Math 1496 - Sample Test 1 Solutions

1. From the following graph determine the following limits.

2. Calculate $\lim_{x\to 1} \frac{x^3 - x^2}{x - 1}$ using the techniques of graphically, numerically and analytically.

(i) Graphically

from which the graph says $\lim_{x \to 1} \frac{x^3 - x^2}{x - 1} = 1.$

(ii) Numerically

x	0.9	0.99	0.999	1.001	1.01	1.1
f(x)	0.8100	0.9801	0.9980	1.0020	1.0201	1.2100

from which the table says $\lim_{x \to 1} \frac{x^3 - x^2}{x - 1} = 1.$

(iii) Analytically

$$\lim_{x \to 1} \frac{x^3 - x^2}{x - 1} = \lim_{x \to 1} \frac{x^2 (x - 1)}{x - 1} = \lim_{x \to 1} x^2 = 1$$

2. Calculate the following limits analytically.

(i)
$$\lim_{x \to 4} \frac{x-4}{\sqrt{x-2}} = \lim_{x \to 4} \frac{x-4}{\sqrt{x-2}} \cdot \frac{\sqrt{x+2}}{\sqrt{x+2}} = \lim_{x \to 4} \frac{(x-4)(\sqrt{x+2})}{x-4} = \lim_{x \to 4} \sqrt{x+2} = 4$$

(*ii*)
$$\lim_{x \to 0} \frac{\sin 4x}{\sin 2x} = \lim_{x \to 0} \frac{\frac{\sin 4x}{x}}{\frac{\sin 2x}{x}} = \frac{4}{2} = 2 \quad \text{since} \quad \lim_{x \to 0} \frac{\sin mx}{x} = m$$

(*iii*)
$$\lim_{x \to \infty} \frac{3x^2 + 4}{x^2 + 2x + 1} = \lim_{x \to \infty} \frac{3 + \frac{4}{x^2}}{1 + \frac{2}{x} + \frac{1}{x^2}} = \frac{3 + 0}{1 + 0 + 0} = 3$$

3. Calculate the first derivative (either f'(x) or y') of the following. Do not simplify your answer

(i)
$$y = \frac{4e^x}{x^2 + 1}$$
, $y' = \frac{4e^x(x^2 + 1) - 4e^x \cdot 2x}{(x^2 + 1)^2}$

(*ii*)
$$y = x^2 \tan x$$
, $y' = 2x \tan x + x^2 \sec^2 x$

(*iii*)
$$f(x) = \sin\left(\sqrt{4x^2 + x}\right)$$
,
 $f'(x) = \cos\left(\sqrt{4x^2 + x}\right) \cdot \frac{1}{2} \left(4x^2 + x\right)^{-1/2} \cdot (8x + 1)$

4. The definition

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{n}$$
(1)

If $f(x) = 3x^2 - 5x + 2$ then

$$f'(x) = \lim_{h \to 0} \frac{3(x+h)^2 - 5(x+h) + 2 - (3x^2 - 5x + 2)}{h}$$
$$= \lim_{h \to 0} \frac{3x^2 + 6xh + 3h^2 - 5x - 5h + 2 - 3x^2 + 5x - 2}{h}$$
$$= \lim_{h \to 0} \frac{\hbar(6x + 2h - 5)}{\hbar} = \lim_{h \to 0} 6x + 2h - 5 = 6x - 5$$

5. If $y = x^4 - 2x^3 + 2x^2$ then $y' = 4x^3 - 6x^2 + 4x$. At x = 1, y = 1 and $y'|_{x=1} = 4 - 6 + 4 = 2$ so the equation of the tangent is y - 1 = 2(x - 1).

6. If

$$f(x) = \begin{cases} x^2 & x \le 0\\ x^3 & x > 0 \end{cases}$$

is f(x) continuous and differentiable at x = 0?

Part (i)

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0} x^{2} = 0$$
$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0} x^{3} = 0$$

Further $f(0) = 0^2 = 0$. Since

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = f(0) = 0,$$

f(x) is continuous at x = 0.

Part (ii)

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{x^2}{x} = \lim_{x \to 0} x = 0$$
$$\lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{x^3}{x} = \lim_{x \to 0} x^2 = 0$$

Since

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = 0,$$

then f(x) is differentiable at x = 0 an we define f'(0) = 0.

7. Prove

$$\lim_{x\to 2} 2x - 1 = 3$$

For every $\varepsilon > 0$ there exists a $\delta > 0$ such that

 $|(2x-1)-3| < \varepsilon$ whenever $0 < |x-2| < \delta$

Aside		Proof			
				6	
(2x-1)-3	<	ε	x-2 <	$\frac{\varepsilon}{2}$	
$\mid 2x-4 \mid$	<	ε	2 x - 2 <	ε	
2 x - 2	<	ε	2x-4 <	ε	
<i>x</i> – 2	<	ε/2	(2x-1)-3 <	ε	
pick $\delta = \varepsilon/2$					

Therefore

$$|(2x-1)-3| < \varepsilon$$
 whenever $0 < |x-2| < \varepsilon/2$