Math 1496 - Sample Test 1 Solutions

1. From the following graph determine the following limits.

(i) $\lim _{x \rightarrow-1^{-}} f(x)=1$
(ii) $\lim _{x \rightarrow-1^{+}} f(x)=2$
(iii) $\lim _{x \rightarrow-1} f(x)=$ DNE
(iv) $\lim _{x \rightarrow 2^{-}} f(x)=3$
(v) $\lim _{x \rightarrow 2^{+}} f(x)=3$
(vi) $\lim _{x \rightarrow 2} f(x)=3$
2. Calculate $\lim _{x \rightarrow 1} \frac{x^{3}-x^{2}}{x-1}$ using the techniques of graphically, numerically and analytically.
(i) Graphically

from which the graph says $\lim _{x \rightarrow 1} \frac{x^{3}-x^{2}}{x-1}=1$.
(ii) Numerically

x	0.9	0.99	0.999	1.001	1.01	1.1
$f(x)$	0.8100	0.9801	0.9980	1.0020	1.0201	1.2100

from which the table says $\lim _{x \rightarrow 1} \frac{x^{3}-x^{2}}{x-1}=1$.
(iii) Analytically

$$
\lim _{x \rightarrow 1} \frac{x^{3}-x^{2}}{x-1}=\lim _{x \rightarrow 1} \frac{x^{2}(x-1)}{x-1}=\lim _{x \rightarrow 1} x^{2}=1
$$

2. Calculate the following limits analytically.
(i) $\lim _{x \rightarrow 4} \frac{x-4}{\sqrt{x}-2}=\lim _{x \rightarrow 4} \frac{x-4}{\sqrt{x}-2} \cdot \frac{\sqrt{x}+2}{\sqrt{x}+2}=\lim _{x \rightarrow 4} \frac{(x-4)(\sqrt{x}+2)}{x-4}=\lim _{x \rightarrow 4} \sqrt{x}+2=4$
(ii) $\lim _{x \rightarrow 0} \frac{\sin 4 x}{\sin 2 x}=\lim _{x \rightarrow 0} \frac{\frac{\sin 4 x}{x}}{\frac{\sin 2 x}{x}}=\frac{4}{2}=2$ since $\lim _{x \rightarrow 0} \frac{\sin m x}{x}=m$
(iii) $\lim _{x \rightarrow \infty} \frac{3 x^{2}+4}{x^{2}+2 x+1}=\lim _{x \rightarrow \infty} \frac{3+\frac{4}{x^{2}}}{1+\frac{2}{x}+\frac{1}{x^{2}}}=\frac{3+0}{1+0+0}=3$
3. Calculate the first derivative (either $f^{\prime}(x)$ or y^{\prime}) of the following. Do not simplify your answer
(i) $y=\frac{4 e^{x}}{x^{2}+1}, \quad y^{\prime}=\frac{4 e^{x}\left(x^{2}+1\right)-4 e^{x} \cdot 2 x}{\left(x^{2}+1\right)^{2}}$
(ii) $y=x^{2} \tan x, \quad y^{\prime}=2 x \tan x+x^{2} \sec ^{2} x$
(iii) $f(x)=\sin \left(\sqrt{4 x^{2}+x}\right)$,
$f^{\prime}(x)=\cos \left(\sqrt{4 x^{2}+x}\right) \cdot \frac{1}{2}\left(4 x^{2}+x\right)^{-1 / 2} \cdot(8 x+1)$
4. The definition

$$
\begin{equation*}
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{n} \tag{1}
\end{equation*}
$$

If $f(x)=3 x^{2}-5 x+2$ then

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{3(x+h)^{2}-5(x+h)+2-\left(3 x^{2}-5 x+2\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 x^{2}+6 x h+3 h^{2}-5 x-5 h+2-3 x^{2}+5 x-2}{h} \\
& =\lim _{h \rightarrow 0} \frac{\not h(6 x+2 h-5)}{h}=\lim _{h \rightarrow 0} 6 x+2 h-5=6 x-5
\end{aligned}
$$

5. If $y=x^{4}-2 x^{3}+2 x^{2}$ then $y^{\prime}=4 x^{3}-6 x^{2}+4 x$. At $x=1, y=1$ and $\left.y^{\prime}\right|_{x=1}=4-6+4=$ 2 so the equation of the tangent is $y-1=2(x-1)$.
6. If

$$
f(x)= \begin{cases}x^{2} & x \leq 0 \\ x^{3} & x>0\end{cases}
$$

is $f(x)$ continuous and differentiable at $x=0$?
Part (i)

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} f(x) & =\lim _{x \rightarrow 0} x^{2}=0 \\
\lim _{x \rightarrow 0^{+}} f(x) & =\lim _{x \rightarrow 0} x^{3}=0
\end{aligned}
$$

Further $f(0)=0^{2}=0$. Since

$$
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=f(0)=0
$$

$f(x)$ is continuous at $x=0$.
Part (ii)

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x}=\lim _{x \rightarrow 0} \frac{x^{2}}{x}=\lim _{x \rightarrow 0} x=0 \\
& \lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x}=\lim _{x \rightarrow 0} \frac{x^{3}}{x}=\lim _{x \rightarrow 0} x^{2}=0
\end{aligned}
$$

Since

$$
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=0
$$

then $f(x)$ is differentiable at $x=0$ an we define $f^{\prime}(0)=0$.
7. Prove

$$
\lim _{x \rightarrow 2} 2 x-1=3
$$

For every $\varepsilon>0$ there exists a $\delta>0$ such that

$$
|(2 x-1)-3|<\varepsilon \text { whenever } 0<|x-2|<\delta
$$

Therefore

$$
|(2 x-1)-3|<\varepsilon \text { whenever } 0<|x-2|<\varepsilon / 2
$$

