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Abstract We consider an empirical estimation of the environmental Kuznets curve (EKC) for
carbon dioxide and sulphur, with a focus on confidence set estimation of the tipping point. Var-
ious econometric—parametric and nonparametric—methods are considered, reflecting the
implications of persistence, endogeneity, the necessity of breaking down our panel regionally,
trends and temporal instability, and the small number of countries within each panel. In partic-
ular, we propose a parametric inference method that corrects for potential weak-identification
of the tipping point. Weak identification may occur if the true EKC is linear while a quadratic
income term is nevertheless imposed into the estimated equation. Relevant literature to date
confirms that non-linearity of the EKC is indeed not granted, which provides the motivation
for our work. We also propose a non-parametric counterpart to the parametric confidence
set, for sensitivity analysis. Viewed collectively, our results confirm an inverted U-shaped
EKC in the OECD countries but generally not elsewhere, although a local-pollutant analysis
suggests favorable exceptions beyond the OECD. Our measures of uncertainty confirm that it
is difficult to identify economically plausible tipping points. Policy-relevant estimates of the
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tipping point can nevertheless be recovered from a local-pollutant long-run or non-parametric
perspective.

Keywords Environmental Kuznets curve · Fieller method · Delta method · CO2 and SO2

emissions · Confidence set · Tipping point · Climate policy

1 Introduction

The environmental Kuznets curve (EKC) describes an inverted “ U” relationship between
per capita income and pollution levels. Viewed as a stylized feature, the EKC caught the
attention of the profession following empirical work by—among others—Grossman and
Krueger (1995).1 Since then, research on the curve has evolved in response to two major
challenges, both of which reflect common conceptual problems associated with reduced-
form relationships. The first is a lack of compelling theoretical foundations. The second is a
plethora of serious and lasting econometric imperfections given available data.2

Traditionally, the EKC is estimated using panel data regressions known to be plagued
by trending, endogeneity, heterogeneity, and pooling problems. For these reasons, reported
estimates are fragile for important parameters, including the coefficient on the quadratic
income term.3 This affects other objects of interest such as policy implications or inference
about the tipping point, which refers to the level of income where per capita emissions reach
their maximum.

Although substantial, this literature has not yet produced a serious consensus view. Even
so, developments in econometrics have made applied works on the EKC more credible
than it was in the early to mid-nineties. Progress has resulted from attention to functional
forms and controls, and to assumptions on trends. Yet despite progress, little attention has
been paid to estimation uncertainty about the tipping point. In this paper, we focus on this
problem.

We consider an empirical estimation of the EKC for carbon dioxide and sulphur, with a
focus on the tipping point. Our panel—of 114 countries for CO2 and 82 for SO2—spanning
the period 1960–2007 is disaggregated into several groupings. OECD countries comprise one
group while all others are grouped into six geographic regions. Disaggregation is necessary to
reduce biases resulting from inappropriately pooling the data when countries are dissimilar.
Our estimators take into account the high degree of persistence in the data and the presence of
endogeneity. Disaggregating our panel into regions necessarily places models into a “small
sample” (in particular small n, where n refers to the number of countries) framework. We
thus favour panel data methods that have been proved to work relatively well in the small n
context.

Historically, the tipping point has not been a primary object of interest in most of these
studies. A voluminous part of this literature has rather focused on assessing the existence of the

1 Early studies that found evidence of the EKC include Shafik (1994), Selden and Song (1994), Holtz-Eakin
and Selden (1995) and Cole et al. (1997). These studies were generally optimistic about the potential for
economic growth to solve environmental problems for several pollutants.
2 For surveys, see e.g. Carson (2010), Wagner (2008), Vollebergh et al. (2009), Brock and Taylor (2005),
Cavlovic et al. (2000), Dinda (2004), Stern (2001; 2003; 2004; 2010), Yandle et al. (2004), Dasgupta et al.
(2002), Levinson (2002), and the references therein. Other works are also discussed below.
3 The range of published estimates is wide and covers values close to zero for the quadratic component, and
controversial income elasticities.
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EKC, which broadly entails the following: at early stages of development, pollution initially
rises with per capita income but then falls as per capita income exceeds some threshold level.
Available studies have applied a variety of econometric models and methods, each taking
into account a different feature of the data that was previously overlooked. For example (we
refer the reader to the above cited surveys for a more exhaustive summary), Stern et al. (1996)
argue that heteroskedasticity is present in grouped data. List and Gallet (1999) do not find
support for the poolability of the data for US states. Harbaugh et al. (2002) find that results
(on air pollutants) are sensitive to functional forms, additional covariates, sampling periods
and geographic location. To tackle the problem of poolability, Lee et al. (2010) disaggregate
their sample of 97 countries into four regions and estimate an EKC for water pollution.
They find no EKC in the full sample of countries, but do find EKC’s for developed regions.
Non-parametric specifications and/or specifications focusing on pollution growth have also
been considered; see List et al. (2003), Azomahou et al. (2006), Ordás-Criado et al. (2011),
Kalaitzidakis et al. (2011) and the references therein.4

A second strand in the recent literature has questioned the feasibility of estimating the
EKC by analyzing the time series properties of income per capita and emissions per capita.
By investigating whether both variables have a unit root, scholars are questioning the extent
to which the time series properties of the data render previous estimates of the EKC spuri-
ous. The question of whether income and emissions cointegrate is—in fact—at center stage.
Perman and Stern (2003) use panel unit root tests and find that sulphur emissions, global
GDP and its square expressed in natural logs are stochastically trending, casting doubt on the
general applicability of the EKC hypothesis. In particular, they argue that typical specifica-
tions for the EKC are too simple for cointegration to hold. Richmond and Kaufmann (2006)
estimate EKCs for CO2 in a sample of 36 countries over the period 1973–1997. They find
CO2 emissions, fuel mix, and GDP per capita are all nonstationary. Romero-Avila (2008) use
a panel stationarity test which allows for multiple breaks and cross-sectional dependence, and
find that world per capita income is nonstationary and per capita CO2 emissions are regime-
wise trend stationary. Another example is Jalil and Mahmud (2009) who use a cointegration
based analysis to estimate an EKC for China. They find evidence for a long run relationship
between per capita CO2 emissions and per capita income and a Granger causality test indi-
cates that the direction of causation runs from economic growth to emissions. Stern (2010)
proposes the between-estimator to address the cross-sectional dependence and time-effect
problems documented by Wagner (2008) and Vollebergh et al. (2009). Stern also points out
that time-dummies will not capture time-varying technological changes, and the latter may
lead to contemporaneous correlation between regressors and country effects and/or residual
errors.

Non-stationary time-series tools can provide concise and informative summaries of rela-
tions among environmental and growth data. But we should not expect that such analyses will
resolve controversies. In this regard, our view conforms with Stern (2010) on one fundamental
dimension: empirical work on the EKC confronts inevitable hurdles arising from persistence.
For this reason, we do not rely on pre-testing in our analysis of tipping points. Instead, we
consider the most recent panel techniques that have been proved reliable in dynamic contexts
with persistent data. Our interest is to understand whether the tipping point can be estimated
(given available econometric know-how) with enough precision regardless of the time series
properties of the data.

4 A tipping point consistent with our definition may be hard to formulate from a general non-parametric
perspective.
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Many researchers (refer to the above cited surveys) report point estimates of the
tipping point without worrying about standard errors, and in the few cases where inter-
vals are reported, computation details are often lacking. For instance Holtz-Eakin and Selden
(1995) estimate the tipping point at $35,428, while Cole et al. (1997) estimate a tipping point
of $62,700 for a quadratic function in logs and $25,100 for a quadratic function in levels.
Cole et al. (1997) also estimate standard errors for the tipping point and find them to be
large. Figueroa and Pastén (2009), who utilize a random coefficients model to analyze sul-
phur dioxide emissions, find an EKC present in 17 of 28 high income countries and estimate
country specific tipping points which range between $6,201 and $12,863. Stern (2010), citing
supporting evidence from Vollebergh et al. (2009), Wagner (2008) and Stern and Common
(2001), argues that reported lower estimates of tipping points and elasticities are typically
biased. Specifically, Stern examines the relationship between sulphur dioxide and carbon
dioxide emissions and income using a variety of panel estimation techniques including OLS,
first differences, fixed effects, and random effects. However, Stern argues that the between
estimator is likely to be the most reasonable estimator of the long run relationship between
income and emissions, because it is consistent for both stationary and non-stationary data
in the presence of misspecified dynamics and heterogeneous regression coefficients. Stern
finds no EKC using the between estimator for both pollutants, but instead a positive linear
relationship. Stern also estimates the tipping point for each quadratic model as well as its
standard error. With respect to carbon, Stern finds that the between estimator yields either a
tipping point insignificantly different from zero (due to the coefficient on GDP squared being
positive) using data from Vollebergh et al. (2009) and $653,110 using the data from Wagner
(2008), with a standard error of $2,084,513.5

In short, while reported confidence intervals for EKC model parameters are often nar-
row, reported estimates of the tipping points are all over the map and suggest substantive
disagreements. For the purpose of this paper, more important than the specific estimates is
our concern with uncertainty. Providing empirically grounded policy advice requires mea-
surable precision. Accounting for uncertainty carefully could change our conclusions about
the strength of evidence on the EKC and might also lead us to question whether such a simple
reduced form is answering the most interesting questions about income and emission data.
Put differently, far more attention needs to be paid for identification of the tipping point.

The tipping point can be easily defined within a standard EKC regression. To set focus (our
framework is formally defined below), let E Mit , be the logarithm of per capita emissions
in country i and year t , and G D Pit be the logarithm of the country’s per capita income.
Consider the regression of E Mit on: (i) G P Dit (with coefficient β1), (ii) G D P2

i t (with
coefficient β2), and (iii) various controls, for t = 1, . . . , T and i = 1, . . . , n. Then the
tipping point corresponds to δ = exp(−β1/2β2). Given consistent regression estimates,
consistent point estimates for the tipping point follow straightforwardly. It is however rather
difficult to derive reliable confidence bounds for a ratio of parameters.

The Delta method [defined formally in Sect. 3.2] is commonly prescribed for this purpose.
In view of its Wald-type form, the method is justified asymptotically for a wide class of models
suitable for estimation by consistent asymptotically normal procedures. However, even when
the numerator and denominator are identifiable, a ratio involves a possibly discontinuous
parameter transformation. More precisely in our case, as β2 → 0, the ratio −β1/2β2 becomes

5 In Stern (2010, Table 4), for the case using Wagner’s carbon data, the fixed effects estimated turning point
is $41,678 with a standard error of $4,043 without time effects and $15,837 with a standard error of $1,060
with time effects. This contrasts sharply with the between estimator where the turning point is $653,110 with
a standard error of $2,084,513.
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weakly identified. This should not be taken lightly since a zero value for β2 has not been
convincingly refuted in the EKC literature.

When a parameter is weakly identified, reliance on usual standard errors can be misleading
in the following sense. Usual confidence intervals of the form {estimate ± asymptotic α-level
(say 5 %) cut-off point × asymptotic standard error} will not cover the true parameter value
with probability 1 − α (say 95 %).6 Coverage probabilities can in fact be way below the
hypothesized (say 95 %) confidence level. So even if standard errors estimated using usual
methods are narrow, they still provide a spurious assessment of the true uncertainty. The
same holds true for standard bootstrap methods in the case of ratios.7 Alternative methods
based on generalizing Fieller’s (1940, 1954) approach [also formally presented in Sect. 3.2
and Appendix 7] that will not suffer from this problem have recently gained popularity.8

The main difference between the Delta and Fieller method is that the former will achieve
significance level control [that is, will cover the unknown true value with the hypothesized
probability (say 95 %)] only if the ratio is strongly identified [that is if β2 is far enough from
the zero boundary], whereas the latter does not require identification [that is, it is level-correct
whether β2 is zero, local-to-zero or non-zero].9 In other words, the Fieller method is robust
to modeling mistakes resulting from imposing non-linearity of the EKC.

Presuming a false degree of precision is consequential. For example, if the true EKC
is linear (see e.g. Stern (2010), Kalaitzidakis et al. (2011) and the references therein for
supportive arguments) and the researcher nevertheless imposes a quadratic income term into
the estimated equation, then the standard confidence interval for the tipping point will appear
quite tight yet will most certainly not cover the true value. Associated decisions are thus
misguided (arbitrarily false). For the ratio to be identified, the denominator has to be far
enough from zero.10 It is however worth noting that such a check is hard-wired into the
Fieller method: if β2 is truly zero then the Fieller confidence set will be unbounded and
will alert the researcher to this fact. The natural step when non-linearity of the curve is not
granted (leading to possible weak identification of the tipping point) is to incorporate this
uncertainty into set-estimation, which is what the Fieller method delivers in contrast to the
Delta method. The Fieller approach thus comes with an assurance that it will inform us of
poor-identification of the tipping point, which has an important potential to generate more
reliable policy prescriptions based on the EKC.

We validate the above analysis with non-parametric specification checks, using the spline-
based method from Ma and Racine (2013), Ma et al. (2012) and Racine and Nie (2011).
In particular, for cases where an inverted-U shape is confirmed, we estimate a tipping point
relaxing symmetry. Recall that an EKC is not necessarily symmetric, yet parametric quadratic
equations typically impose symmetry. We thus check whether the latter assumption is overly
restrictive and whether it affects tipping point estimates importantly. We also check for
time instabilities non-parametrically, by breaking-down our sample over four time periods
defined to parallel global economic cycles and technical and regulatory developments. Severe

6 See Dufour (1997). Related results can also be found in the so called weak instruments literature which is
now considerable; see the surveys by Dufour (2003), Stock et al. (2002), and the viewpoint article by Stock
(2010). Weak instruments and inference on ratios raise comparable local identification problems.
7 Bolduc et al. (2010) find that the delta and bootstrap method are spurious even in the simplest design they
consider. Coverage rates collapsing to zero [which means that the probability of the estimated interval to
include the unknown true value of the ratio is zero] are also documented for empirically relevant scenarios.
8 See Zerbe et al. (1982), Dufour (1997), Bernard et al. (2007) and Bolduc et al. (2010).
9 Applications of Fieller’s method in econometrics are scarce; see Beaulieu et al. (2013), Bernard et al. (2007),
Bolduc et al. (2010).
10 For a parallel with the weak-instruments problem, refer to Stock (2010, pp. 86–87).
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temporal inconsistencies are worth investigating for usual motives, and because our para-
metric treatment of time effects as fully flexible (across-regions) may not suffice to capture
technology. For this reason, we also analyze the information-content of controls, since as
proposed, controls may reflect technological progress. Formally, we produce and analyse
an estimate of emissions as a function of each control, fixing remaining covariates includ-
ing GDP to their median. These curves may help recover useful information for sensitivity
analysis.

Our results reveal very serious uncertainty, even when focusing on cases where the coef-
ficient on G D P2

i t is significant and negative. On balance, we find that an EKC exists in the
OECD countries but generally not elsewhere, although a local-pollutant analysis suggests
more favorable results beyond the OECD. Despite its existence in the OECD, our measures
of uncertainty suggest that it is difficult to identify an economically plausible tipping point.
Policy relevant estimates of the tipping point can nevertheless be recovered from a local-
pollutant long-run or nonparametric perspective. Non-parametric results incite further work
on the statistical foundations of our proposed non-parametric tipping point set estimate which
is—to the best of our knowledge—new to the (econometric and environmental) literature.

The paper is organized as follows. Our framework and estimation methods are presented
in Sect. 2. In Sect. 3, we summarize our parametric confidence set estimation methods for
the tipping point. Our empirical analysis is reported in Sect. 4. Section 5 presents concluding
arguments. An appendix summarizes our data set and discusses technical details.

2 Framework

Two model classes are considered: (i) a parametric baseline case, and (ii) a non-parametric
spline-based alternative. To be clear, we are not proposing these two cases as necessarily
mutually exclusive. Rather, we see our non-parametric model as providing a useful specifi-
cation check. Our specific treatment of the parametric case also aims to robustify inference
against an unfounded quadratic assumption.

2.1 Baseline Parametric Model

The baseline case is the following panel regression

E Mit = ηt +β0i +β1G D Pit +β2G D P2
i t +β3 I N Dit +β4C I Eit +β5 E F Fit + uit (2.1)

where E Mit is per capita emissions in country i and year t for t = 1, . . . , T and i = 1, . . . , n;
G D Pit is the country’s per capita income, and I N Dit , C I Eit , and E F Fit are control variables
defined below. All variables are in logs. We consider annual per capita CO2 emissions for 114
countries 1960–2007, as well as SO2 emissions for 85 countries, 1960–2005. β0i includes a
country effect; further assumptions on the residual errors and time effects are discussed in
Sect. 2.2. The baseline model assumes cross sectionally constant time effects reflected via
the separate time period intercept ηt .

The first control, I N Dit , is the share of GDP in a given year derived from industry. It has
been observed that the per capita energy use of countries usually peaks at the same time as the
industrial share of GDP.11 This occurs at different times for different countries and reflects
the particular experience of each country with respect to industrialization and eventual shifts
to a service economy. The second control, C I Eit , is the number of kilograms of CO2 emitted

11 See, for example, Rühl and Giljum (2011).
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per kilogram of oil equivalent energy. An important determinant of the carbon intensity of
energy is the fossil fuel mix used in a country. Coal has twice the CO2 emissions relative
to natural gas per unit of energy and oil products are half way in between. CO2 intensity of
energy depends also on technology and on the efficiency of the combustion process. Lastly,
the third control, E F Fit , is the percentage of energy a country uses that is derived from fossil
fuels. This control takes into account a country’s natural resource endowments. While fossil
fuels are traded to various extents on world markets and thus are accessible to all countries,
some energy sources are available only at the local level. This is the case of hydro and nuclear
power, two energy sources that have very low emissions. The coefficients of all three controls
are expected to be positive.

In addition to a panel encompassing the full sample of countries, regional panels are
segmented into the OECD, Non-OECD Asia (hereafter referred to as Asia), the Middle East
& North Africa, Sub-Saharan Africa, South America, and Central American & the Caribbean.
A full list of countries included in each region appear in Appendix 6.

Equation (2.1) implies an inverted-U form with respect to GDP. The level of income at
which the curve reaches a maximum can be solved for and is known as the tipping point,
which corresponds to

δ = exp(−β1/2β2) (2.2)

with β1 > 0 and β2 < 0. Sign restrictions imply that a maximum for the emissions is reached
at a positive level of GDP. These restrictions are however not numerically imposed at the
estimation stage. Our main objective is to derive a confidence region for δ. To present our
estimators of the latter in their simplest form, we rewrite (2.1) as

E Mit = ηt +β0i + g1[−G D Pit ]+ g2[G D P2
i t/2]+β3 I N Dit +β4C I Eit +β5 E F Fit + uit

(2.3)
so that the tipping point becomes

δ = exp(g1/g2). (2.4)

The sole purpose of (2.3–2.4) is to simplify formulas and discussion. To avoid confusion
with reference to available literature, all reported results in Sect. 4 pertain to the coefficients
of (2.1).

2.2 Further Parametric Assumptions

Completing (2.1) requires assumptions on regressors and error terms, as well as on time
trends. In the absence of an economic-theory basis, various—reasonable although typically
ad hoc—options are considered for this purpose in available works, and on balance, none
emerges as a best choice. We thus suggest the following as minimal set of assumptions for
estimation purposes.

1. Possible endogeneity of the regressors in (2.1) in a static context, that is, ignoring persis-
tence in the residual error terms. So we estimate the equation with the error component
2SLS estimator proposed by Baltagi and Li (1992). In static panels, available results on
the finite sample [n small relative to T ] properties of this estimator support its consider-
ation in our context. Reported results instrument G D Pit , its square and CO2 intensity of
energy using first lags of these variables.12

12 Results when all regressors were instrumented are qualitatively similar so we do not report them for space
considerations.
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2. Possible persistence in the residual uit , of the common first order autoregressive process
with coefficient ρ0, leading to reparametrizing (2.1) into:

E Mit = ηt + ρ0i + ρ0 E Mi,t−1 + β1G D Pit + β2G D P2
i t + β3 I N Dit (2.5)

+β4C I Eit + β5 E F Fit + ρ1G D Pi,t−1

+ ρ2G D P2
i,t−1 + ρ3 I N Di,t−1 + ρ4C I Ei,t−1 + ρ5 E F Fi,t−1 + eit

where the residual error term eit is temporally uncorrelated. Though such restrictions are
not always imposed, for further reference, it is useful to recall that (2.1) coincides with
(2.5) when

ρ0i = β0i (1 − ρ0), ρ j = −ρ0β j , j = 1, . . . , 5. (2.6)

We thus consider the bias corrected LSDV estimator of Kiviet (1995) and bootstrap
standard errors (as in Bruno 2005). This method does not impose (2.6) and presumes a
dynamically stable model, that is a non-unitary ρ0 in our case. Bias correction of this
estimator requires an initial consistent estimate; we use the Anderson and Hsiao (1982)
estimator for this purpose which is better suited for our small n than its GMM counter-
parts. In contrast with the Baltagi and Li (1992) estimator, Kiviet’s bias-corrected LSDV
presumes that the regressors may be correlated with the individual-specific effect but are
strictly exogenous with respect to eit . So whereas the former works with endogenous
regressors in a static context, the latter allows dynamics [as described] yet requires strict
exogeneity of GDP and controls.13

3. Possible non-stationary data. Pesaran et al. (1999) provide an econometric framework
whose validity has been demonstrated for fixed n, which allows (2.5), provided ηt is
supressed , to be viewed as a stable long-run relation with associated error correction
form

�E Mit = −ρ1�G D Pit −ρ2�G D P2
i t −ρ3�I N Dit −ρ4�C I Eit −ρ5�E F Fit

+φ(E Mi,t−1 − β0i − β1G D Pit − β2G D P2
i t − β3 I N Di

−β4C I Eit − β5 E F Fit ) + eit (2.7)

where φ = ρ0−1 is negative. Although related, the framework of Pesaran et al. (1999) dif-
fers from traditional cointegration definitions that require I(1) regressors. In other words,
the existence of a long-run relation between the dependant variable and the considered
regressors does not rest on whether the regressors are I(1). A separate time period inter-
cept is in principle incompatible with this model’s stochastic fundamentals. Consistency
requires independence of the regressors and residual errors, yet long-run coefficients can
be estimated consistently when regressors are not strictly exogenous by augmenting the
lags in the equation. Reported estimates rely on the first lag. We also consider relaxing
and imposing β3 = β4 = β5 = 0, with short run coefficients ρ j �= 0, to examine the
short versus long-run contribution of controls, a point we shall revisit in Sect. 4.

The parametric form (2.1) assumes that emissions in every country within each considered
region react similarly to shifts in explanatory variables even if intercepts are allowed to differ.
Time period dummies are not country-specific. Such restrictions on modeling country level
and time trend heterogeneities may lack fit even within regions and despite reliance on further

13 Instrumental variables (IV) methods [e.g. Anderson and Hsiao (1982), Arellano and Bond (1991), and
Blundell and Bond (1998)] may seem an attractive solution to treat endogeneity as well as persistence. Unfor-
tunately, with small n which corresponds to the problem at hand, these IV methods, when applicable [see e.g.
Bun and Kiviet (2006) for conditions on n relative to T ], can be severely biased and highly imprecise; see e.g.
Kiviet (1995), Judson and Owen (1999), Bruno (2005) and Bun and Carree (2005).
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controls. Admittedly, it is desirable to allow the importance of unobserved factors, such as
technology or geopolitical shocks, to change over time. However, β1 and β2 are not identified,
as the partial effects of interest, with fully flexible unobserved heterogeneity. See Vollebergh
et al. (2009) for a discussion and specific suggestions for the EKC, and e.g. Ahn et al. (2001)
for more general panel data perspectives. It is worth noting that accounting for time-varying
(deterministic) individual effects at least given current econometric know-how may come
via further assumptions on conditioning information and dynamics, or via subjective priors.
Whether such assumptions are more or less restrictive than time period dummies is beyond
the scope of the present paper, at least with regards to the baseline set-up. The stochastic-
trend form we consider in (2.7) provides an alternative perspective on modeling time
effects.

2.3 Non-parametric Checks

We supplement the above analysis with non-parametric robustness checks, using the spline-
based method from Ma and Racine (2013), Ma et al. (2012) and Racine and Nie (2011). The
conditional mean is assumed to follow a non-linear and unknown function approximated via
best-fit B-splines allowing for heteroskedasticity of unknown form, again assumed to depend
on GDP and controls, as follows:

E Mit = f (G D Pit , Controls) + σ(G D Pit , Controls)wi t , f (.) and σ(.) unknown

(2.8)

where wi t are i.i.d.. Estimation assuming exogenous and possibly endogenous covariates is
conducted. In the latter case, we use the same instruments as in the above defined Panel 2SLS
method.

The estimation output [further details are in the Appendix] provides a graphical rep-
resentation of: (i) the fitted function, partialled-out with respect to each covariate, and (ii)
companion point-wise confidence bands. Such estimations do not account for the panel struc-
ture of the data nor for its time series properties, and impose stationarity. So aside from the
shape restriction, the non-parametric assumptions are not necessarily weaker than some of
our parametric assumptions. For this reason, estimated curves as not used to formally test the
fit of (2.1). Instead, we view them as summary representations of our data. Relaxing the shape
restriction can nevertheless be informative, in the absence of consensus in this literature on
the fit of the quadratic model.

In particular, we look for asymmetries in the estimated function in addition to turning
points, since—although not required for an EKC—our quadratic parametric equations impose
symmetry. We also check for time instabilities. Recall that trends [via time effects in the above
2SLS and LSDV estimation, or the stochastic long-run formulation in (2.7)] are accounted
for parametrically. We thus estimate (2.8) over four time periods : (1) 1960–1972, (2) 1973–
1985, (3) 1986–1999, and (4) 2000–2007 for CO2 and 2000–2005 for SO2. Subsamples are
defined to reflect oil-price shocks, global economic cycles and technological changes, though
formal break and stability tests are not intended. Then again, severe inconsistencies across
time may be telling.

Non-parametric estimation of (2.8) produces partial regression surfaces, as reported in
Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10, along with confidence bands. For clarity, a “partial”
surface corresponds to the estimated f (.) plotted as function of one predictor, while the
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Fig. 1 CO2: OECD all time periods—conditional regression splines estimates
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Fig. 2 CO2: OECD—1960–1972 subsample—conditional regression splines estimates

remaining predictors, specifically, the covariates in (2.8) that do not appear on the axes in
the reported figures, are held constant at their medians. In addition to analyzing the curves’
form, we use these partial surfaces for the following purposes.
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Fig. 3 CO2: OECD—1973–1985 subsample—conditional regression splines estimates
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Fig. 4 CO2: OECD—1986–1999 subsample—conditional regression splines estimates

1. Consider the partial Emission/GPD curve, which we denote

f̂G D P = f̂ (G D P|I N D, C I E, E F F). (2.9)

Points at which the derivative of this surface approach zero may thus be located. We use
these points to derive diagnostic checks on the above parametric estimates of the tipping
points. Further details are provided in Sect. 3.3.
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Fig. 5 CO2: OECD—2000–2007 subsample—conditional regression splines estimates
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Fig. 6 SO2: OECD all time periods—conditional regression splines estimates

2. Consider, in turn, the partial Emission/Control curves, denoted

f̂ I N D = f̂ (I N D|G D P, C I E, E F F), (2.10)

f̂C I E = f̂ (C I E |G D P, I N D, E F F), (2.11)

f̂ E F F = f̂ (E F F |G D P, C I E, I N D). (2.12)
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Fig. 7 SO2: OECD—1960–1972 subsample—conditional regression splines estimates
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Fig. 8 SO2: OECD—1973–1985 subsample—conditional regression splines estimates

One way to recover important information on technology that might be forgone via a
regional parametric approach is to analyze (2.10–2.12). While fully-flexible (across-
regions) time effects in the context of (2.1) may no longer suffice to proxy general know-
how, controls may embed technical advances. In this respect, since a partial regression
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Fig. 9 SO2: OECD—1986–1999 subsample—conditional regression splines estimates
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Fig. 10 SO2: OECD—2000–2003 subsample—conditional regression splines estimates

surface [for example f̂ I N D = f̂ (I N D|.)] may convey much more information than
a scalar coefficient [for example β3 as in (2.1)], (2.10–2.12) may have much more to
tell about the technological and policy underpinnings of controls that their parametric
counterparts when the traditional interpretation of time effects must be relaxed.
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3 Estimation Uncertainty for Tipping Points

This section first discusses our set estimates for the tipping point. We first discuss identifica-
tion and inference of δ defined by (2.3–2.4). We next propose our non-parametric diagnostics.

3.1 Identification of the Parametric Tipping Point

Typically, β1 and β2 [in (2.1)] and conformably, g1 and g2 [in (2.3)] are well identified.
So for these parameters, consistent and asymptotically normal estimates [denoted ĝ1 and
ĝ2] with a tractable variance/covariance matrix [denoted 
̂g] are readily available. These
include all methods we consider in this paper, as presented in Sect. 2.2. Plugging ĝ1 and ĝ2

into (2.4) yields a consistent estimate for δ [denoted δ̂]. Furthermore, given 
̂g , a standard

error [denoted 
̂
1/2
δ ] can easily be obtained for inference on δ, as shown e.g. in (3.1), via the

Delta method. The usual t-statistic

tD (δ0) = (δ̂ − δ0)/
̂
1/2
δ

associated with δ = δ0 where δ0 is any known value, which yields usual significance tests as
well as the standard confidence interval for inference on δ, is thus easy to derive. Nevertheless,
the asymptotic null distribution of tD (δ0) is not Gaussian, because the definition of δ entails an
identification discontinuity: when β2 = 0 , the ratio −β1/2β2 is not defined or, equivalently,
the equation 2β2 log(δ) = −β1 does not have a unique solution, which holds true even though
β1 and β2 are well identified. Conformably, when g2 = 0, the ratio g1/g2 is not defined or,
equivalently, the equation g2 log(δ) = g1 does not have a unique solution, which holds true
even though g1 and g2 are well identified. The distribution of tD (δ0) is in fact non-standard
and may be nuisance parameter dependent. Consequently, if we denote by zα/2 the two-tailed
α-level standard normal critical point:

1. the significance level of a t test based on referring |tD (δ0) | to zα/2 may be much larger
than α, and

2. the confidence level of the usual interval estimate {δ̂ ± zα/2
̂
1/2
δ } may be considerably

lower than 1 − α.

For proofs, insights and further references, see Dufour (1997), Bolduc et al. (2010),
Beaulieu et al. (2013), and the above cited surveys on the parallel weak-instruments litera-
ture. Concretely, when a parameter is not identifiable, data will barely carry any information
on this parameter. Since any value in its parameter space is more or less equally acceptable,
this should be reflected in any appropriate confidence set. In other words, weak-identification
should, in principle, lead to diffuse confidence sets that can alert the researcher to the problem.

Unfortunately, if usual methods are applied when estimating weakly-identified parame-
ters, for example, via an expression with bounded limits such as {δ̂±zα/2
̂

1/2
δ }, the expected

diffuse intervals often do not materialize. Because of theoretical failures, usual methods pro-
duce very tight confidence intervals that are focused on “wrong” values. The econometric
literature refers to this problem as one of poor coverage. For practitioners, this problem is
doubly-misleading. First, estimated intervals would severely understate estimation uncer-
tainty. Secondly, intervals will fail to cover the true parameter value, but in view of their
tightness, this will go unnoticed.

These problems are averted if one applies a confidence set estimation method such as the
Fieller method as proposed in this paper, which, in contrast to the Delta method, can produce
unbounded outcomes. In contrast to a usual interval with bounded limits of the form [cl , cu],
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with finite cl and cu , by unbounded outcomes, we mean, explicitly, confidence sets of the
form: ]−∞, cl ] ∪ [cu,+∞[ or even ]−∞,+∞[.

3.2 Parametric Estimation Uncertainty

Assuming the considered estimator, δ̂ = exp(ĝ1/ĝ2) where ĝ1 and ĝ2 are obtained using
any of the above defined (in Sect. 2.2) parametric methods, is consistent and asymptotically
normal, the so-called Delta method produces the following confidence interval 1 − α level
confidence interval for δ:

DC S (δ;α) =
[
δ̂ ± zα/2
̂

1/2
δ

]
, 
̂δ = Ĝ ′
̂12Ĝ, Ĝ =

⎡
⎣

exp(ĝ1/ĝ2)

ĝ2−ĝ1 exp(ĝ1/ĝ2)

ĝ2
2

⎤
⎦ (3.1)

where zα/2 refers to the two-tailed α-level standard normal cut-off point, and


̂12 =
[

v̂1 v̂12

v̂12 v̂2

]

refers to the subset of the variance/covariance matrix of the estimates of (2.3) that corresponds
to ĝ1 and ĝ2. The basic steps leading to (3.1) can be summarized as follows.

First, the tipping point is viewed as a function [denoted h(g)] of g = (g1, g2)
′ where h(g)

returns exp(g1/g2), so

∂h(g)

∂g1
= exp(g1/g2)

g2
,

∂h(g)

∂g2
= −g1 exp(g1/g2)

g2
2

.

Second, the asymptotic variance of h(ĝ) with ĝ = (ĝ1, ĝ2)
′ is derived as

[
Asymptotic Variance of h(ĝ)

] = G(g)′
[
Asymptotic Variance of ĝ

]
G(g) (3.2)

G(g) = ∂h(g)

∂g
=

[
∂h(g1,g2)

∂g1
∂h(g1,g2)

∂g2

]
. (3.3)

Next Ĝ is computed by plugging ĝ1 and ĝ2 into G(g) in (3.3). Finally, 
̂12 is substituted for
the asymptotic variance of ĝ in (3.2).

To set the stage for introducing the Fieller method, recall that
[
δ̂ ± zα/2
̂

1/2
δ

]
collects the

values of δ0 for which the t-statistic

tD (δ0) =
(
δ̂ − δ0

)
/
̂

1/2
δ

associated with
HD(δ0) : δ − δ0 = 0 ⇔ exp(g1/g2) = δ0

is not significant at the α level. Said differently, if we solve the inequality
∣∣∣δ̂ − δ0

∣∣∣ /
̂1/2
δ < zα/2 (3.4)

for δ0, we get
[
δ̂ ± zα/2
̂

1/2
δ

]
. In statistics, solving for δ0 in (3.4) is known as “inverting the

tD (δ0) test”, where inverting a test with respect to a parameter means collecting all values
(here δ0) not rejected by this test at the α level. This definition relies on the usual duality

between a t test and a standard confidence interval. Also,
[
δ̂ ± zα/2
̂

1/2
δ

]
is known as “a

Wald-type confidence interval”.
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In contrast, the Fieller method inverts an alternative t-statistic

tF (d0) = (ĝ1 − d0 ĝ2)/[(v̂1 + d2
0 v̂2 − 2d0v̂12)

1/2]

associated with
HF (d0) : g1 − d0g2 = 0.

Inverting tF (d0) requires solving for the set of d0 values that are not rejected at level α using
tF (d0) and a standard normal two-tailed cut-off zα/2. In other words, we need to collect the
d0 values such that |tF (d0)| ≤ zα/2 or alternatively such that

(ĝ1 − d0 ĝ2)
2 ≤ z2

α/2(v̂1 + d2
0 v̂2 − 2d0v̂12) (3.5)

which is a second degree inequality in d0. The resulting solution denoted FC S (d;α) [see
(7.3) in Appendix 7] is either a bounded interval, an unbounded interval, or the entire real
line ]−∞,+∞[, where the unbounded solutions occurs when the denominator is close to
zero.

HF (d0) can be linked to HD(δ0) for d0 = log(δ0). Because FC S (d;α) is obtained
as described, taking the exponential of its limits provides the desired confidence set for δ.
Mathematically, this corresponds to “projecting” the region implied by FC S (d;α). Said
differently, it is easy to see that replacing d0 by log(δ0) in (3.5) does not distort the inequality
nor its statistical foundations. Solving for δ0 in the resulting inequality would numerically
coincide with applying the exponential to the limits of FC S (d;α).

Of course, the tD (δ0) test and DC S (δ;α) interval will have α and (1 − α) as effective

levels, if tD (δ0)
asy∼ N (0, 1). The tF (d0) test and FC S (d;α) interval will also achieve level

control if tF (d0)
asy∼ N (0, 1). As argued in Sect. 3.1, because HD(δ0) requires g2 �= 0, the

Gaussian approximation fails for tD (δ0). In contrast, and because HF (d0) does not require
restricting the parameter space of g2, nor of g1 for that matter

δ̂ is asymptotically normal ⇒ tF (d0)
asy∼ N (0, 1).

It follows that the FC S (d;α) will achieve level control whether g2 is zero or not.

3.3 Non-parametric Diagnostics

Consider the partial Emission/GPD f̂G = f̂ (G D P|Controls) surface [refer to (2.9) for
definition and notation]. If this surface confirms an inverted-U shaped EKC, then its maximum
allows us to define a non-parametric counterpart to δ. To obtain tipping point estimates
comparable to those in Tables 4 ,5, 6, and 7, and because reported curves are in a log-scale
conforming with our estimating equations, we first refit curves in levels. Then, in the presence
of a inverted-U form, we locate the point were the derivative of the estimated function is the
closest to zero. We back-out the GDP value corresponding to the latter as our tipping point
estimate [denoted δ̃], as well as a conformable confidence interval.

Although underlying bands rest on asymptotic theory [see Ma and Racine (2013) for
regularity conditions], the finite sample performance of the interval we back-out have, to
the best of our knowledge, not been analyzed as yet. To be clear, available bands have not
been substantiated for formal inference on zero-derivative sets, even asymptotically. For this
reason, we do not interpret results from a strict inferential perspective. Severe inconsistencies
between these and our parametric results are nevertheless worth checking for.
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4 Empirical Results

Data used in this paper are available from the World Bank’s World Development Indica-
tors (WDI) online database, and Stern (2005). CO2 annual data, for 114 countries over the
1960–2007 period, is collected from the Carbon Dioxide Information Analysis Center, Envi-
ronmental Sciences Division at the Oak Ridge National Laboratory in Tennessee. For SO2,
we use the annual dataset from Stern (2005) on 85 countries over the 1960–2005 period.
Table 1 reports summary statistics of emissions data. G D Pit measures purchasing power
parity corrected per capita income in thousands of constant USD with 2000 as the base year.

Tables 2, 3 report estimates for the emission Eq. (2.1). For presentation clarity, we report
the estimates of the parameters of interest β j , j = 1, . . . 5; complete results are available
upon request. Since sign restrictions have not been empirically imposed, interpretation of
the tipping point with respect to an inverted U-shaped curve make sense when β1 > 0 and
β2 < 0. So cases where the estimated β1 and β2 are significant at the 5 % level and both
are correctly signed are reported in bold characters. Except for a few illustrative cases, our
analysis will focus on these cases, mainly for concreteness. In our discussion from there on,
statistical significance implies a 5 % level. Tipping point estimates are reported in Tables 4,
5, and 6.

From Tables 2 and 3, we see that a statistically insignificant β2 occurs quite often with both
emission series. As argued above, despite no clear consensus, a linear EKC is not necessarily
at odds with the current literature. Problems with the Delta method for inference on the tipping
point would occur if the true β2 is zero, so a significant β2 does not necessarily guarantee
identification. We nevertheless view these results as a motivation in support of the Fieller
method whose accuracy does not depend on a non-zero β2. Indeed, unbounded confidence
sets are quite prevalent in Tables 4, 5, and 6, which confirm that the tipping point is indeed
hard to pin down from available data.

Another point worth emphasizing concerns the heterogeneity of results across regions,
with all estimation methods and both emissions data. Our disaggregate estimation is thus
more meaningful than the full sample case, which we nevertheless report for completion
and possibly for comparison with available literature. Our discussion will thus focus on our
regional estimates. Confidence sets in what follows, unless indicated otherwise, are at the
5 % level.

4.1 Methodological Pathology

A few methodological comments emerge from Tables 4, 5, and 6 that are worth pointing
out, given that to the best of our knowledge, identification problems have not been formally
discussed in this literature.

1. Conforming with econometric theory, the Fieller and Delta method provide comparable
confidence bands when the Fieller set is bounded and tight [as in e.g. Table 6 for the
OECD], suggesting strong identification. In this case, the Fieller sets are wider to some
extent yet they convey conformable economic content.

2. When the Fieller sets are unbounded and/or very wide suggesting weak identification
(which occurs most prominently but not exclusively when a linear curve cannot be refuted)
then the Delta and Fieller sets can be very different and imply very different economic
conclusions. For example, they may provide conflicting evidence regarding the statistical
significance of the tipping point which may be tested [given the duality between the
confidence intervals and Wald tests] by checking whether the reported sets cover zero.
Examples of such a conflict include the case of Asia with Carbon and the 2SLS method,
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Table 1 Summary
statistics—emissions data

Variable Observations Percentile

SO2 per capita 5,385 5 0.0004569

25 0.0020361

50 0.005487

75 0.020822

95 0.082269

5,385 Mean SD

0.0229701 0.073423

Variable Observations Percentile Value

CO2 per capita 7,117 5 0.05249

25 0.31365

50 1.2358

75 5.5888

95 13.4872

7,117 Mean SD

3.765413 6.034905

Table 2 Carbon emissions equation

All OECD Asia SS-Africa M. East S. America C. America

2SLS

GDP 0.550 1.262 0.427 0.336 0.883 0.497 −0.007

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.95)

GDP2 0.002 −0.113 0.065 0.128 0.011 −0.037 0.362

(0.633) (0.00) (0.00) (0.00) (0.47) (0.52) (0.00)

CIE 0.349 0.352 0.434 1.152 0.085 0.093 −1.134

(0.00) (0.00) (0.00) (0.00) (0.24) (0.15) (0.00)

EFF 0.755 0.698 1.084 0.432 0.533 0.795 2.587

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

IND 0.123 0.237 0.337 0.244 −0.035 0.176 0.809

(0.00) (0.00) (0.00) (0.00) (0.70) (0.01) (0.00)

DLSDV

GDP 0.208 0.347 0.114 0.251 0.170 0.049 0.313

(0.00) (0.00) (0.00) (0.02) (0.00) (0.58) (0.00)

GDP2 0.002 −0.039 0.014 0.044 0.017 0.033 0.092

(0.69) (0.00) (0.01) (0.23) (0.23) (0.36) (0.01)

CIE 0.182 0.083 0.090 0.597 0.197 0.050 0.136

(0.00) (0.00) (0.00) (0.00) (0.00) (0.08) (0.00)

EFF 0.295 0.148 0.320 0.304 0.019 0.240 0.365

(0.00) (0.00) (0.00) (0.00) (0.95) (0.00) (0.00)

IND 0.046 −0.005 0.078 0.033 −0.040 0.048 0.050

(0.02) (0.82) (0.04) (0.56) (0.45) (0.34) (0.28)
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Table 2 continued

All OECD Asia SS-Africa M. East S. America C. America

DFE (A)

GDP 0.934 2.837 1.097 1.020 0.758 1.033 1.496

(0.00) (0.00) (0.00) (0.011) (0.00) (0.04) (0.00)

GDP2 −0.115 −0.530 −0.045 0.331 −0.044 −0.086 −0.139

(0.00) (0.00) (0.59) (0.13) (0.44) (0.69) (0.41)

DFE (B)

GDP 0.619 1.645 0.494 0.379 0.758 0.532 0.356

(0.00) (0.00) (0.00) (0.014) (0.00) (0.18) (0.18)

GDP2 −0.007 −0.191 0.047 0.070 −0.048 0.049 0.199

(0.66) (0.00) (0.14) (0.38) (0.38) (0.77) (0.04)

CIE 0.331 0.30 0.270 0.885 0.307 0.121 0.165

(0.00) (0.03) (0.02) (0.00) (0.00) (0.36) (0.09)

EFF 0.768 0.913 1.047 0.457 2.847 0.741 0.830

(0.00) (0.00) (0.00) (0.00) (0.08) (0.00) (0.00)

IND 0.154 0.403 0.594 0.049 −0.307 0.034 0.028

(0.02) (0.02) (0.00) (0.66) (0.16) (0.86) (0.79)

2SLS: Baltagi and Li (1992); Eq. (2.1), with time dummies; G D P, G D P2 , C I E instrumented using first
lags. DLSDV: Kiviet (1995); Eq. (2.5) with time dummies and ρ j = 0, j = 1, . . . 5. DFE: Pesaran et al.
(1999); Eq. (2.7) with β j = 0, j = 3, . . . 5 (Case A) and relaxing the latter constraints (case B). In bold: β1
and β2 significant at 5 % with β1 > 0 and β2 < 0

Table 3 Sulphur emissions equation

All OECD Asia SS-Africa M. East S. America C. America

2SLS

GDP 0.819 1.062 0.784 −0.723 2.184 0.252 −3.046

(0.00) (0.01) (0.00) (0.03) (0.00) (0.18) (0.00)

GDP2 −0.054 −0.327 0.016 0.038 0.286 0.305 1.537

(0.06) (0.14) (0.66) (0.01) (0.00) (0.46) (0.00)

CIE −0.099 1.829 0.184 −1.056 −1.902 −0.213 0.766

(0.43) (0.00) (0.13) (0.78) (0.00) (0.07) (0.32)

EFF 0.449 −0.846 0.719 1.772 1.184 0.850 2.027

(0.04) (0.13) (0.00) (0.00) (0.50) (0.00) (0.00)

IND 0.052 0.190 0.668 3.556 −1.006 0.583 −0.469

(0.73) (0.65) (0.01) (0.00) (0.03) (0.011) (0.00)

DLSDV

GDP 0.231 0.621 0.244 −0.096 0.270 −0.096 −1.998

(0.00) (0.03) (0.011) (0.66) (0.37) (0.62) (0.02)

GDP2 −0.021 −0.127 0.007 −0.048 −0.044 0.058 0.980

(0.14) (0.03) (0.72) (0.56) (0.44) (0.54) (0.00)

CIE −0.041 0.180 −0.002 0.174 −0.131 0.008 0.063

(0.37) (0.05) (0.96) (0.08) (0.21) (0.89) (0.74)
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Table 3 continued

All OECD Asia SS-Africa M. East S. America C. America

EFF 0.053 −0.187 0.274 0.374 −0.374 0.177 0.604

(0.60) (0.33) (0.02) (0.14) (0.83) (0.28) (0.28)

IND 0.060 −0.101 −0.041 0.117 0.035 0.070 0.209

(0.41) (0.60) (0.77) (0.42) (0.89) (0.58) (0.51)

DFE (A)

GDP 0.825 3.115 0.513 1.194 0.934 −0.423 −2.196

(0.00) (0.00) (0.03) (0.00) (0.03) (0.68) (0.03)

GDP2 −0.155 −0.666 −0.118 −0.313 −0.172 0.574 1.209

(0.00) (0.00) (0.21) (0.04) (0.06) (0.26) (0.01)

DFE (B)

GDP 0.564 3.092 0.169 −0.065 1.256 −1.199 −2.073

(0.00) (0.00) (0.41) (0.88) (0.02) (0.21) (0.06)

GDP2 −0.081 −0.627 −0.041 −0.088 −0.170 0.850 1.037

(0.05) (0.00) (0.59) (0.53) (0.06) (0.05) (0.02)

CIE −0.065 1.058 0.114 −0.054 −0.620 0.170 0.370

(0.57) (0.00) (0.57) (0.80) (0.00) (0.59) (0.39)

EFF 0.896 −0.680 1.095 1.861 −4.030 1.973 0.456

(0.00) (0.18) (0.01) (0.00) (0.20) (0.04) (0.63)

IND 0.193 −0.301 0.182 −0.011 0.244 −0.327 0.785

(0.32) (0.52) (0.073) (0.97) (0.52) (0.68) (0.14)

For definitions, see notes to Table 2

Table 4 Set estimates for the tipping point using panel 2SLS

Region Tipping point Delta method Fieller method

Carbon dioxide

All 2.6E + 21 (−2.2E + 23, 2.2E + 23) (−∞, 0) ∪ (1.04E + 08,∞)

OECD 95.76 (46.687, 144.835) (61.35, 176.06)

Asia .039 (−0.011, 0.091) (0.006, 0.107)

SS-Africa .269 (0.054, 0.485) (0.061, 0.477)

M. East 5.52E − 18 (−6E − 16, 6E − 16) (−∞, 0.0001) ∪ (8E + 10, ∞)

S. America 797.92 (−12,965.8, 14,561.6) (−∞, 0.211) ∪ (11.17,∞)

C. America 1.009 (0.729, 1.29) (0.708, 1.279)

Sulphur

All 1,854.92 (−10,137, 13,846.8) (−∞, 0) ∪ (73.40,∞)

OECD 25.86 (−27.92, 79.64) (−∞, 0.07) ∪ (9.49,∞)

Asia 8.02E + 10 (0, 8.073E + 12) (−∞, 0.0004) ∪ (78.90,∞)

SS-Africa 8.02E − 05 (−0.005, 0.0054) (−∞, 0.44) ∪ (3.16,∞)

M. East 45.22 (−11.62, 102.06) (19.82, 824.63)

S. America 0.66 (−0.32, 1.647) (−∞, 1.47) ∪ (1.21E + 08,∞)

C. America 2.69 (2.489, 2.899) (2.49, 2.91)

Estimating Eq. (2.1), with time dummies. Method: error component 2SLS from Baltagi and Li (1992). GDP,
GDP2, CIE are instrumented using the first lag of each. All confidence sets are at the 5 % level
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Table 5 Set estimates for the tipping point using dynamic bias-corrected LSDV

Region Tipping point Delta method Fieller method

Carbon dioxide

All 1.45E + 21 (−127.35, 2.57E + 23) (−∞, 0) ∪ (46, 852, ∞)

OECD 56.924 (2.613, 138.23) (19.47, 814.4)

Asia 0.036 (−7.44, 0.184) (−∞, 0.336) ∪ (9E + 9,∞)

SS-Africa 0.059 (−9.93, 0.481) (−∞, 1.02) ∪ (29.66,∞)

M. East 0.008 (−20.61, 0.146) (−∞, 1.07) ∪ (149.1,∞)

S. America 0.765 (−4.722, 4.178) (−∞, ∞)

C. America 0.199 (−3.80, 0.637) (0.00004, 0.724)

Sulphur

All 223.19 (−1,100.2, 1,546.6) (−∞, 6.69E − 05) ∪ (9.34,∞)

OECD 11.44 (−4.42, 27.29) (1.81, 10,390.11)

Asia 1.12E − 08 (−1.1E − 6, 1.13E − 06) (0.14, 11.26)

SS-Africa 0.36 (−1.98, 2.71) (−∞, ∞)

M. East 21.68 (−52.1, 95.49) (−∞, ∞)

S. America 2.29 (−2.23, 6.81) (−∞, ∞)

C. America 2.77 (1.42, 4.11) (1.36, 4.40)

Estimating Eq. (2.5) with time dummies and ρ j = 0, j = 1, . . . 5 . Relaxing the latter constraints increases
uncertainty with both emission series. Method: bias-corrected LSDV with bootstrap standard errors from
Kiviet (1995) and Bruno (2005). All confidence sets are at the 5 % level

the case of Central America with Carbon and the LSDV method, and the noteworthy case
of the OECD with Sulphur and the LSDV method. In the latter case, the Delta confidence
set is tight and covers zero, whereas the Fieller set although very wide excludes zero.
Since β1 and β2 are significant at the 5 % level and both are correctly signed in this
case, results with the Delta method with regards to the tipping point seem puzzling.
In contrast, the Fieller method reveals that estimation uncertainty is severe in this case,
which undermines the usefulness of the estimated curve with this method and the Sulphur
series.

3. Other “pathological” results include cases for which the Delta method based sets are very
tight [examples occur more prominently in Table 4] while their Fieller counterparts are
unbounded. Econometric theory suggests that such cases illustrate [again, on recalling
the duality between confidence intervals and Wald tests] severe spurious rejections with
standard methods that do not cater for weak identification. In other words, econometric
theory suggests that identification concerns conveyed via unbounded Fieller sets implies
that the Delta method interval may be tightly centered on “wrong” values.14

4. Our non-parametric intervals for the turning point (see Sect. 4.3 for further discussion)
are not at odds with their tightest parametric counterparts which occur here with reference
to (2.7). The former are nevertheless narrower than the latter, even when the estimated
shape does not disprove the quadratic model. One of the criticisms routinely advanced
against non-parametric estimation is that its limited-information foundation may over-
state estimation uncertainty relative to a parametric setting when the latter does not
lack credibility. We do not find support for such warnings here. Recall that the sets

14 Indeed, the above cited econometric literature provides many convincing simulation studies documenting
this problem with standard Wald-type tests.
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Table 6 Set estimates for the tipping point using long-run dynamic fixed effects

Region Tipping point Delta method Fieller method

Carbon, Case A (no long-run controls)

All 52.34 (−8.69, 113.4) (21.34, 296.5)

OECD 17.22 (9.75, 24.67) (11.78, 33.45)

Asia 227.3 (−1,553.5, 2,008.1) (−∞, 0) ∪ (7.44,∞)

SS-Africa 0.214 (−0.332, 0.761) (−∞, 0.786) ∪ (421.4,∞)

M. East 2,620.5 (−34,028, 39,269) (−∞, 0.08) ∪ (26.25,∞)

S. America 391.96 (−9,220.7, 10,004.5) (−∞, 0.91) ∪ (5.83,∞)

C. America 218.96 (−2,054.9, 2,492.8) (−∞, 0.13) ∪ (9.45,∞)

Carbon, Case B (with long-run controls)

All 53.33 (−10.9, 117.6) (21.25, 330.1)

OECD 16.59 (10.69, 22.48) (12.05, 26.89)

Asia 36,605 (−925,231, 998,443) (−∞, 0.0005) ∪ (15.53,∞)

SS-Africa 0.266 (−0.264, 0.796) (−∞, .8) ∪ (675, 938,∞)

M. East 66.49 (−136.2, 269.2) (−∞, 0) ∪ (12.17,∞)

S. America 12.87 (−15.95, 41.71) (−∞, 0.11) ∪ (4.84,∞)

C. America 10.39 (−5.67, 26.47) (−∞, 0) ∪ (4.54,∞)

Sulphur, Case A (no long-run controls)

All 14.27 (−0.15, 28.69) (6.42, 73.43)

OECD 10.38 (7.35, 13.4) (7.84, 14.59)

Asia 8.80 (−31.59, 49.2) (−∞, 0.008) ∪ (1.10,∞)

SS-Africa 6.74 (−6.34, 19.83) (2.04, 1.61E + 22)

M. East 15.09 (−9.64, 39.82) (−∞, 8.39E − 07) ∪ (2.41, ∞)

S. America 1.45 (−0.43, 3.32) (−∞, ∞)

C. America 2.48 (1.41, 3.54) (1.25, 4.33)

Sulphur, Case B (with long-run controls)

All 33.16 (−54.95, 121.26) (−∞, 0) ∪ (6.89,∞)

OECD 11.77 (7.22, 16.31) (8.46, 20.29)

Asia 7.67 (−71.68, 87) (−∞, ∞)

SS-Africa 0.69 (−3, 4.39) (−∞, ∞)

M. East 40.05 (−43.8, 123.89) (−∞, 0) ∪ (6.84,∞)

S. America 2.03 (0.63, 3.41) (0, 7.01)

C. America 2.72 (1.21, 4.22) (0.87, 6.28)

Estimating Eq. (2.7) with b j = 0, j = 3, . . . 5 (Case A) and relaxing the latter constraints (Case B). Method:
dynamic fixed effects applied to the error correction form (2.7), from Pesaran et al. (1999). All confidence sets
are at the 5 % level

we back-out, although based on Ma and Racine (2013), have not formally been shown
to control coverage for inference on zero-derivative sets. Our proposed application of
Ma and Racine (2013) bands is also new to the literature. Analyzing its coverage rates is
a worthy further research objective.

5. Our non-parametric 2SLS estimation did not produce notable differences relative to Least
Squares, so Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 and related discussions are based on the
latter. Whether this suggest that instruments are weak is unclear, as weak-instruments
robust counterparts to Ma and Racine (2013) work is unavailable.
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Table 7 Results focusing on Europe

Tipping point Delta method Fieller method

C O2

Panel 2SLS 106.38 (13.42, 199.35) (53.25, 355.08)

Dynamic bias corrected LSDV 83.69 (−14.77, 182.15) (32.49, 445.03)

Dynamic fixed effects—with long run controlls 50.81 (−0.12, 101.74) (25.65, 436.67)

Dynamic fixed effects—no long run controlls 13.67 (8.31, 19.04) (9.28, 26.38)

SO2

Panel 2SLS 7.64 (5.29, 9.98) (5.81, 12.01)

LSDV 21.52 (−2.11, 69.16) (3.38, 11,703.3)

Dynamic fixed effects—with long run controls 14.43 (5.11, 23.74) (8.81, 55.62)

Dynamic fixed effects—no long run controls 12.5 (6.08, 18.91) (7.84, 29.29)

Refer to Tables 2, 3, 4, 5, and 6 for the definition of estimation methods. European countries are selected out
of the OECD list reported in the Appendix for each emission series

6. While comparing results with (2.7) versus its parametric deterministic trend based coun-
terparts, recall that the latter impose cross sectionally constant time effects.

4.2 Findings and Outlook: The Parametric Case

Tables 4, 5, and 6 suggest further substantive conclusions. When referring to the “existence”
of the EKC, a broad definition that prevails in the literature entails the following: emission
levels initially rise with per capita income but then eventually fall as per capita income
exceeds some threshold level. Viewed collectively, our results suggest that conforming with
this definition, the estimated β1 and β2 are significant at the 5 % level and both are correctly
signed mainly in the OECD region. This conclusion while not at odds with the literature
needs to be qualified, when interpreting results on the tipping point estimates. Except with the
long-run dynamic fixed effects method applied to the OECD region, estimates of the tipping
points are either extremely imprecise (practically uninformative), or suggest economically
implausible values. Although quite wide, the Delta method does not convey how seriously
uninformative these sets truly are.

Consider for example the case of Carbon with the 2SLS estimate form Table 4, in the
OECD region. In this case, both estimation methods support an inverted-U curve, yet the
confidence intervals suggest a lower bound of at least 46.687, which is disconcerting given
our measure of per capita income in thousands of constant 2000 USD. It may be argued that
from a purely statistical perspective, both set estimates are not too wide, indicating that δ

can be pinned down with enough precision. From an economic perspective, these estimates
are much too high to reconcile with meaningful useful theory or policy. It is interesting to
note that using Sulphur for this same region and this same method rejects the EKC form,
which is reflected via highly imprecise estimates of the tipping point. Although wide, the
Delta method based bands understate the severity of estimation uncertainty in this case. With
the bias-corrected LSDV method, we find support for the curve with both emission series
for the OECD countries. Yet the estimate uncertainty regarding the tipping point is much
more pronounced than with the 2SLS method, so for all practical purposes, LSDV-based
confidence intervals are non-informative.

On balance, results via our long-run approach in Table 6 for the OECD are informative
and consistent with EKC predictions. Confidence bands suggest, in addition to statistical
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precision, turning points that are economically reasonable given our measurement scale
for GDP. These results may be attributed to various methodological considerations. First,
it matters importantly to account for dynamics in estimating the EKC. Second, avoiding
methods that are not designed for fixed n is commendable. The bias-corrected LSDV method
is in principle applicable, yet the bias-correction assumes strictly exogenous regressors. The
pooled long-run inference methods are designed for fixed n and large T . “How large is large”
is of course a usual question with annual data. The fact remains that fixed n-and-T panel data
methods are unavailable to date, so given the emissions series at hand and the importance of
a regional analysis, one may argue that dynamic fixed effects are, among available methods,
best suited for our purpose. Perhaps more importantly, in contrast to other cointegration
methods, dynamic fixed effects do not require one to take a stand regarding the I(1) properties
of regressors. Given available mixed results in this literature, this is worth pointing out. Of
course this presumes that the considered long-run relations are stable and that estimations
with further lags (to control for potential endogeneity of regressors) provide conformable
results. Our results for the OECD region do not seem to refute these assumptions.

It is worth noting that our estimated turning points are generally lower with SO2 than with
CO2. This suggests that results with local pollutants may be more relevant from a policy
perspective. Since European countries share some common regulations with regards to local
pollutants, we revisit our analysis of the OECD countries with focus on Europe. Results
reported in Table 7 support our main message: policy-relevant estimates of the tipping point
are recovered via a dynamic long-run econometric perspective. From a technical perspective
and comparing Table 7 to the OECD results from Table 6, note that a decreased sample size
costs statistical precision with the CO2 data. With this series, we find sizable differences in
confidence bands when including and excluding the long run control variables. Interestingly,
the SO2 case is more stable, which supports our reliance on local pollutants in analyzing this
sub-sample. This also leads us to revisit the Central America results, since a local pollutant
argument may be relevant for this sub-sample with SO2 data. Indeed, Table 6 suggests
evidence in favour of an EKC with reasonable tipping points in this case as well.

Although consensus on chosen controls is rare in empirical work, one of our findings in
this regard seems new to this literature: if we compare set estimates of δ in (2.7) imposing
and relaxing β3 = β4 = β5 = 0 [with short run coefficients ρ j �= 0] we find more precise
set estimates when long-run controls are suppressed. This suggests that controls though
statistically relevant for short run adjustments, are not required for the postulated relation
between emissions and income to be stable in the long-run.

A key tricky ingredient remains regarding the role of technology. Our panel approach,
except for the non-deterministic trend based (2.7) which is incompatible with time dummies,
follows the usual practice of introducing the latter to capture technical progress. Such an
interpretation has to be qualified despite our regional analysis since time dummies are cross
sectionally constant. In this respect, results with (2.7) may prove informative, if they differ
from their deterministic counterparts. And we do find important differences in precision as
emphasized above. We do not claim that ruling out estimation uncertainty on δ evacuates the
deep interpretation issues arising from subsample heterogeneities, nor we do argue in favour
of stochastic trends in general. Empirically, the differences in precision we find are new to
this literature and reinforce existing results on the importance of unobservable heterogeneity.

4.3 Discussion and Perspective: The Non Parametric Checks

Our non-parametric analysis is summarized via Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10. These
report partial regression surfaces for CO2 and SO2 for the OECD countries, for the full as well
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as subset time periods. On the whole, with non-OECD countries,15 observed best fit curves
deviate arbitrarily and dramatically from an expected EKC. Even if a formal statistical test is
not intended, such inconsistencies [between the postulated parametric quadratic form and its
non-parametric best-fit counterpart] may justify—at least in part—the severe uncertainties
we find via parametric estimates of the tipping point. We thus focus on the OECD countries
for further analysis.

With CO2, we fail to confirm an inverted-U shape from a full and subsample perspective.
This is an important sense in which our analysis can be seen as an exploration of the per-
vasiveness of shape assumptions. Figures 1, 2, 3, 4, and 5 suggest that past 1972, linearity
is not necessarily incompatible with CO 2 data. This suggests one possible reason for why
we obtain wider parametric confidence sets with CO2, since as argued above, imposing a
quadratic curve weakly identifies the tipping point when the curve is more or less linear.
More subtle arguments can be raised that question structural stability, for both emission
series. Although formal tests are not conducted, Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 reveal
noticeable shape difference across subperiods for all covariates (that is, not just for GDP),
enough to suggest that time effects that are often considered with Panel data models may just
not depict the whole story. Admittedly, the observed inconsistencies across subsamples may
be linked to the usual culprits, that is, they may have more to do with unsuitable subsidiary
assumptions (e.g. stationarity, exogeneity) than with the structure of the EKC itself. Results
remain noteworthy, in the sense that they suggest a more critical assessment of technological
effects.

In contrast, and although inconstancies across sub-periods cannot be ruled out, our non-
parametric results with SO2 allow us to formulate realistic conclusions on functional shape,
and to obtain precise predictions for the tipping point that are not at odds with EKC prin-
ciples. Indeed, and more accurately since the mid-eighties which possibly reflects policy
harmonizations, non-parametric curves for the OECD countries are globally in line with our
parametric results. While asymmetry cannot be ruled out, it does not seem pathological;
we thus calculated the above described confidence set for the tipping for SO2 in the OECD
global sample. We obtain 10.83 as a point estimate, and (9.07, 11.71) as a confidence band.
Focusing on Europe produces 14.77 with (12.38, 15.91) as bands. These sets compare favor-
ably with counterparts based on (2.7) which emerged as the tightest within our parametric
estimates. Since econometric foundations of the former have yet to be confirmed, we do not
take a stand on their relative worth. While the non-parametric sets are narrower, both para-
metric and non-parametric sets produce informative results and precise enough conclusions
regarding an EKC with SO2 for OECD countries.

To conclude, the partial control surfaces (2.10–2.12) reveal intriguing information. With
CO2 data, the curve with the industry/GDP ratio control I N Dit [reported in Figs. 1, 2, 3, 4,
5, 6, 7, 8, 9, and 10 under the heading “Industry”], displays, as expected, an upward slope as
of 1973. A flat curve before the first oil shock may be attributed to world-wide inexpensive
oil. The partial surfaces pertaining to the CO2 intensity of energy C I Eit [reported under the
heading “CO2 intensity”] is rather flat, except in the 1960–73 subsample in which case the
expect upward slope is confirmed. The curve with the fossil-fuel content of energy E F Fit

[reported under the heading “Fossil”] is also rather flat, except in the 1973–1985 period,
where an upward slope is suggested. While an upward slope is expected for C I Eit and
E F Fit , somewhat inelastic partial curves are not incompatible with a more or less linear
EKC as observed with CO2 , with suggests that emissions do not seem to level-up as GDP
increases. As a matter of fact, results differ with SO2, as the partial surfaces pertaining

15 Results are not reported for space considerations but are available upon request.
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to C I Eit do slope upward except for the most recent subsample. With E F Fit and SO2

emissions, a downward slope is suggested after the first oil shock, and more markedly from
the mid-eighties and onward. This may be attributed to shifts from dirty to cleaner coal, and
from coal to natural gas as well as to the important effect of regulations and emission exchange
markets. The I N Dit control, post 1973, slopes as expected, although rather non-linearly. As
economies adjusted to the first oil shock, energy-consuming industries relocated towards
non-oil energy rich countries. For some countries, this translated into substantially more
polluting energy use, until technology and regulations gained momentum. Non-linearity in
slope may contribute to reinforcing the EKC we observe with SO2 for the OECD countries.

5 Conclusion

Despite some overemphasis on methodology in recent works, important advances in econo-
metrics have made empirical work on the EKC seem more credible than it was in the early
nineties. Our contributions to estimating the EKC focus on the precision of the tipping point
estimate, under various assumptions regarding endogeneity and persistence, and functional
form. Taken collectively, our results suggest that except from a local-pollutant long-run or
non-parametric perspective, confidence sets around the tipping point are sufficiently wide that
the policy relevance of the EKC is greatly undermined even in the OECD. From a construc-
tive perspective, we view these results as a motivation for further work aiming to improve
identification of the curve, and for finite sample motivated panel data methods.

The fact that a long-run approach holds promise—although noteworthy—should not be
viewed as evidence in favour of a cointegration approach to the EKC. In the same vein, our
non-parametric estimations—although informative—are not intended to disqualify paramet-
ric estimations (recall that as considered, the former are not necessarily less restrictive than
the latter). Rather, our main conclusion is that regardless of the statistical assumptions one
is comfortable maintaining in this context, interpreting the shape of the curve should not be
the whole story. We should and do ask whether data supports a plausible tipping point. To do
so, methods that account for a weakly identified tipping point should be preferred, because
of the nature of the problem under study. Indeed, if the question taken to the data is whether
a non-linear effect is present, then methods that impose the linear case away—which causes
weak identification—cannot be adequate.

Our companion non-parametric analysis is viewed as illustrative in various respects.
Results are nevertheless informative. As non-parametric methods gain popularity in EKC
contexts, a convincing inferential perspective in still lacking. Again, we view our results
as a motivation for further work aiming to minimize the effects of subsidiary modelling
assumptions for inference on tipping points.

6 Appendix 1: List of Countries

6.1 Countries Used for the CO2 Equation

OECD.16 (27 countries). Albania, Austria, Belgium, Canada, Denmark, Finland, France,
Germany, Greece, Hong Kong, Hungary, Iceland, Ireland, Italy, Japan, Malta, Netherlands,

16 The list of OECD countries includes countries that have been in the OECD for the majority of the time
frame of this study, with the exceptions of Albania and South Korea. The latter two are included because,
in our judgement, are anomalies with respect to their geographic peers and Albania is included because this
group corresponded closest to its characteristics.
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New Zealand, Norway, Portugal, South Korea, Spain, Sweden, Switzerland, Turkey, United
Kingdom, United States.

Asia. (17 countries) Bangladesh, China, India, Indonesia, Kazakhstan, Kyrgyzstan,
Malaysia, Mongolia, Pakistan, The Philippines, Singapore, Sri Lanka, Tajikistan, Thailand,
Turkmenistan, Uzbekistan, Vietnam.

Sub-Saharan Africa. (16 countries) Angola, Benin, Botswana, Cameroon, Congo, Cote
d’Ivoire, Gabon, Ghana, Kenya, Namibia, Nigeria, Senegal, South Africa, Togo, Zambia,
Zimbabwe.

The Middle East & North Africa. (16 countries) Algeria, Bahrain, Egypt, Eritrea, Iran,
Jordan, Kuwait, Lebanon, Morocco, Oman, Saudi Arabia, Sudan, Syria, Tunisia, United Arab
Emirates, Yemen.

South America. (11 countries) Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador,
Guatemala, Paraguay, Peru, Uruguay, Venezuela.

Central America & The Caribbean. (10 countries). Costa Rica, Dominican Republic,
El Salvador, Haiti, Honduras, Jamaica, Mexico, Nicaragua, Panama, Trinidad & Tobago.

Other. (17 countries) Armenia, Azerbaijan, Belarus, Bulgaria, Croatia, Czech Repub-
lic, Georgia, Latvia, Lithuania, Macedonia, Moldova, Poland, Romania, Russia, Slovakia,
Slovenia, Ukraine.

6.2 Countries Used for the SO2 Equation

OECD. (27 countries). Albania, Austria, Belgium, Canada, Denmark, Finland, France,
Germany, Greece, Hong Kong, Hungary, Iceland, Ireland, Italy, Japan, Malta, Netherlands,
New Zealand, Norway, Portugal, South Korea, Spain, Sweden, Switzerland, Turkey, United
Kingdom, United States.

Asia. (12 countries). Bangladesh, China, India, Indonesia, Malaysia, Mongolia, Pakistan,
Philippines, Singapore, Sri Lanka, Thailand, Vietnam.

Sub-Saharan Africa. (11 countries). Botswana, Cameroon, Cote d’Ivoire, Gabon, Ghana,
Kenya, Senegal, South Africa, Togo, Zambia, Zimbabwe.

The Middle East & North Africa. (13 countries) Algeria, Bahrain, Egypt, Iran, Jordan,
Kuwait, Morocco, Oman, Saudi Arabia, Sudan, Syria, Tunisia, United Arab Emirates.

South America. (10 countries). Argentina, Bolivia, Brazil, Chile, Colombia, Guatemala,
Paraguay, Peru, Uruguay, Venezuela.

Central America & The Caribbean. (7 countries). Costa Rica, Dominican Republic,
El Salvador, Honduras, Mexico, Panama, Trinidad & Tobago.

Other. (2 countries). Bulgaria, Romania.

7 Appendix 2: The Fieller Solution

The Fieller method requires solving inequality (3.5) for d0, which may be re-expressed as

Ad2
0 + 2Bd0 + C ≤ 0 (7.1)

A = ĝ2
2 − z2

α/2v̂2, B = −ĝ1ĝ2 + z2
α/2v̂12, C = ĝ2

1 − z2
α/2v̂1. (7.2)

Except for a set of measure zero, A �= 0. Similarly, except for a set of measure zero,

� = B2 − AC �= 0. Real roots equal to −B±√
�

A exist if and only if � > 0. Let d01 refer to
the smaller root and d02 to the larger root, then
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FC S (d;α) =
{

[d01, d02] i f A > 0
]−∞, d01] ∪ [d02, +∞[ i f A < 0

. (7.3)

Bolduc et al. (2010) further show that: (i) if � < 0, then A < 0 and FC S (d;α) =
R; (ii) FC S (d;α) contains the point estimate ĝ1/ĝ2 and thus cannot be empty, and (iii)
asymptotically, Fieller’s solution and the Delta method give similar results when the former
leads to an interval, i.e. when the denominator is far from zero. Taking the exponential of the
limits of FC S (d;α) provides a confidence set for exp(d).

8 Appendix 3: B-splines

The method from Ma and Racine (2013) uses a B-spline function for f (.), which is a linear
combination of B-splines of degree m defined as follows

B(x) =
N+m∑
c=0

bc Bc,m(x), x ∈ [k0, kN+1]

where bc are denoted “control points”, k0, . . . , kN+1 are known as a knot sequence [an
individual term in this sequence is known as a knot],

Bc,0(x) =
{

1 kc ≤ x < kc+1

0 otherwise

}

which is referred to as the ‘intercept’, and

Bc, j+1(x) = ac, j+1(x)Bc, j (x) + [1 − ac+1, j+1(x)]Bc+1, j (x),

ac, j+1(x) =
{

x−kc
kc+ j −kc

kc+ j �= kc

0 otherwise

}
.

The unknown function f (.) is estimated by least squares as

B̂(G D Pit ; covariatesit ) = argminB(.)

n∑
i=1

T∑
t=1

[E Mit − B(covariatesit )]
2 .

Explicitly, this requires the estimation of the control points bc. If covariates are considered
endogenous and instruments provided, 2SLS is also possible. Underlying best fit parameters
are selected by cross-validation; see Ma et al. (2012) for further details. Further description
of this R-package is available at: http://cran.r-project.org/web/packages/crs/crs.pdf.
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