
 
Manufacturing Technology and Research (An International Journal)| Volume 13 | Issue 1-2 | Dec (2020)    ISSN: 0973-0281 

 

A comprehensive review on process optimization of composite moulding 

processes 

Anita Zadea, Raghu Raja Pandiyan Kuppusamya1 

aDepartment of Chemical engineering, National Institute of Technology Warangal,  

Telangana, 506004, India 

 

Abstract 

A review on numerical optimization of parameters involved in mould filling, and curing that affects a class of composite 

moulding processes, namely Liquid Composite Moulding (LCM) processes are presented. The critical issues and prevention 

techniques of the entire process cycle are discussed to manufacture a void-free and cost-effective composite part. The key 

parameters discussed under mould filling stage are preform parameters such as permeability and porosity, gate and vent location, 

injection pressure, and mould geometry. Whereas, the key parameters discussed under curing stage are degree of cure, mould 

temperature and viscosity of resin. The number of single objective and multi-objective optimization techniques have been 

developed to optimize the objectives like the degree of cure, temperature overshoot, process time, gate and vent location and 

mould fill time. The Nelder mead simplex method, simulated annealing, GA, NSGA-II, and MOOGA are the most used 

traditional techniques for optimizing the process as well as mould parameters. The scope of meta-heuristic or hybrid optimization 

techniques for constrained single and multi-objective optimization problem in the LCM process has addressed. 
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1. Introduction 

The designing of composite process parameters has become crucial factor in different 
industries with increase in applications of composite materials in vital sectors. There have been 
various composite part manufacturing techniques from traditional methods like hand-layup which 
is cost and labour intensive to the use of automated techniques such as autoclave, injection 
moulding, extrusion and liquid composite moulding (LCM) process etc. [1–3]. Although, each 
technique has different manufacturing procedure, the major objectives and design parameters will 
be same to manufacture the cost effective void free composite part. In this article we will mainly 
focusing on the LCM process parameters, as this method is effective in manufacturing properly 
finished composite parts with complex geometries [4-8].  

LCM is a closed moulding process, hence after closing the mould, it is difficult to know 
whether fibre preform has impregnated with resin or there are unsaturated regions where the air 
has entrapped [9]. Therefore it is important to identify and optimize the parameters during the 
process as depicted in figure 1.  

This paper addresses following research questions for making the cost effective and void free 
composite part using LCM process. 

Research questions 
a. Which factors need to consider to manufacture a void free cost effective 

composite part? 
b. Why there is need to develop meta-heuristic techniques over traditional numerical 

techniques? 
c. What advancements needed in meta-heuristic techniques for optimizing LCM 

process parameters for constrained single and multi-objective optimization 
problem? 
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Following objectives formed to address these questions. 
 
Objectives: 

a. To analyze the effect of mould, raw material, and process parameters on 
mould fill time and cure time 

b. To develop proper optimization technique for addressing the full-fledged 
complex and non-linear optimization problem 

c. Development of effective hybrid MOO algorithm to optimize the objectives 
related to mould fill time with minimum void content and cure time with given 
temperature range  

 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Flow diagram depicting designing of LCM process parameters 
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In the LCM process, mould filling and curing are the critical steps [10-12]. The factors which 
affect during the mould filling stage are air entrapment, transverse flow, race tracking effect and 
dual scale flow [13]. Air entrapment arises due to non-uniform impregnation of fibre preform 
with resin. Usually, composite structures are very thin hence flow along the thickness direction 
has been considered negligible. However, when the in-plane permeability component of fibre 
preform along the thickness direction will change significantly then the transverse flow has to 
take into account [14]. When air channels will be present between the mould wall and fibre 
preform the race-tracking occurs. This effect arises mainly along mould wall edges, joints, inserts 
and around ribs for complex structures. When there is a difference between the fluid flow within 
the fibre tows and in between the tows the dual scale flow arise [15, 16]. Due to these defects 
voids and dry spots forms in the composite part as shown in figure 2 [17]. Therefore, proper 
selection of bulk and tow permeability, gate and vent location, porosity and injection 
pressure/flow rate need to take into account [18-23].  
 

 

a. Macro-void formation 

 

b. Dual-scale flow 

 

c. Micro-void formation 

Fig. 2 (a, b, c). Flow issues in LCM Process 

 
Curing is an exothermic process where heat transfer occurs between mould and saturated 

preform. With an increase in temperature of saturated preform liquid resin will convert to gel and 
then gel to solid this phase transition called as gelation and solidification respectively [24-27]. 
The factors which affect the curing process are temperature overshoot, glass transition 
temperature during phase change, and resin viscosity [28, 29]. This may develop the temperature 
and cure gradients along thick sectioned parts which results to matrix micro-cracks, residual 
stresses and geometrical distortions [30-35]. 

Numerous numerical techniques used by researchers to optimize the mould filling and curing 
parameters of LCM process [36, 37]. We found few review articles, book chapters and thesis 
chapters related to numerical optimization of composite process parameters [38]. They are 
particularly specified to some application based on use of traditional numerical techniques. To 
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the best of our knowledge we did not found review article in last ten years addressing use of 
meta-heuristic or hybrid optimization techniques for constrained single and multi-objective 
optimization problem in the LCM process.  

This article describes the comprehensive review on identification of problem statement, 
formulation of optimization problem and use of suitable optimization technique based on the type 
of optimization problem in the composite processing. Depending on the accomplishment of 
target objectives, design parameters need to set. Then, we will present the different types of 
optimization techniques used for optimizing the different parameters of LCM processes. After 
that, to optimize the different conflicting objectives simultaneously the studies on multi-objective 
optimization (MOO) in composite processing has been reviewed. Here, the combination of 
different mould parameters, cure parameters and both mould and cure parameters optimized 
simultaneously. 

 

2. Numerical optimization for composite processing 

2.1. General formulation of optimization problem 

     Generally, the optimization problem formulated as,  

   k = 1, 2, …, N       

           (1) 

Subject to, 

   l = 1, 2, …, L 

   m = 1,2,…M 

   X = (x1, x2,….xd )T  

 

here,  is the scalar objective function which has to maximize or minimize,  represents 

the J number of equality constraints also called active constraints,  represents the M 

number of inequality constraints and X is the vector of d-dimensional design variables.  

   For the sake of understanding and correlation we have discussed the mathematical formulation 

of one example based on composite process parameter optimization. Jahromi et al. [39] used a 

dynamic artificial neural network (ANN) for achieving the uniform temperature and degree of 

cure for thick fibre reinforced composite parts, which is directly dependent on the temperature 

profile of mould wall. The objective function was formulated to minimize the temperature 

gradients between two selected points i.e. central and corner, to indicate the overall cure process 

subject to constraints on the degree of cure. Mathematically,  

 

       

          (2) 

Subject to,    

where   

      i = 1, 2,….5. 

2.2. Classification of optimization techniques  

After the formulation of the optimization problem, the task is to solve it using an appropriate 

optimization technique. There are different types of optimization techniques based on the nature 

of optimization problem they can be classified as [40]: 
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I. Deterministic techniques: These techniques are very effective for achieving good 

convergence. For highly non-linear and complex problems they may stick in the local 

optima.  

II. Stochastic algorithms: These techniques are very effective for achieving the global 

optimal solution [41-43].  

III. Hybrid algorithms:  These types of algorithms used for achieving better convergence as 

well as the global optimal solution. Usually, Deterministic techniques and stochastic 

techniques are combined by taking into account the convergence property of the 

deterministic algorithm and exploration property of the stochastic algorithm as shown in 

figure 3. In composite processing, different optimization problems have been addressed 

in the literature using this method. For example, a hybrid GA-gradient based algorithm 

used to optimize the gate location, on the flow channels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Convergence flow of optimal solution for stochastic and deterministic techniques 

 

3. Numerical studies on optimization 

3.1. Numerical studies on single objective optimization 

The number of research articles found on the single objective optimization of gate and vent 

location using numerous deterministic and stochastic techniques. Particle swarm optimization 

(PSO) and genetic algorithm (GA) found to be the most used stochastic algorithms with the aim 

of reducing computational time and increasing accuracy [44]. The mostly formulated objective 

was minimizing mould fill time with reduced void content [45-54]. To optimize the curing stage 

the majorly formulated objective was cure process time with respect to variables on temperature 

and cure gradients, a constraint on degree of cure. Table 1 reviews the categorization of single-
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objective optimization studies of composite processing in terms of objectives, parameters and 

numerical techniques. 

Table 1. Objective function categorization for Single Objective Optimization of Composite Processing 

 

Objective Parameters 
Numerical 

Techniques 
Reference Year 

Least square 

error between 

experimental 

& predicted 

data from 

simulation 

In-plane 3D 

permeability 

components 

FEM, golden 

section search 

method  

[55] 2011 

Flow front 

progression 

time  

Characterization 

of 3D 

permeability 

FEM, golden-

section search 

method 

[56] 2017 

Buckling 

load, 

Fundamental 

frequency, 

Structural 

weight 

Geometry, 

Temperature 

Meta-

heuristic 

technique 

[57] 2018 

Stress 

distribution, 

Critical 

buckling load, 

Fundamental 

frequency 

Material 

distribution 

pattern,  

GA, PSO, 

ANN, ANFIS 

[58] 2019 

Gate location  Permeability, 

Fill time, Mould 

fill fraction 

GA, Gradient-

based 

algorithm 

[59] 2007 

Injection 

gates and 

vents 

Permeability Graph-based 

two-phase 

heuristic 

algorithm 

(GTPH) 

[60] 2008 

Fill time Gate and vent 

location, 

Depth-first 

search and 

[61] 2015 
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Distribution 

media, Race-

tracking effect 

Tree search 

algorithm 

Total cure 

cycle time 

Central 

temperature, 

Duration of two 

steps 

ANSYS, 

Simulated 

Annealing 

(SA), NM-

simplex 

method 

[62] 2014 

Process cycle 

time 

Mould 

temperature 

profile 

GA [63] 2005 

Mould fill 

time 

Gate locations GA, 

exhaustive 

search, 

Centroidal 

Voronoi 

Diagram 

(CVD) 

method 

[64] 2016 

Mean square 

error between 

corner and 

centre part of 

temperature 

Temperature ANN, SQP [39] 2012 

 

3.2. Numerical studies on multi-objective optimization 

Multi-objective optimization (MOO) problem contains more than one objective which is 
conflicting to each other. Hence, there will be more optimal solutions which are rep-resented in 
terms of Pareto fronts. The best optimal solutions are called non-dominated solutions. Different 
MOO techniques have been developed to find out the Pareto front between the quality and 
productivity of the composite part. Evolutionary algorithms like MOOGA, NSGA-II has been 
mainly used for optimizing the process and design parameters for composite parts. Different 
objectives addressed using numerous MOO techniques such as mould fill and cure process time, 
gate and vent location [66], temperature overshoot and degree of cure, etc. Few algorithms have 
been developed for thick and ultra-thick components for simple geometries to optimize the trade-
off between temperature overshoot and cure process time [67]. Table 2 reviews the 
categorization of multi-objective optimization studies of composite processing in terms of 
objectives, parameters and numerical techniques. 
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Table 2. Objective function categorization for Multi-objective Optimization of Composite Processing 

Objectives Parameters  Numerical 

Techniques 

Reference  Year 

Crowding 

distance, 

Filling time 

Gate and vent 

location 

NSGA-II [66] 2009 

• Warpage, 

Shrinkage 

rate, Short 

shot 

possibility 

Process 

parameters: 

part cooling 

time, melt 

temperature, 

pressure 

holding time, 

& mould fill 

time; 

Geometric 

parameters: 

modified edge 

& Round gate  

FAHP,  

TOPSIS 

[68] 2018 

• Cure degree 

difference, Set 

up cost, Fill 

time,  

Variance of 

cure degree, 

Cure time 

First 

temperature 

rise, Dwell 

time, Dwell 

temperature, 

Second 

temperature 

rise, Hold 

temperature 

NSGA-II [65] 2019 

• Setup cost, 

Fill time 

Resin 

temperature, 

Temperature 

of mould 

Hybrid FE/FD 

method 

[69] 2019 

• Weld line, Fill 

time, Wasted 

resin, Dry spot 

Gate and vent 

location 

FEA, 

MOOGA 

[70] 2016 

• Cure time, 

Temperature 

First and 

second dwell 

Surrogate 

model, 

[67] 2018 
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overshoot temperature, 

duration of 1st 

dwell, heating 

rate 

Monte-Carlo 

simulator, 

MOOGA  

• Standard 

deviation and 

Average of 

degree of cure 

Mould 

temperature, 

Heat flux, 

Cure part 

temperature 

Ant swarm 

strategy 

[71] 2015 

• Tensile load, 

flexural 

strength 

Duration and 

temperature 

of the 1st 

curing step, 

heating rate 

MOOGA 

toolbox 

[72] 2018 

• Residual 

stresses, Cure 

process  time, 

Degree of cure 

Temperature 

profile 

MOOGA [73] 2006 

Cure process 

time, 

Temperature 

gradient, 

Degree of cure 

at the end of 

mould filling, 

Filling time 

Cure profile, 

Thermal 

profile of 

mould filling, 

Initial resin 

temperature, 

Gate & vent 

location 

MOOGA [74] 2014 

• Cure process 

time, 

Temperature 

overshoot 

Thermal 

profile, 

Thickness of 

composite 

part, Mould 

geometry 

MOOGA [75] 2016 

• Warpage, 

Volumetric 

shrinkage and 

Residual 

Fibre content, 

fibre aspect 

ratio, Melt 

temperature, 

NSGA-II [76] 2018 
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stress Cooling time, 

Injection 

pressure  

• Peak tensile 

residual stress, 

Roller speed 

Degree of 

bonding, Peak 

residual 

stress, & 

Thermal 

degradation 

NM-Simplex 

method 

[77] 2007 

• Maximum 

difference in 

degree of cure, 

Total cure 

time and 

Maximum 

difference in 

temperature 

Temperature, 

Degree of 

cure 

MOOGA [78] 2018 

• Weld line, 

Void content, 

fill time, 

wasted resin 

Void fraction, 

Distance 

between gate 

MOGA [16] 2019 

 

4. The mathematical formulation of optimization problems studied in the literature 

4.1. The mathematical formulation of single objective optimization problems 

1. An optimal heating control problem was formulated as [79],  

)(max
0t

J =
     (2)

 

Subject to,   

  




dtTr

dtTr









=

=

),,(

;),,(

 

The boundaries  and  were used differently at each stage of the process, that is =0.15, and 

= 0.25 at liquefaction stage and =0.97 and =1 at the solidification stage or final stage of 
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curing.   

2. Two different optimization problems were addressed, to minimize the peak tensile 

residual stress and to maximize the roller velocity of tape placement of thermoplastic 

composites [77]. 

     (3) 

Subject to,   Db = 1 

     

0.5cm  hl  9 cm 

20 0C  T0  135 0C 

1 mm/s  vr  25 mm/s 

400 0C  Thg  750 0C 

max vr  

Subject to,     

     

0.5cm  hl  9 cm 

20 0C  T0  135 0C 

400 0C  Thg  1000 0C 

3. Ruiz & Trochu (2005) proposed the methodology based on GA implemented in C++ to 

minimize the thermal & cure gradients & the reduction of processing stresses. To 

increase the convergence rate of the search algorithm seven sub-objectives were 

constructed with sigmoid functions. 

fCF

f

f

df D
eB

A
VF

fw

+
+

=
−

)(

    (4) 

 timetimecoolingcoolingstressstresscurecureAGPAGPTTfcfcw JwJwJwJwJwJwJwF ++++++=
maxmax  

Subject to,   
CsVd   

The vector of design parameters dV
 defined as  

],......,,,,,,[ 773132211 dtQdtQdtQdtQVd =  

where the discrete set of Qi defines the heating ramps and dti defines the dwell time. The pair 

sum of (Qi, dti) describes the mould temperature profile.  
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The constraint vector    
],,,[ maxmax

−+= QQTTCs roominit  

Where 
+

maxQ
defines the maximum permitted heating ramps, 

−

maxQ
 defines the maximum cooling 

ramps allowed by the mould, Tinit is the initial room temperature and Troom the room temperature. 

)( df VF
 is the fitness function to be optimized and parameters w are the weighting coefficient for 

each subjective function. Af, Bf, Cf, & Df are the coefficients of the sigmoid function. The 

definitions of each sub-objective function described in the article [63].  

4.2. The mathematical formulation of multi-objective optimization problems 

1. The MOO problem was defined to minimize the die temperature (T1, T2, T3), and 

maximize the pull speed (u) subject to constraints on the degree of cure [80].  

   (5) 

 

Subject to,    

 

 

 

 

 

where c is the special heat of die, m is the mass of die, t is the heating time, T0 is the 

environmental temperature, and  is the thermal efficiency. T1, T2, T3 & u are the design 

variables. This MOO problem was converted into SOO problem by using the weighted average 

method and constrained problem converted into unconstrained one using the penalty method.  

 

where  and  are unitized forms of  and  respectively. a is weighting factor a 

[0,1],  is the penalty function which was expressed as, 

 

where  and  are penalty parameters. 

2. The MOO problem was formulated using the Poisson regression analysis with backward 

elimination for tensile load and flexural strength. The design variables considered are 

heating rate (a 0C/min), the temperature of the 1st curing step (T1 0C), and duration of the 
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1st curing step (h1 hours). In the flexural strength regression model, only T1 and h1 are 

considered as independent variables because a was removed by backward elimination 

[72].   

 (6) 

where, 

 

   

3. The MOO problem has been formulated to find out the fibre content (Cf), fibre aspect 

ratio (Af), melting temperature (Tme), injecting pressure (Pin), and cooling time (tc) [76].  

min f(x) = {warpage, volumetric shrinkage, residual stress}  (7) 

subjected to, warpage < 0.15 mm 

  volumetric shrinkage < 6% 

  residual stress < 30 MPa 

   

   

   

 

      

4. To optimize the design variables of cure profile such as 1st temperature rise (Rt1), dwell 

temperature, dwell time (Tdwell), 2nd temperature rise (Rt2), & hold temperature (Thold), a 

MOO problem has been formulated to minimize the conflicting objectives such as 

difference of cure degree, variance of cure degree and cure time [65]. 

( )
=

=

−=

−=

=

N

i

avei
N

f

f

tf

1

2

3

minmax2

9.01

1
min

min

|min
min







    (8)

 

Subject to,  
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463443
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2

1
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
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



dwell

hold

dwell

Time

T

Rt

Rt
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5. Summary and Conclusion 

This review article has targeted the process optimization of mould filling and curing steps in 
the composite moulding process. Bulk and tow permeability, gate and vent location, injection 
pressure, and component geometry were found to be the crucial parameters for addressing the 
multi-phase and multi-scale problems for mould filling stage. Whereas, mould temperature, 
initial temperature of resin, degree of cure, heat flux, temperature gradient and temperature 
overshoot found to be crucial parameters for optimizing thermal profile in curing stage. To 
manufacture a void-free composite part with the optimized parameters different optimization 
techniques have been developed. The number of single objective and multi-objective 
optimization techniques has been developed to optimize the objectives like the degree of cure, 
temperature overshoot, process time, gate and vent location and mould fill time. The Nelder 
mead simplex method, simulated annealing, GA, NSGA-II, and MOOGA are the most used 
traditional techniques for optimizing the process as well as mould parameters.  

Although there are number of articles found on the development of numerical models for 
addressing multi-scale and multi-phase problems for the complex geometries. The development 
of an effective optimization technique for addressing such problems is a crucial task. Nowadays, 
the development of a hybrid multi-objective optimization technique for optimizing the LCM 
process parameters is an active area of research. Till now, very few articles found on MOO for 
both mould filling and curing parameters using appropriate optimization techniques. Hence for 
optimizing the parameters of complex geometry, thick and ultra-thick component development 
of an effective optimization technique is needed. This may advance the use of LCM technology 
in the industry for manufacturing large and complex structures instead of traditional techniques. 
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