Solomon Press Statistics S1 Paper I (Mark Scheme)

All exam papers are issued free to students for education purpose only. Mr.S.V.Swarnaraja (Marking Examiner, Team Leader & Author) www.swanash.com, Mobile: +94777304755, email: swa@swanash.com

GCE Examinations Advanced Subsidiary / Advanced Level

Statistics Module S1

Paper I MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.

Accuracy marks (A) can only be awarded when a correct method has been used.

(B) marks are independent of method marks.

Written by Shaun Armstrong & Chris Huffer © Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

S1 Paper I – Marking Guide

1.	(a)	 (i) normal (ii) e.g. producer must ensure that most bottles contain at least 75 cl 	A1 B1	
	(b)	(i) discrete uniform (ii) $r + 1 + 2 + 3 = 4$	A1	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
		mean = $\frac{5}{2}$ (symmetry)	A1	
		$E(X^{2}) = \sum x^{2}P(x) = \frac{1}{4} + 1 + \frac{9}{4} + 4 = \frac{15}{2}$	M1 A1	
		$Var(X) = \frac{15}{2} - (\frac{5}{2})^2 = \frac{5}{4}$	M1 A1	(8)
2.	(a)	$P(A \cap B) = P(A) \times P(B) = 2P(B) \times P(B) = 2[P(B)]^{2}$	M2	
		$\therefore 2[P(B)]^2 = \frac{1}{8}; \therefore [P(B)]^2 = \frac{1}{16}; \therefore P(B) = \frac{1}{4}$	M2 A1	
	<i>(b)</i>	$P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{1}{2} + \frac{1}{4} - \frac{1}{8} = \frac{5}{8}$	M2 A1	
	(c)	A and B independent \therefore A and B' independent $\therefore P(A B') = P(A) = \frac{1}{2}$	M1 A1	(10)
3.	(a)	12.7 + 5.8 = 18.5 minutes	A1	
	(b)	$P(X < 12.7) = 0.25; P(Z < \frac{12.7 - \mu}{\sigma}) = 0.25$	M1	
		$\frac{12.7-\mu}{\sigma}$ = -0.67; 12.7 - μ = -0.67 σ	M1 A1	
		$P(X < 18.5) = 0.75; P(Z < \frac{18.5 - \mu}{\sigma}) = 0.75$	M1	
		$\frac{18.5-\mu}{\sigma} = 0.67; \ 18.5-\mu = 0.67\sigma$	M1 A1	
		solve simul. giving $\mu = 15.6$, $\sigma = 4.3284$; so $\mu = 15.6$, $\sigma^2 = 18.7$	M1 A1	
	(c)	e.g. would expect normal dist. and mean and variance seem close to actual values so seems a fairly suitable model	B2	(11)
4.	(a)	median = $15.5^{\text{th}} = \frac{31+32}{2} = 31.5$	M1 A1	
		$Q_1 = 7.75^{\text{th}} = 20$	Al	
	<i>(b)</i>	$Q_3 = 23.25^{\circ} = 45.5$	B3	
	(c)	0 10 20 30 40 50 60 70 80	В3	
	(d)	e.g. similar range, youngest and oldest both a bit higher for E median of M lower meaning younger students on average IQR of M smaller meaning student ages more similar E roughly symmetrical, M +vely skewed	B4	(14)

5. (a) $(0.6 \times 0.5 \times 0.7) + (0.6 \times 0.5 \times 0.3) + (0.4 \times 0.5 \times 0.3) = 0.36$ M3 A1

(b)
$$P(W=0) = 0.4 \times 0.5 \times 0.7 = 0.14$$

$$P(W=3) = 0.6 \times 0.5 \times 0.3 = 0.09$$

$$P(W=1) = 1 - (0.14 + 0.36 + 0.09) = 0.41$$

$$\frac{W \qquad 0 \qquad 1 \qquad 2 \qquad 3}{P(W=w) \qquad 0.14 \qquad 0.41 \qquad 0.36 \qquad 0.09}$$

(c)
$$E(W) = \sum wP(w) = 0 + 0.41 + 0.72 + 0.27 = 1.4$$
 M1 A1
 $E(W^2) = \sum w^2 P(w) = 0 + 0.41 + 1.44 + 0.81 = 2.66$ M1 A1
 $Var(W) = 2.66 - 1.4^2 = 0.7$ M1 A1

 (d) e.g. unlikely to be valid as result of each match will probably raise or lower confidence changing probability of success in the next match B2 (16)

Total (75)

M2 A2