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Abstract

Many applications require recovering a matrix of
minimal rank within an affine constraint set, with
matrix completion a notable special case. Be-
cause the problem is NP-hard in general, it is
common to replace the matrix rank with the nu-
clear norm, which acts as a convenient convex
surrogate. While elegant theoretical conditions
elucidate when this replacement is likely to be
successful, they are highly restrictive and con-
vex algorithms fail when the ambient rank is too
high or when the constraint set is poorly struc-
tured. Non-convex alternatives fare somewhat
better when carefully tuned; however, conver-
gence to locally optimal solutions remains a con-
tinuing source of failure. Against this backdrop
we derive a deceptively simple and parameter-
free probabilistic PCA-like algorithm that is ca-
pable, over a wide battery of empirical tests, of
successful recovery even at the theoretical limit
where the number of measurements equals the
degrees of freedom in the unknown low-rank
matrix. Somewhat surprisingly, this is possi-
ble even when the affine constraint set is highly
ill-conditioned. While proving general recov-
ery guarantees remains evasive for non-convex
algorithms, Bayesian-inspired or otherwise, we
nonetheless show conditions whereby the under-
lying cost function has a unique stationary point
located at the global optimum; no existing cost
function we are aware of satisfies this property.
The algorithm has also been successfully de-
ployed on a computer vision application involv-
ing image rectification and a standard collabora-
tive filtering benchmark.
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1. Introduction

Recently there has been a surge of interest in finding min-
imum rank matrices subject to some problem-specific con-
straints often characterized as an affine set (Candes et al.,
2011; Candes & Recht, 2009; Hu et al., 2013; Liu et al.,
2013; Lu et al., 2014; Mohan & Fazel, 2012; Zhang et al.,
2012). Mathematically this involves solving

min rank[X] st b= A(X), (1)
X

where X € R™ ™ is the unknown matrix, b € RP rep-
resents a vector of observations and A : R"*™ — RP
denotes a linear mapping. An important special case of (1)
commonly applied to collaborative filtering is the matrix
completion problem

n}}n rank[X] st X = (Xo0)ij, (i,7) €2, (2)
where X is a low-rank matrix we would like to recover,
but we are only able to observe elements from the set €2
(Candes & Recht, 2009; Hu et al., 2013). Unfortunately
however, both this special case and the general problem (1)
are well-known to be NP-hard, and the rank penalty itself
is non-smooth. Consequently, a popular alternative is to
instead compute

n}%n Z f(oi[X]) st b=AX), (3)

where o;[X ] denotes the i-th singular value of X and f is
usually a concave, non-decreasing function (or nearly so).
In the special case where f(z) = I[z # 0] (i.e., an indicator
function) we retrieve the matrix rank; however, smoother
surrogates such as f(z) = logz or f(z) = 22 withq < 1
are generally preferred for optimization purposes. When
f(z) = z, (3) reduces to convex nuclear norm minimiza-
tion. A variety of celebrated theoretical results have quan-
tified specific conditions, heavily dependent on the singular
values of matrices in the nullspace of A, where the mini-
mum nuclear norm solution is guaranteed to coincide with
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that of minimal rank (Candeés et al., 2011; Candes & Recht,
2009; Liu et al., 2013; Mohan & Fazel, 2012). However,
these guarantees typically only apply to a highly restrictive
set of rank minimization problems, and in a practical set-
ting non-convex algorithms can succeed in a much broader
range of conditions (Hu et al., 2013; Lu et al., 2014; Mohan
& Fazel, 2012).

In Section 2 we will summarize state-of-the-art non-convex
rank minimization algorithms that operate under affine con-
straints and point out some of their shortcomings. This will
be followed in Section 3 by the derivation of an alterna-
tive approach using Bayesian modeling techniques adapted
from probabilistic PCA (Tipping & Bishop, 1999). Sec-
tion 4 will then describe properties of global and local so-
lutions as well as special cases where any stationary point
is guaranteed to have optimal rank, illustrating the intrin-
sic underlying smoothing mechanism which leads to suc-
cess over competing methods. Finally, Section 5 contains
a wide variety of numerical comparisons that highlight the
efficacy of our algorithm. An extended journal version (Xin
& Wipf, 2014) provides technical proofs, illustrations, and
additional experiments as well as a computer vision appli-
cation involving image rectification and a standard collabo-
rative filtering benchmark. Before proceeding, we summa-
rize two main contributions as follows:

e Bayesian inspiration can take uncountably many dif-
ferent forms and parameterizations, but the devil is in
the details and existing methods offer little opportu-
nity for both theoretical inquiry and substantial per-
formance gains solving (1). In this regard, we ap-
ply carefully-tailored modifications to a veteran prob-
abilistic PCA model leading to systematic theoretical
and empirical insights and advantages.

e Over a wide battery of controlled experiments with
ground-truth data, our approach outperforms all ex-
ising algorithms that we are aware of, Bayesian or
otherwise; this includes direct head-to-head compar-
isons using the exact experimental designs and code
prepared by original authors. In fact, even when A
is ill-conditioned we are consistently able to solve (1)
right up to the theoretical limit of any possible algo-
rithm, which has never been demonstrated previously.

2. Related Work

Here we focus on a few of the latest and most effective
rank minimization algorithms, all developed within the last
few years and evaluated favorably against the state-of-the-
art. In the non-convex regime, effective optimization strate-
gies attempt to at least locally minimize (3), often exceed-
ing the performance of the convex nuclear norm. For ex-
ample, (Mohan & Fazel, 2012) derives a family of ifer-
ative reweighted least squares (IRLS) algorithms applied

to f(2) = (22 + 7)%? with ¢,¥ > 0 as tuning param-
eters. A related penalty also considered, which coincides
with the limit as ¢ — 0 (up to an inconsequential scal-
ing and translation), is f(z) = log(z? + 7). This case
also maintains an intimate connection with rank given that
log z = limy0q (29 — 1) = I[z # 0]. Consequently,
when v is small, Y, log(c;[X]? + 7) behaves much like
the rank, albeit with nonzero gradients away from zero.

The IRLSO algorithm from (Mohan & Fazel, 2012) repre-
sents the best-performing special case of the above, where
>~ log(o;[X]* + 7) is minimized using a homotopy con-
tinuation scheme merged with IRLS. Here a fixed 7 is re-
placed with a decreasing sequence {+*}, the rationale be-
ing that when ~* is large, the cost function is relatively
smooth and devoid of local minima. As the iterations k
progress, v* is reduced, and the cost behaves more like
the matrix rank function. However, because now we are
more likely to be within a reasonably good basin of attrac-
tion, spurious local minima are more easily avoided. The
downside of this procedure is that it requires a pre-defined
heuristic for reducing v*, and this schedule may be prob-
lem specific. Moreover, there is no guarantee that a global
solution will ever be found.

In a related vein, (Lu et al., 2014) derives a family of iter-
ative reweighted nuclear norm (IRNN) algorithms that can
be applied to virtually any concave non-decreasing func-
tion f, even when f is non-smooth, unlike IRLS. For effec-
tive performance however the authors suggest a continua-
tion strategy similar to IRLSO. Moreover, additional tuning
parameters are required for different classes of functions
f and it remains unclear which choices are optimal. While
the reported results are substantially better than when using
the convex nuclear norm, in our experiments IRLSO seems
to perform slightly better, possibly because the quadratic
least squares inner loop is less aggressive in the initial
stages of optimization than weighted nuclear norm mini-
mization, leading to a better overall trajectory. Regardless,
all of these affine rank minimization algorithms fail well
before the theoretical recovery limit is reached, when the
number of observations p equals the number of degrees of
freedom in the low-rank matrix we wish to recover. Specif-
ically, for an n x m, rank r matrix, the number of degrees of
freedom is given by r(m+n)—72, hence p = r(m-+n)—r?
is the best-case boundary. In practice if A is ill-conditioned
or degenerate the achievable limit may be more modest.

A third approach relies on replacing the convex nuclear
norm with a truncated non-convex surrogate (Hu et al.,
2013). While some competitive results for image impaint-
ing via matrix completion are shown, in practice the pro-
posed algorithm has many parameters to be tuned via cross-
validation. Moreover, recent comparisons contained in
(Lu et al., 2014) show that default settings perform rela-
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tively poorly. Additionally, non-convex algorithms can be
derived using a straightforward application of alternating
minimization (Jain et al., 2013). The basic idea is to as-
sume X = UV for some low-rank matrices U and V'
and then solve mingy v/ [|b — AUVT)| # via coordinate
decent. The downside of this approach is that it can be sen-
sitive to data correlations and requires that U and V' be pa-
rameterized with the correct rank. In contrast, our emphasis
here is on algorithms that require no prior knowledge what-
soever regarding the true rank. This is especially important
in application extensions that may manage multiple low-
rank matrices such that prior knowledge of all individual
ranks is not feasible.

From a probabilistic perspective, previous work has applied
Bayesian formalisms to rank minimization problems, al-
though not specifically within an affine constraint set. For
example, (Babacan et al., 2012; Ding et al., 2011; Wipf,
2012) derive robust PCA algorithms built upon the linear
summation of a rank penalty and an element-wise spar-
sity penalty. While (Babacan et al., 2012) does consider
the special case of matrix completion, none of these al-
gorithms have been augmented and rigorously analyzed in
the context of rank minimization with general affine con-
straints. Moreover, the limited analysis that does exist
in (Wipf, 2012) actually just follows from the element-
wise sparsity component intrinsic to robust PCA, without
which the model effectively reduces to regular PCA de-
void of any theoretical uncertainty. So the general affine
constraints really are the key differentiating factor. Finally
then, from a motivational standpoint, the basic probabilis-
tic starting point we will adopt can be viewed as a careful
re-parameterized generalization of the probabilistic PCA
model from (Tipping & Bishop, 1999).

3. Alternative Algorithm Derivation

In contrast to the majority of existing algorithms organized
around practical solutions to (3), here we adopt an alterna-
tive, probabilistic starting point. We first define the Gaus-
sian likelihood function

pBIX;AN) x exp [~ A JAX) B3], @

noting that in the limit as A — 0 this will enforce the same
constraint set as in (1). Next we define an independent,
zero-mean Gaussian prior distribution with covariance v; ¥
on each column of X, denoted «; for all i = 1,...,m.
This produces the aggregate prior on X given by

p(X; ¥, v) = HN(a:i;O,I/Z—\II) o exp [f%w—r\ilflw} ,
Z (5)

where ¥ € R™*" is a positive semi-definite symmetric
matrix,! v = [v1,...,v,] " is a non-negative vector, z =

!Technically ¥ must be positive definite for the inverse in (5)
to be defined. However, we can accommodate the semi-definite

vec[X | (column-wise vectorization), and ¥ = diag[v] ®
W, with ® denoting the Kronecker product. It is important
to stress here that we do not necessarily believe that the
unknown X actually follows such a Gaussian distribution
per se. Rather, we adopt (5) primarily because it will lead
to an objective function with desirable properties related
to solving (1). Moving forward, given both likelihood and
prior are Gaussian, the posterior p(X |b; ¥, v, A, \) is also
Gaussian, with mean given by an X such that

N _ _ —1
& =vec[X] = BAT (/\I n A\IIAT) b, (6)

Here A € RPX™" js a matrix defining the linear opera-
tor A such that b = Ax reproduces the feasible region in
(1). From this expression it is clear that, if ¥ represents a
low-rank covariance matrix, then each column of X will be
constrained to a low-dimensional subspace resulting over-
all in a low-rank estimate as desired. Of course for this
simple strategy to be successful we require some way of
determining a viable ¥ and the scaling vector v.

A common Bayesian strategy in this regard is to marginal-
ize over X and then maximize the resulting likelihood
function with respect to ¥ and v (Tipping, 2001; Wipf,
2012; Wipf et al., 2011). This involves solving

max
Wen+,v>0

/p(le;A,A)p(X;‘IhV)dX, (7)
where H™T denotes the set of positive semi-definite and
symmetric n X n matrices. After a —2 log transformation,
this is equivalent to minimizing the cost function

LT, v)=b"3,"b+1log |,

0 S ®)
3p=APA' + I, V=dagr|e?P,
where ¥, is the covariance of b given ¥ and v. Minimiz-
ing (8) is a non-convex optimization problem, and we em-
ploy standard upper bounds for this purpose leading to an
EM-like algorithm somewhat related to (Tipping & Bishop,
1999). In particular, we compute separate bounds, param-
eterized by auxiliary variables, for both the first and sec-
ond terms of £(¥,v). While the general case can eas-
ily be handled and may be applicable for more challenging
problems, here for simplicity and ease of presentation we
consider minimizing £(¥) £ £(¥,v = 1), meaning all

case using the following convention. Without loss of generality
assume that ¥ = RR' for some matrix R. We then qual-
ify that p(X; ®¥,v) = 0if ¢ ¢ span[R)], and p(X; ¥,v)
exp [—%mT(RT)TRTm] otherwise. Equivalently, for conve-
nience (and with slight abuse of notation) we define Oy =
oo when « ¢ span[R], and ' ¥ 'z = = (R7)' Rz other-
wise. This will come in handy, for example, when interpreting the
bound in (9) below. Note also that the final cost function (8) we
will ultimately be minimizing requires no such inverse anyway.
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elements of v are fixed at one (and such is the case for
all experiments reported herein, although we are currently
exploring situations where this added generality could be
especially helpful).

Based on (Wipf et al., 2011), for the first term in (8), we
have

b’ < Lbp-Az|i+2" ¥ 2 (9)

with equality whenever x satisfies (6). For the second term
we use

log | 3] Emlog|\I'|+log‘)\ATA+\i!71’ 10)
< mlog|¥|+tr [¥'Vy] +C,

where because log ’)\ATA + \il_l‘ is concave with re-

spect to W1, we can upper bound it using a first-order
approximation with a bias term C' that is independent of
W. Equality is obtained when the gradient satisfies

™ _ -1
Vo= ¥-wA] (A‘IIAT n AI) A, (11)
i=1
where A; € RP*" js defined such that A = [A4,..., A,,].
Finally given the upper bounds from (9) and (10) with X

and V-1 fixed, we can compute the optimal W in closed
form by optimizing the relevant ¥-dependent terms via

\I;Opt = argn}i{ﬂtr |:\I’71 (‘X)(T +v\1;—1):| —|—mlog|\Il\

L{xx" +ves],
(12)

By iteratively computing (6), (11), and (12), we can then
obtain an estimate for ¥, and more importantly, a corre-
sponding estimate for X given by (6) at convergence. We
refer to this basic procedure as BARM for Bayesian Affine
Rank Minimization. The next section will describe in detail
why it is particularly well-suited for solving problems such
as (1), as well as additional algorithmic enhancements.

4. Properties of BARM

As discussed in Section 2 one nice property of the
>, log (0;[X]) penalty employed (approximately) by
IRLSO (Mohan & Fazel, 2012) is that it can be viewed
as a smooth version of the matrix rank function while still
possessing the same set of minimum, both global and lo-
cal, over the affine constraint set, at least if we consider
the limiting situation of }_, log (;[X]? 4 ) when ~ be-
comes small so that we may avoid the distracting singular-
ity of log 0. Additionally, it possesses an attractive form of
scale invariance, meaning that if X is an optimal feasi-
ble solution, a block-diagonal rescaling of A nevertheless

leads to an equivalent rescaling of the optimum (without
the need for solving an additional optimization problem us-
ing the new A). This is very much unlike the nuclear norm
or other non-convex surrogates that penalize the singular
values of X in a scale-dependent manner.

In contrast, the proposed algorithm is based on a very dif-
ferent Gaussian statistical model with seemingly a more
tenuous connection with rank minimization. Encourag-
ingly however, the proposed cost function enjoys the same
global/local minima properties as >, log (0;[X]? + )
with v — 0. Before presenting these results, we de-
fine spark[A] as the smallest number of linearly dependent
columns in matrix A (Donoho & Elad, 2003).

Lemma 1. Let b = Avec[X], where A € RP*™™ gqt-
isfies spark[A] = p + 1. Also define r as the smallest
rank of any feasible solution. Then if r < p/m, any global
minimizer {¥*,v*} of (8) in the limit A — 0 is such that
zt=0"AT (A@*AT)T b is feasible and rank[ X ] = r
with vec| X *| = x*.

Lemma 2. Additionally, let A = AD, where D =
diaglon T, ..., I is a block-diagonal matrix with in-
vertible blocks T' € R"™ ™ of unit norm scaled with
coefficients «; > 0. Then iff {®*,v*} is a mini-
mizer (global or local) to (8) in the limit A — 0, then
{r~'w*, diag[a] 'v*} is a minimizer when A replaces
A. The corresponding estimates of X are likewise in one-
to-one correspondence.

Remarks: The assumption r = rank[X*] < p/m in
Lemma 1 is completely unrestrictive, especially given that
a unique, minimal-rank solution is only theoretically possi-
ble by any algorithm if p > (n + m)r — 72, which is much
more restrictive than p > rm. Hence the bound we re-
quire is well above that required for uniqueness anyway.
Likewise the spark assumption will be satisfied for any
A with even an infinitesimal (continuous) random compo-
nent. Consequently, we are essentially always guaranteed
that BARM possesses the same global optimum as the rank
function. Regarding Lemma 2, no surrogate rank penalty
of the form . f(o;[X]) can achieve this result except for
f(2) = log z, or inconsequential limiting translations and
rescalings of the log such as the indicator function Iz # 0]
(which is related to the log via arguments in Section 2).

While these results are certainly a useful starting point, the
real advantage of adopting the BARM cost function is that
locally minimizing solutions are exceedingly rare, largely
as a consequence of the marginalization process in (7), and
in some cases provably so. A specialized example of this
smoothing can be quantified in the following scenario.

Suppose A is now block diagonal, with diagonal blocks A;
such that b; = A;x; producing the aggregate observation
vector b = [b],...,b)]T. While somewhat restricted,
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this situation nonetheless includes many important special
cases, including canonical matrix completion and general-
ized matrix completion where elements of Z = W X are
observed instead of X directly.

Theorem 1. Ler b = Avec[X]|, where A is block di-
agonal, with blocks A; € RPi*™  Moreover, assume
pi > 1 for all i and that N;null|A;] = 0. Then if
min x rank[X] = 1 in the feasible region, any minimizer
{P*,v*} of (8) (global or local) in the limit A — 0
. . 1
is such that x* = W*AT (A\Il AT) b is feasible and
rank[X™] = 1 with vec[ X ™| = x*. Furthermore, no cost
function in the form of (3) can satisfy the same result. In

particular, there can always exist local and/or global min-
ima with rank greater than one.

Remarks: This result implies that, under extremely mild
conditions, which do not even depend on the concentration
properties of A, the proposed cost function has no minima
that are not global minima. (The minor technical condi-
tion regarding nullspace intersections merely ensures that
high-rank components cannot simultaneously “hide” in the
nullspace of every measurement matrix A;; the actual A
operator may still be highly ill-conditioned.) Thus any
algorithm with provable convergence to some local mini-
mizer is guaranteed to obtain a globally optimal solution.?
Moreover, such a guarantee is not possible with any other
penalty function of the standard form ), f(o;[X]), which
is the typical recipe for rank minimization algorithms, con-
vex or not. Additionally, if a unique rank-one solution ex-
ists to (1), then the unique minimizing solution to (8) will
produce this X via (6). Crucially, this will occur even when
the minimal number of measurements p = n + m — 1 are
available, unlike any other algorithm we are aware of that
is blind to the true underlying rank.> And the underlying
intuition, that local minima are smoothed away, nonethe-
less carries over to situations where the rank is greater than
one. An enlightening visualization of this smoothing effect
can be found in (Xin & Wipf, 2014).

Convergence: Previous results are limited to exploring as-
pects of the underlying BARM cost function. Regarding
the BARM algorithm itself, by construction the updates
generated by (6), (11), and (12) are guaranteed to reduce or
leave unchanged £(W¥) at each iteration. However, this is
not technically sufficient to guarantee convergence to a sta-
tionary point of the cost function unless the additional con-

Note also that with minimal additional effort, it can be shown
that no suboptimal stationary points of any kind, including saddle
points, are possible.

31t is important to emphasize that the difficulty of estimating
the optimal low-rank solution is based on the ratio of the d.o.f.
in X to the number of observations p. Consequently, estimating
X even with r small can be challenging when p is also small,
meaning A is highly overcomplete.

ditions of Zangwill’s Global Convergence Theorem are sat-
isfied (Zangwill, 1969). However, provided we add a small
regularization factor ’ytr[lIl_l], with v > 0, then it can
be shown that any cluster point of the resulting sequence
of iterations {®"} must be a stationary point. Moreover,
because the sequence is bounded, there will always exist
at least one cluster point, and therefore the algorithm is
guaranteed to at least converge to a set of parameter val-
ues S such that for any ¥* € S, L(T*) + ytr[(L*) 7]
is a stationary point. Finally, we should mention that this
extra +y factor is akin to the homotopy continuation regular-
izer used by the IRLSO algorithm (Mohan & Fazel, 2012)
as discussed in Section 2. However, whereas IRLSO re-
quires a carefully-chosen, decreasing sequence {7*} with
+* > 0 both to prove convergence and to avoid local min-
imum (and without this factor the algorithm performs very
poorly in practice), for BARM a small, fixed factor only
need be included as a technical necessity for proving for-
mal convergence; in practice it can be fixed to exactly zero.

Symmetrization Improvements: Despite the promising
theoretical attributes of BARM, there remains one impor-
tant artifact of its probabilistic origins not found in more
conventional existing rank minimization algorithms. In
particular, other algorithms rely upon a symmetric penalty
function that is independent of whether we are working
with X or X ". All methods that reduce to (3) fall into
this category, e.g., nuclear norm minimization, IRNN, or
IRLSO. In contrast, our method relies on defining a distri-
bution with respect to the columns of X . Consequently the
underlying cost function is not identical when derived with
respect to X or X T, a difference which will depend on A.
While globally optimal solutions should nonetheless be the
same, the convergence trajectory could depend on this dis-
tinction leading to different local minima in certain circum-
stances. Although either construction leads to low-rank so-
lutions, we may nonetheless expect improvement if we can
somehow symmetrize the algorithm formulation. To ac-
complish this, we consider a Gaussian prior on & = vec[X]
with a covariance formed using a block-wise averaging of
covariances defined over rows and columns, denoted W,
and W, respectively. The overall covariance is then given
by the Kronecker sum ¥ = 1/2 (¥, @ I + I ® ¥,.). The
estimation process then proceeds in a similar fashion as be-
fore but with modifications and alternate upper-bounds that
accommodate for this merger. For reported experimental
results this symmetric version of BARM is used, with com-
plete update rules and a discussion of computational com-
plexity deferred to (Xin & Wipf, 2014).

5. Experimental Validation

This section compares BARM with existing state-of-the-
art affine rank minimization algorithms. For BARM, in
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Figure 1. Matrix completion comparisons (avg of 10 trials)

all cases we simply used A = 10710 (effectively zero),
and hence no tuning parameters are required. Like-
wise, nuclear norm minimization (Candes & Recht, 2009;
Zhang et al., 2012) requires no tuning parameters beyond
implementation-dependent control parameters frequently
used to enhance convergence speed (however the global
minimum is unaltered given that the problem is convex).
For the IRLSO algorithm, we used our own implementation
as the algorithm is straightforward and no code was avail-
able for the case of general A; we based the required de-
creasing v sequence on suggestions from (Mohan & Fazel,
2012). IRLSO code is available from the original authors
for matrix completion; however, the results obtained with
this code are not better than those obtained with our ver-
sion. For the IRNN algorithm, we did not have access to
code for general A, nor specific details of how various pa-
rameters should be set in the general case. Note also that
IRNN has multiple parameters to tune even in noiseless
problems unlike BARM. Therefore we report results di-
rectly from (Lu et al., 2014) where available. Note that both
(Lu et al., 2014) and (Mohan & Fazel, 2012) show superior
results to a number of other algorithms; we do not gener-
ally compare with these others given that they are likely no
longer state-of-the-art and may clutter the presentation.

As stated previously, our focus here is on algorithms that
do not require knowledge of the true rank of the optimal
solution, and hence we do not include comparisons with
(Jain et al., 2013) or the normalized hard thresholding al-
gorithm from (Tanner & Wei, 2013). Regardless, we have
nonetheless conducted numerous experiments with these
algorithms, and even when the correct rank is provided,
results are inferior to BARM, especially when correlated
measurements are used (see (Xin & Wipf, 2014)). How-
ever, we do show limited empirical results with the vari-
ational sparse Bayesian algorithm (VSBL) from (Baba-
can et al., 2012) because of its Bayesian origins, although
the underlying parameterization is decidedly different from
BARM. But these results are limited to matrix comple-
tion as VSBL presently does not handle general affine con-
straints. Results from VSBL were obtained using publicly
available code from the authors.

Matrix Completion: We begin with the matrix completion
problem from (2), in part because this allows us to compare

our results with the latest algorithms even when code is not
available. For this purpose we reproduce the exact same
experiment from (Lu et al., 2014), where a rank r matrix is
generated as X = M Mg, with M € R"*" and My €
R™™ (n = m = 150) as iid N'(0, 1) random matrices.
50% of all entries are then hidden uniformly at random.
The relative error (REL) given by || X o — X || #/|| X || 7 is
computed for each trial and averaged as r is varied. Like-
wise, we compute the frequency of success (FoS) score
which measures the percentage of trials where the REL is
below 1073, Results are shown in Figure 1 where BARM
is the only algorithm capable of reaching the theoretical re-
covery limit, beyond which p = 0.5 x 1502 = 11250 is
surpassed by the number of degrees of freedom in X, in
this case 2 x 150 x 44 — 442 = 11264. Note that FoS val-
ues were reported in (Lu et al., 2014) over a wide range of
non-convex IRNN algorithms. The green curve represents
the best performing candidate from this pool as tuned by
the original authors; REL values were unavailable. Inter-
estingly, although VSBL is based on a somewhat related
probabilistic model to BARM, the underlying parameteri-
zation, cost function, and update rules are entirely different
and do not benefit from strong theoretical underpinnings.
Hence performance does not always match recent state-of-
the-art algorithms, although from a computational stand-
point it is quite efficient.

Besides BARM, the IRLSO algorithm also displayed bet-
ter performance than the other methods. This motivated us
to reproduce some of the matrix completion experiments
from (Mohan & Fazel, 2012) so as to provide direct head-
to-head comparisons with the authors’ original implemen-
tation. For this purpose, X is conveniently generated in
the same way as above; however, values of n, m, r, and
the percentage of missing entries are varied while evalu-
ating reconstructions using FoS. While (Mohan & Fazel,
2012) tests a variety of combinations of these values to ex-
plore varying degrees of problem difficulty, here we only
reproduce the most challenging cases to see if BARM is
still able to produce superior reconstruction accuracy. In
this respect problem difficulty is measured by the degrees
of freedom ratio (FR) given by FR= r(n +m — r)/p as
defined in (Mohan & Fazel, 2012). We also only include
experiments where algorithms are blind to the true rank of
X 0.4 Results are shown in Table 1, where we have also dis-
played the published results of three additional algorithms
that were compared with IRLSO in (Mohan & Fazel, 2012),
namely, IHT (Jain et al., 2010), FPCA (Goldfarb & Ma,
2011) and Optspace (Keshavan & Oh, 2009). From the ta-
ble we observe that, in the most difficult problem consid-
ered in (Mohan & Fazel, 2012), IRLSO achieved only a 0.5
FoS score (meaning failure 50% of the time) while BARM

“Note that IRLSO can be modified to account for the true rank
if such knowledge were available.
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Figure 2. Comparisons with general affine constraints (avg of 10 trials)

still achieves a perfect 1.0.

General A: Next we consider the more challenging prob-
lem involving arbitrary affine constraints. The desired low-
rank X, is generated in the same way as above. We
then consider two types of linear mappings where A is
generated as: (i) an iid N(0,1), p x n? matrix, and (ii)

P i7Y2uv], where u; € RP and v; € R™ are
iid A(0,1) vectors. The latter is meant to explore less-
than-ideal conditions where the linear operator displays
correlations and may be somewhat ill-conditioned. Fig-
ure 2 displays aggregate results when X is 50 x 50 and
100 x 100. In both cases p = 1000 observations are used,
and therefore the corresponding measurement matrices A
are 1000 x 2500 and 1000 x 10000 respectively. We then
vary r from 1 up to the theoretical limit corresponding to
problem size. Again we observe that BARM is consistently
able to work up to the limit, even when the A operator is
no longer an ideal Gaussian. In general, we have explored
a wide range of empirical conditions too lengthly to report
here, and it is only very rarely, and always near the theoreti-
cal boundary, where BARM occasionally may not succeed.
We explore such failure cases in the next section.

Failure Case Analysis: Thus far we have not shown any
cases where BARM actually fails. Of course solving (1) for
general a A is NP-hard so recovery failures certainly must
exist in some circumstances when using a polynomial-time
algorithm such as BARM. Although we certainly cannot
explore every possible scenario, it behooves us to probe
more carefully for conditions under which such errors may
occur. One way to accomplish this is to push the problem
difficulty even further towards the theoretical limit by re-
ducing the number of measurements p as follows.

With the number of observations fixed at p = 1000 and a

Table 1. Matrix completion comparisons of BARM with IRLSO
on the three hardest problems from (Mohan & Fazel, 2012). Pub-
lished results in (Mohan & Fazel, 2012) included for comparison.

Problem IRLSO ITHT FPCA Opts | BARM
FR n(=m) r FoS FoS FoS FoS | FoS
0.78 500 20 | 0.9 0 0 0 1

0.8 40 9 1 0 0.5 0 1

0.87 100 14 | 0.5 0 0 0 1

general measurement matrix A, the previous section exam-
ined the recovery of 50 x 50 and 100 x 100 matrices as the
rank was varied from 1 to the recovery limit (r = 11 for
the 50 x 50 case; r = 5 for the 100 x 100 case). How-
ever, it is still possible to make the problem even more
challenging by fixing r at the limit and then reducing p
until it exactly equals the degrees of freedom 2n? — 2.
With {n = 50,7 = 11} this occurs at p = 979, for
{n =100, r = 5} this occurs at p = 975.

We examined the BARM algorithm under these conditions
with 10 additional trials using the uncorrelated A for each
problem size. Encouragingly, BARM was still 30% suc-
cessful with {n = 50, = 11}, and 40% successful with
{n = 100, = 5}. However, it is interesting to further
examine the nature of these failure cases. We notice that,
although the recovery was technically classified as a failure
since the relative error (REL) was above the stated thresh-
old, the estimated matrices are of almost exactly the correct
minimal rank. Illustrations of the actual singular values can
be found in (Xin & Wipf, 2014). Hence BARM has essen-
tially uncovered an alternative solution with minimal rank
that is nonetheless feasible by construction. We therefore
speculate that right at the theoretical limit, when A is max-
imally overcomplete (p x n? = 979 x 2500 or 975 x 10000
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Table 2. Further matrix completion comparisons of BARM with
IRLSO by reducing the number of measurements in the hardest
problem from (Mohan & Fazel, 2012). Results with both FoS and
FoRS metrics are reported (avg of 10 trials).

Problem IRLSO BARM
FR n(=m) r | FoS FoRS | FoS FoRS
0.9 100 14| O 0 1 1

0.95 100 14| O 0 0.8 1
0.99 100 14| O 0 0.7 1

for the two problem sizes), there exists multiple feasible
matrices with singular value spectral cut-off points indis-
tinguishable from the optimal solution. Importantly, when
the other algorithms we tested failed, the failure is much
more dramatic and a clear spectral cut-off at the correct
rank is not apparent.

This motivates a looser success criteria than FoS to account
for the possibility of multiple (nearly) optimal solutions
that may not necessarily be close with respect to relative
error. For this purpose we define the frequency of rank suc-
cess (FORS) as the percentage of trials whereby a feasi-
ble solution X is found such that o,.[X]/o,11[X] > 103,
where o;[-] denotes the i-th singular value of a matrix and
r is the rank of the true low-rank X . In words, FORS
measures the percentage of trials such that roughly a rank
r solution is recovered, regardless of proximity to X .

Under this new criteria, all of the failure cases with respect
to FoS described above, for both problem sizes, become
successes; however, none of the other algorithms show im-
provement under this criteria, indicating that their original
failures involved actual sub-optimal rank solutions. Some-
thing similar happens when we revisit the matrix comple-
tion experiments. For example, based on Table 1 the most
difficult case involves FR= 0.87; however, by further re-
ducing p, we can push FR towards 1.0 to further investigate
the break-down point of BARM. Results are shown in Ta-
ble 2. While IRLSO (which is the top performing algorithm
in (Mohan & Fazel, 2012) and in our experiments besides
BARM) fails 100% of the time via both metrics, BARM
can achieve an FoS of 0.7 even when FR= 0.99 and an
FoRS of 1.0 in all cases.

We therefore adopt a more challenging measurement struc-
ture for A to better evaluate the limits of BARM perfor-
mance to reveal potential failures by both FoS and FoRS
metrics. Specifically, we first applied 2-D discrete cosine
transform (DCT) to X and then randomly sampled p of
the resulting DCT coefficients. Because both the DCT and
the sampling sub-process are linear operations on the en-
tries of X o, the whole process is representable via a ma-
trix A, which encodes highly structured information. De-
tailed results can be found in (Xin & Wipf, 2014). Two
things stand out from this analysis. First, while the other

algorithms display almost identical behavior under either
metric, BARM failures under the FoS criteria are mostly
converted to successes by the FORS metric by recovering a
matrix of near-optimal rank. Secondly, even though certain
unequivocal failures emerge near the limits with this chal-
lenging DCT-based sampling matrix, BARM outperforms
the other algorithms using either metric by a large margin.

To summarize, we have demonstrated that BARM is capa-
ble of recovering a low-rank matrix right up to the theoret-
ical limit in a variety of scenarios using different types of
measurement processes. Moreover, even in cases where it
fails, it often nonetheless still produces a feasible X with
rank nearly identical to the generative low-rank X, sug-
gesting that multiple optimal solutions may be possible in
challenging borderline cases. But when true unequivocal
failures do occur, such failures tend to be near the theoret-
ical boundary, and with greater likelihood when the dictio-
nary displays significant structure (or correlations). While
certainly we envision that, out of the infinite multitude of
testing situations further significant pockets of BARM fail-
ure can be revealed, we nonetheless feel that BARM is
quite promising relative to existing algorithms.

Noisy Simulations and Application Examples: Although
our primary purpose has been to derive and rigorously ana-
lyze BARM, and Monte-Carlo experiments with noiseless
ground-truth data are a convenient way to do this, we have
also conducted both noisy simulation experiments, where
BARM displays desirable stability, and application-specific
tests; for space considerations these results are all deferred
to (Xin & Wipf, 2014). For the applications, we consider
two examples: image rectification and collaborative filter-
ing for recommender systems. The former implicitly in-
volves a general sampling operator A, while the latter re-
duces to a standard matrix completion problem.

6. Conclusion

This paper explores a conceptually-simple, parameter-free
algorithm for matrix rank minimization under affine con-
straints that is capable of successful recovery empirically
observed to approach the theoretical limit over a broad
class of experimental settings (including many not shown
here) unlike any existing algorithms, and long after any
convex guarantees break down. While our model is ulti-
mately based on a Gaussian marginal likelihood function,
variations of which have been analyzed thoroughly in the
context of sparse estimation (Wipf et al., 2011), the affine
rank minimization problem addressed here is considerably
different. Moreover, our main theoretical result, Theorem
1, relies on a completely different underlying analysis tech-
nique; likewise for the symmeterization adaptation. This
mirrors well-established differences between convex ¢; and
nuclear norm algorithms for compressive sensing and rank
minimization respectively.
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