative phase differ-

ences mean that the constituents of each temperature

series lead the constituents of VLBI series at period

of one year, indicating that the periodic change in the

VLBI baseline length slowly occurs after the tempera-

ture variation. In other words, depending on the design

of the antennas, the annual temperature variation can

affect the geometry of the antennas by several millime-

ters (Wresnik et al. 2007). The constituents of the VLBI

series and each temperature series at cyclic frequency

1 c/a have slightly smaller phase differences at certain

time periods from 1989 to 2014 when selecting smaller

window size parameters (e.g., L1 = 1 and L0 = 10).

Fig. 12 The LSCWS of the residual VLBI series and the
residual (a) Westford and (b) Wettzell temperature series
with their stochastic surfaces at 99% confidence level (gray)
and phase differences (white arrows). Some of the significant
peaks are shown inside the circles

For further investigation, the annual peaks are also

suppressed from the VLBI baseline length series as

well as from the Westford temperature series, and the

LSCWS of the residual series is shown in Fig. 12a. The

weak peak at 1.6 c/a in Fig. 12a may indicate that

the Westford antenna is being deformed with a period

of approximately 228 days (unusual atmospheric tem-

perature variations) from year 1997 to year 2001 with

almost zero phase shift (see inside the circle) as was

discussed in Ghaderpour and Pagiatakis (2017).

To compare the results with the result of Wettzell

temperature series shown in Ghaderpour and Pa-

giatakis (2017), the trends, the annual peaks, and peaks

at frequency 1.6 c/a are simultaneously removed from

the VLBI series. The trends and annual peaks are also

removed from the Wettzell temperature series and the

LSCWS of the two residual series is shown in Fig. 12b.

The statistically significant coherency between the con-

stituents of the two series in the LSCWS indicates the

deformation of Wettzell antenna, possibly affecting the

baseline length at certain periods (see inside the cir-

cles). The semiannual length variation of the baseline

length can be possibly linked to the temperature vari-

ation as observed in the cross-spectrograms shown in

Fig. 12 (since 2004). The dashed vertical lines in the

cross-spectrograms are due to significant data gaps.
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7 Discussions and Conclusions

A new method of analyzing two time series together us-

ing the LSWA is introduced which is a natural extension

of the LSSA. This method, namely, the LSCWA can be

applied to any type of time series and generates fairly

simple and meaningful results including the confidence

level and phase differences between the two time series,

and it shows how much the constituents of the time se-

ries in a particular frequency are coherent and whether

the coherency is significant at certain confidence level.

In the LSCWA, the time series do not have to be equally

spaced and equally weighted, and they do not need to

have the same sampling rate. The LSCWA can analyze

non-stationary time series consisting of constituents of

variable amplitude and frequency variability over time.

When analyzing unequally spaced time series, spec-

tral leakages appear in the spectra and spectrograms

(i.e., energy leaks from one spectral peak into another).

However, the spectral leakages can be significantly miti-

gated by simultaneous suppressing the significant peaks

as done in the LSSA and LSWA. In the LSCWA, the

effect of the leakages can be further mitigated because

they appear randomly in the spectrograms of each time

series. Therefore, their cross-spectrogram mainly shows

the coherency of the true signals. Furthermore, if by

any chance the random errors (e.g., colored noise) that

might be present in two time series appear to have sim-

ilar behavior in some time periods, then they may also

contaminate the cross-spectrograms.

The time series analyses presented in this paper are

concrete examples of real time series which are sam-

pled at different rates and represent time-variant sys-
tems where the Fourier transform and wavelet trans-

form or other traditional methods cannot be applied

directly. In geophysical time series analysis, there are

also cases in which time series show discontinuities, for

example in GPS (global positioning system) coordinate

time series that may have discontinuities (i.e., sudden

offset or “jump”) in its values or trend due to tectonic

phenomena. Such cases are also observed in time se-

ries of gravimeter measurements. Since the LSWA and

LSCWA decompose time series segment-wise (depend-

ing on the time and frequency), selecting Φ = [1, t]

for constituents of known forms will automatically con-

sider the discontinuities simultaneously with the peri-

odic constituents thus, producing more reliable results

for the spectral peaks.

Finally, in many applied sciences, researchers would

like to study the impact of one phenomenon on another

by analyzing two or more time series (or data series that

are measurements recorded over other quantities such

as distance instead of time, e.g., seismic data series)

obtained for each phenomenon. The LSCWA is a useful

tool that can efficiently and directly show the coherency

and phase differences between the time series to make

a reliable decision.
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Appendix 1: A decimation algorithm using the

Gaussian filter

Since the time series in the XWT must have the

same sampling rates, the GGT trace series described in

Sect. 5.2 must be decimated from 3600 to 360 samples

per hours. In this appendix, we show how one may dec-

imate the GGT trace series for the first satellite track

shown in Fig. 5a.

To decimate the M value of the original GGT trace

series and show the importance of considering the co-

variance matrix of decimated data points, we use the

Gaussian function g(`) = e−0.5`
2/σ2

, where σ = 2.5 and

−9 ≤ ` ≤ 9. In other words, the Gaussian window con-

tains 19 samples (Fig. 13a). Thus, the cut-off frequency

is (sampling rate)/(2π · σ) that is 3600/(2π · 2.5) ≈ 229

c/h. The Gaussian function is normalized to define the

weights of the filter as w(`) = g(`)/s (−9 ≤ ` ≤ 9),

where s =
∑9
`=−9 g(`). It can be seen from Fig. 13a

that the Gaussian windows overlap each other when

translate 10 points over time (red arrows), and so we

may obtain the weighted covariances between the dec-

imated data points using the weights shown with solid

black diamonds.

The weighted average and standard deviation of the

GGT trace values within each window give the value of

the decimated data point and its error bar, respectively

(e.g., Pagiatakis et al. 2007). More precisely, suppose

that n is the number of data points in the original GGT

trace series f(ti) (1 ≤ i ≤ n), and m is the number of

data points in the decimated GGT trace series h(τj)

(1 ≤ j ≤ m). In this example, we have n = 701 and

m = 71. We calculate the values of the decimated series

as

h(τj) =

9∑
`=−9

w(`)f(t10j+`−9) (25)

for 2 ≤ j ≤ 70 (except for j = 1 and j = 71 that

correspond to the margins), and their corresponding
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Fig. 13 The decimating process of the GGT trace series for
the first satellite track shown in Fig. 5a using a Gaussian
window: (a) The translating Gaussian window, (b) The result
of decimation of the first 40 data points of the GGT trace
series using the Gaussian weights shown with diamonds in
panel a (note that p, q, r are the second, third, and fourth
decimated points, respectively), and (c) The decimated GGT
trace series and its error bars

variances as

Var(j) = η

9∑
`=−9

w(`)
(
f(t10j+`−9)− h(τj)

)2
, (26)

where η = 19/18 (West 1979). From Eqs. (25) and

(26), one may calculate h(τ1) (for j = 1) and h(τ71)

(for j = 71) and their variances by ranging ` from

0 to 9 and −9 to 0, respectively. One may also use

η = 1/
(
1 −

∑9
`=−9 w

2(`)
)

that is slightly smaller than

19/18, producing almost the same final results (e.g.,

Galassi et al. 2016). The minimum, maximum, and

mean values of the standard deviations (error bars) are

0.006, 0.0257, and 0.0154, respectively. Now it can be

seen from Fig. 13a that only the covariance between

every two consecutive decimated data points is nonzero

when σ = 2.5. One may also calculate the covariance

between each two consecutive decimated data points

using

Cov(j, j + 1) = ηc

9∑
`=1

(
wc(`)

(
f(t10j+`−9)− h(τj)

)
(
f(t10j+`−9)− h(τj+1)

))
, (27)

for 1 ≤ j ≤ 70, where wc(`) = w(`− 10) for 1 ≤ ` ≤ 5,

wc(`) = w(`) for 6 ≤ ` ≤ 9, and ηc may be calculated

as ηc = 1/
(
1 −

∑9
`=1 w

2
c (`)

)
similar to η (e.g., Stuart

and Ord 2010; Galassi et al. 2016). We illustrate the

result of this decimating method for the first few data

points and the entire decimated GGT trace series along

with its error bars in Fig. 13b and c, respectively (see

decimated points p, q, r). The variances and covariances

calculated from Eqs. (26) and (27) form a covariance

matrix (symmetric and tridiagonal) associated with the

decimated GGT trace series.
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