
IJRECE VOL. 4 ISSUE 4 OCT.-DEC. 2016 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING
 A UNIT OF I2OR 108 | P a g e

Image Segmentation Using Parallel Mean Shift Algorithm
Raj Kumar Sah1, Md. Zahidul Islam2

1A P Goyal Shimla University, Shimla (H.P), India
2Khulna University, Khulna, Bangladesh

(E-mail: errazks@gmail.com, zahid@cse.ku.ac.bd)

Abstract - In automatic image interpretation, the Process of

extracting different objects that composes an image is one of

the primary steps. This process is known as image

segmentation and consists of sub dividing an image into

meaningful regions, also called segments, which has been

classified. Many of the existing segmentation algorithms have

high computational cost for large images due to the high-

resolution of the images. Parallel programming is becoming

popular to the practitioners for reducing computation time.

Due to the availability of multicore processors, various tools

and techniques are being developed by researchers and

programming platform developers. The idea is to explore

current multi-core commercial processors in order to speedup

the segmentation process. In this thesis, a multi core parallel

implementation is presented that aims at providing better

execution time, while delivering a similar outcome produced

by the sequential version. The presented framework is able to

work with any number of cores and any number of images

from the system to take full advantage of the upcoming

processors having unseen number of cores. The current

parallel implementation tested on five different images on

multiple systems having different cores and speed.

 Keyword-Finding modes; image segmentation; image

processing; visual tracking; and space analysis & object

tracking

I. INTRODUCTION

Mean shift algorithm was introduced by Fukunaga and

Hostetler (in 1976) [1]. A finite mixture or the kernel density

estimate often defines the algorithm. Mean shift has twofold

use, it is often used as a nonparametric clustering method that

aids finding methods, and in recent applications in computer

vision it functions as image segmentation or object tracking

[2]. Image segmentation is the process of partitioning a digital

image into multiple segments also known as super pixels. The

main purpose of image segmentation is to represent the image

in a much meaningful manner to understandable by the

computer. The process is typically used to locate objects in

images. In other word, image segmentation is the process of

assigning a label to every pixel in an image in such a manner

that same label carries out certain characteristics. The Parallel

Patterns Library (PPL) is a programming model that gives a

great flexibility to developing parallel processed applications.

It provides an interrelation between application code and the

threading mechanism by providing algorithms and containers

that act greatly on data parallelism [6]. The PPL also offers

developing applications that provides application to shared

state. The goal of this thesis is to develop a framework for

image segmentation using parallel mean shift algorithm. Mean

shift is a multi-used tool for feature space analysis that

provides solution for many vision tasks. I have chosen mean

shift over the other method, because mean shift procedure

inherits an interesting property, its path towards the mode

follows a smooth trajectory, the angle between two

consecutive mean shift vectors being always less than 90

degrees [3] which provides a smooth result for image

segmentation. However, it is observed that the full process of

mean shift algorithm is very time consuming. To decrease the

run time of the algorithm we have used the multicore

programming system. The target of this study is to decrease

the runtime of the algorithm using parallel programming. So

the use of PPL makes the mean shift algorithm to run parallel

on multiple processors. Implementing the algorithm using

Microsoft’s parallel pattern library (PPL) dynamically scales

the degree of parallelism efficiently using all the processing

cores that are available. In addition, PPL assists in the

partitioning of work and the scheduling of tasks in threads.

The library provides cancellation support, state management,

and other services required for parallel programming. These

libraries make use of the Concurrency Runtime, which is part

of the Visual C++ platform [1], [4], [8].

II. MEAN SHIFT ALGORITHM USING PARALLEL

PATTERN LIBRARY (PPL)

 Partially

Figure 1: Parallel segmentation process using PPL.

mailto:errazks@gmail.com
mailto:zahid@cse.ku.ac.bd
http://en.wikipedia.org/wiki/Digital_image
http://en.wikipedia.org/wiki/Digital_image

IJRECE VOL. 4 ISSUE 4 OCT.-DEC. 2016 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING
 A UNIT OF I2OR 109 | P a g e

Parallel high performance mean shift algorithm using PPL.

This dynamic mean shift algorithm updates both the sample

space and the “mean”, which is a subspace of the sample

space. The process divides the data and fastens the process. In

general mean shift uses a window and repeat it until it finds

the data till the last point. Used the algorithm with parallel

processing that divides the data into multiple cores and takes

the data parallel which increases the speed of the algorithm

due to its degree of core number. For example: if CPU having

4 cores, it will take approximately ¼ times than the general

process. The algorithm will work this way with an image in a

4 core system as in Figure 1.

A. Image Blending Test Using PPL

We did an experiment on image processing to see the

performance of parallel processing, where images are created

with layers. Separate images from different sources are

processed independently and then combined with alpha

blending, shown in figure 2.

Figure 2: Image Blending.

This Process merges two semitransparent layers to create a

new single image. In this process, two image sources named

source1 and source2 are taken which are the original source

images; layer1 and layer2 are two bitmaps that have been

prepared with optional information to blend the images,

blender is a Graphics instance to perform the blending.

Internally, SettoGray, Rotate and Blend are the methods to

perform the image processing. The SettoGray and Rotate

methods are entirely independent of each other. If two or more

cores are available, the tasks might run in parallel, and the

image blending process might finish in low cost time than a

sequential version would. The average timing is calculated by

running the program in different configured computers.

Result on an Intel Pentium Dual CPU E2180 @ 2.00 GHZ

Sequential = 988.17

Task_Group = 580.85

Structure task_Group = 580.66

Parallel_invoke = 725.88

Result on an Intel Pentium Core 2 Duo @ 2.10GHZ

Sequential = 904.04

Task_Group = 583.18

Structure task_Group = 581.61

Parallel_invoke = 564.74

Result on an Intel Pentium Core i3 @ 2.53GHZ

Sequential = 563.12

Task_Group = 371.33

Structure task_Group = 366.55

Parallel_invoke = 376.46

Average time processing for different processor for set to

gray, rotate and blends.

B. Parallel Processing

Parallel computation is the accompanying use of more than

one CPU or processor cores to complete a task. In general,

parallel processing makes programs run faster using multiple

processing units [20], [21]. Task parallelism and data

parallelism are two programming models for parallel

programming. The task parallelism focuses on distributing

threads beyond different parallel computation nodes in which

different processor executes the same or different programs on

same or different data. Different processors communicate with

each other during execution. On the other hand, data

parallelism is a programming technique for splitting a large

data set into smaller chunks that can be operated in parallel. In

this model, multiple CPUs execute same program with a part

of the input data set. We adapted data parallelism in our

proposed system. PPL is designed by native C++ developers

and bundled with Microsoft Visual Studio providing features

for multi core programming.

PPL builds on the scheduling and resource management

components of the Concurrency Runtime. The features of PPL

include: a mechanism to execute several work items (tasks) in

parallel, generic algorithms that act on collections of data in

parallel, generic containers providing safe concurrent access to

their elements, and procedures to exploit data parallelism. PPL

provides a convenient and readily usable toolkit that combines

the simplicity of managed-language equivalents with the

elegance and expressiveness of C++. PPL uses more abstract

concepts than threads and fibers as the base unit of scheduling

[22].

III. EXPERIMENTAL RESULT ANALYSIS AND

IMPLEMENTATION TOOLS

The overall performance of the system depends on the CPU’s

available core numbers. If the number of CPU core is higher,

then the performance of the system will be improved. We have

used Microsoft visual studio, OpenCV C++ and parallel

pattern library to implement the proposed system. The visual

studio of Microsoft provides them both. Microsoft Visual

Studio is an integrated development environment (IDE) from

Microsoft. Visual Studio uses Microsoft software development

platforms such as Windows API, Windows Forms, Windows

http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/Windows_API
http://en.wikipedia.org/wiki/Windows_Forms

IJRECE VOL. 4 ISSUE 4 OCT.-DEC. 2016 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING
 A UNIT OF I2OR 110 | P a g e

Presentation Foundation, Windows Store and Microsoft

Silverlight.

A. Test Environment

Five standard images with same sizes (512×512) are used.

They are named as Cameraman, Lake, Mandrill, pepper and

Leena. All images are used to evaluate the performance gains

and we have compared the result of parallel segmentation to

the result from sequential segmentation.

 Cameraman Lake

 Mandrill Pepper

LEENA

Figure 3: Test Environment Image Input

B. Architecture of the Proposed System

Load Image

Get the size of the image CV.Getsize(img)

Check for available cores

Divide the image by number of CPU

Img.Height=Img.Height

Img,Width=Img.Width/number of CPU

Save all partitioned image

Simg1
Simg2

Simgn

Core 1

Mean Shift (Simg1)

Core 2

Mean Shift (Simg2)

Core n

Mean Shift (Simgn)

Core 1

Mean Shift (Simg1)

Core 2

Mean Shift (Simg2)

Core n

Mean Shift (Simgn)
…………….

Create output image

Combined Img = Segmented Img1+ Segmented Img2+…………..+ Segmented Imgn

Output Final Image

………………..

……..

C. Results of Sequential and Parallel Segmentation

The performance of the proposed parallel algorithm has been

evaluated using the same images. The results are given below

for sequential segmentation and parallel segmentation. Note

that execution time of the segmentation is reduced with the

increase in the number of cores.

http://en.wikipedia.org/wiki/Windows_Store
http://en.wikipedia.org/wiki/Microsoft_Silverlight
http://en.wikipedia.org/wiki/Microsoft_Silverlight

IJRECE VOL. 4 ISSUE 4 OCT.-DEC. 2016 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING
 A UNIT OF I2OR 111 | P a g e

TABLE I: EXPERIMENTAL RESULT USING DUEL CORE PROCESSOR

The experiment result performed on an Intel Duel Core 2.60GHz, 2

GB of RAM.

IMAGE NAME Sequential segmentation

(MS)

Parallel segmentation

(MS)

Camera Man 13275.60 4746.59

Lake 10505.53 6617.28

Mandrill 10986.33 8439.29

Pepper 13769.10 6878.19

Leena 10807.80 6902.16

TABLE II: EXPERIMENTAL RESULT USING CORE 2DUO PROCESSOR

The experiment result performed on an Intel Core 2duo 2.93 GHz, 4

GB of RAM.
IMAGE NAME Sequential segmentation

(MS)

Parallel segmentation

(MS)

Camera Man 11192.87 4011.78

Lake 8377.275 5584.85

Mandrill 8579.32 7144.87

Pepper 11578.61 5455.41

Leena 8677.33 5436.07

TABLE III: EXPERIMENTAL RESULT USING CORE 2QUAD PROCESSOR

The experiment result performed on an Intel Core 2quad 2.3 GHz, 2

GB of RAM.
IMAGE NAME Sequential segmentation

(MS)

Parallel segmentation

(MS)

Camera Man 8534.7 3545.73

Lake 6096.2 4321.54

Mandrill 7860.3 5480.34

Pepper 10962.9 4367.73

Leena 7483.1 4323.73

TABLE IV: EXPERIMENTAL RESULT USING CORE I3 PROCESSOR

The experiment result performed on an Intel Core i3 3.1 GHz, 2 GB

of RAM.
IMAGE NAME Sequential segmentation

(MS)

Parallel segmentation

(MS)

Camera Man 4632.15 2316.07

Lake 4413.37 2942.36

Mandrill 7331.32 4665.66

Pepper 6045.8 3144.13

Leena 6124.5 3141.15

TABLE V: EXPERIMENTAL RESULT USING CORE I5 PROCESSOR

The experiment result performed on an Intel Core i5 2.9 GHz, 4 GB

of RAM.
IMAGE NAME Sequential segmentation

(MS)

Parallel segmentation

(MS)

Camera Man 3708.479 1951.84

Lake 4015.26 2342.05

Mandrill 6022.64 3824.01

Pepper 5045.69 2557.12

Leena 5481.98 2464.33

TABLE VI: EXPERIMENTAL RESULT USING CORE I7 PROCESSOR

The experiment result performed on an Intel Core i7 3.4 GHz, 8 GB

of RAM.
IMAGE NAME Sequential segmentation

(MS)

Parallel segmentation

(MS)

Camera Man 2436.87 1224.02

Lake 1961.565 1307.71

Mandrill 5874.45 2048.41

Pepper 3712.23 1502.32

Leena 2735.464 1532.69

D. Results of Parallel Segmentation Images Output

The output segmented image generated by existing survey

depicts that most the parallel algorithms require special

hardware which are costly. Due to the revolution in computer

architecture, multicore devices are very common today inside

nearly all desktops and laptops, most gaming consoles, and the

newest smart phones. This circumstance demands user

applications to scale accordingly and perform sophisticated

operation System (on the left) and our proposed system (on

the right) are same. Even though our implemented system is

faster than the existing one, it does not hamper the

segmentation quality. With all the five images both

multicolored and gray scale the test is done and all result is

same as the existing one.

Existing result Final result

Cameraman

Lake

Mandrill

Pepper

Leena

Figure 4: Results of parallel segmentation images output.

IJRECE VOL. 4 ISSUE 4 OCT.-DEC. 2016 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING
 A UNIT OF I2OR 112 | P a g e

IV. CONCLUSION

Computer applications, exploiting the parallel platforms, are

increasingly needed to meet the demand of efficient high

volume of data processing. The existing literature survey

depicts that most the parallel algorithms require special

hardware which are costly. Due to the revolution in computer

architecture, multicore devices are very common today inside

nearly all desktops and laptops, most gaming consoles, and the

newest smart phones. This circumstance demands user

applications to scale accordingly and perform sophisticated

operation speedily. In this paper, we introduced a low cost

high performance mean shift algorithm to meet this demand.

Our system uses the available CPU architecture and a library

of functions providing parallel programming constructs.

Learning PPL is also fairly easy for anyone having a little

experience with C or C++ languages. Our experimental

analysis confirmed that our system runs faster without

sacrificing the quality of the output. In terms of performance,

the parallel implementation is about two and a half times

faster than the sequential one. Although the developed system

successfully exploited the available parallel computing

platform, it has some limitation. Our approach requires

additional computation for partitioning the image, without

proper partitioning the output will be distorted. Sometimes

parallel computing takes longer time due to inter process

communication. Another demerit of our system is that for a

single processing unit it is not very effective. While generating

the output image our system leaves a linear pixel difference

which could be removed using carefully chosen adaptive

partitioning mechanism

V. SEGMENTATION IN FUTURE

In the future, our intention is to use the same principle of

division of work to develop systems capable of dealing with

every kind of data, not only images. Thus, it is expected that

our image segmentation procedure can handle extremely large

images efficiently and without requiring special hardware.

REFERENCES

[1] B. Varga And K. Karacs. High-Resolution Image Segmentation
Using Fully Parallel Mean Shift. Varga And Karacs Eurasip
Journal On Advances In Signal Processing, 2011.

[2] F. Zhou, Y. Zhao, and K-Liu Ma. Parallel Mean Shift for
Interactive Volume Segmentation. Wanget al. (Eds.): Springer-
Verlag Berlin Heidelberg. MLMI 2010, LNCS6357, pp.67–75,
2010.

[3] D. Comaniciu and P. Meer. Mean shift: A Robust Approach
Toward Feature Space Analysis. IEEE Transaction on pattern
Analysis and machine intelligence, Vol24No (5), 603-619. May
2002.

[4] K LWu, and M S Yang. Mean shift-based clustering. The
journal of the pattern recognition society. February 2007.

[5] S. Theodorids, and K. Koutroumbas. Pattern Recognition.
Fourth Editions pp595-765, Academic Press. October 20, 2008.

[6] C. Compbell, and A. Miller. Parallel Programming with
Microsoft visual C++, Publisher: Microsoft Press; 1stEdition
April 11, 2011.740-741, August 1987 [Digests 9th Annual Conf.
Magnetics Japan, p. 301, 1982].

[7] Y Cheng, Mean shift, mode seeking, and clustering. IEEE
Transaction on pattern Analysis and machine intelligence, vol
17 No 8, 790–799. August 1995.

[8] L. Men, M. Huang, and J. Gauch. Accelerating Mean Shift
Segmentation Algorithm on Hybrid CPU/GPU Platforms. October 2009.

[9] J. Wang, B Thiesson, Y Xu, and M. Cohen. Image and Video
Segmentation by Anisotropic Kernel Mean Shift. Microsoft
Research (Aisa and Redmond), 2004.

[10] YJing and Shukui Bo. Image Clustering Using Mean Shift
Algorithm. Fourth International Conference on Computational
Intelligence and Communication Networks, 2012.

[11] B. Georgescu, I .Shimshoni, and P. Meer. Mean shift based
Clustering in High Dimension:A Texture Classifications
Example. IEEE International Confe- rence on computer Vision
vol set-2 ICCV 2003.

[12] KA. Shah, HK. Kapadia, VA. Shah, and Maurya N. Shah.
Application of Mean-Shift Algorithm for License Plate
Localization. IEEE Digital objects Identifier Ahmedabad
Gujarat, 2011.

[13] P F. Felzenszwalb and D P. Huttenlocher, Efficient Graph-
Based Image Segmentation, International Jour- nal of Computer
Vision vol 59 Issue 2, pp 167-181 September 2004.

[14] P.N. Happ, R.S. Ferreira, C. Bentes, G.A.O.P. Costa, and R.Q.
Feitosa. Multi resolution Segmentati on:A Parallel Approach For
High Resolution Image Segmentation In Multi core
Architectures. 3rd International Conference on Geographic
Object-Based Image Analysis, Brazil, 2010.

[15] W. Khan. Image Segmentation Techniques: A Survey
.COMSATS Institute of Information Technology, Wah Cantt,
Pakistan Journal of Image and Graphics vol 1, No 4, December
2013

[16] DS. Hochbaum. An Efficient Algorithm for Image
Segmentation, Markov Random Fields and Related Problems.
Journal of the ACM, vol. 48, No. 4, pp. 686–701.July 2001.

[17] A.B.M. Faruquzzaman, N. R. Paiker, J Arafat, and M. A. Ali. A
survey report on image segmentation Based on split and merge
algorithm. IETECH Journal of Advanced Computations, vol. 2,
No: 2, 086–101, 2008.

[18] A.B.M. Faruquzzaman, N. R. Paiker, J Arafat, and M. A. Ali. A
survey report on image segmentation Based on split and merge
algorithm. IETECH Journal of Advanced Computations, vol. 2,
No: 2, 086–101, 2008.

[19] P. Li and L. Xiao. Mean Shift Parallel Tracking On GPU. 4th
Iberian Conference on Pattern Recognition and Image Analysis,
pp120-127. 2009.

[20] J. Shi and J.Mali. Normalized Cuts and Image Segmentation.
IEEE transactions on pattern an alysisand machine intelligence,
vol. 22, No. 8, August 2000.

[21] J. Malik, S. Belongie, T. Leungand, J. Shi. Contour and Texture
Analysis for Image Segmentation. International Journal of
Computer Vision vol.43, No 1, pp 7–27, Kluwer Academic
Publishers. Manufact- ured in The Netherlands. 2001.

[22] J. Chen and N. Pappas. Adaptive Perceptual Color-Texture
Image Segmentation. IEEE transactions on image processing,
vol. 14, No. 10, October 2005.

[23] Z Tu and S c Zhu. Image segmentation by data-driven Markov
chain Monte Carlo. IEEE Transactions On Pattern Analysis and
Machine Intelligence, vol. 24, No 5, May 2002.

[24] B. Peng, L. Zhang, and J. Yang. Iterated Graph Cuts for Image
Segmentation.9th Asian Conference on Computer Vision vol
5995, pp 677-686, 2010.

IJRECE VOL. 4 ISSUE 4 OCT.-DEC. 2016 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING
 A UNIT OF I2OR 113 | P a g e

Raj Kumar Sah received his B.Sc.
degree in Computer Science and
Engineering from Khulna Univers-
ity ,Khulna, Bangladesh, in 2014,
and currently studying in M.Tech.
Research Scholar in Computer
Science and Engineering from A P
Goyal Shimla Universit, Shimla
(H.P.)India (2016-2018) .His rese-
arch interet includes Image Proces-
sing, At present; He is engaged in
image segmentation application.

 Md Zahidul received B.Sc degree
in Computer Science and Engine-
ering. Khulna University, Khulna,
Bangladesh, in 2006, and the M.S.
degree in Comp- uter Science from
the Department of Mathematics,
Statistics and Computer Science
of St. Francis Xavier University,
NS, Canada .in 2012, He has been
teaching as lecturer, assistant
professor of Computer Science and
Engineering discipline at Khulna
University,in 2008-2016 respectiv-
ely. His research interests include
Machine Learning, Computer
Vision, and Artificial intelligence.

http://www.stfx.ca/
http://www.ku.ac.bd/
http://www.ku.ac.bd/

