

www.ijmst.co

APPENDIX

Estimation and Validation of Highest Point Single Tooth Contact in Spur Gears using **Spreadsheet Application**

K. M. Abubacker*, V. Suresh Babu

Department of Mechanical and Industrial Engineering, Caledonian College of Engineering, Seeb, Sultanate of Oman.

*Corresponding author's e-mail: abubacker@caledonian.edu.om

Table S1. Depicts input parameters, its nomenclature, formula and Excel coding		
Step 1: Calculation of basic parameters about Pitch Circle		
Circular pitch, mm	$p = \pi m = \frac{\pi d}{N}$	=PI() *D8
Pitch circle diameter of pinion, mm	$d_p = m * N_p$	=D8*D5
Pitch circle radius of pinion, mm	$r_p = \frac{d_p}{2}$	=D14/2
Pitch circle diameter of Gear, mm	$d_G = m * N_G$	=D8*D6
Pitch circle radius of Gear, mm	$r_G = \frac{d_G}{2}$	=D16/2
Step 2: Calculation of basic parameters about Addendum Circle		
Addendum, mm	a = m	=D8
Dedendum, mm	b = 1.25 * m	=1.25*D8
Addendum circle diameter of Pinion, <i>mm</i>	$d_{oP} = d_P + 2 a = d_P + 2 m$	= D14 + (2*D8)
Addendum circle radius of Pinion, <i>mm</i>	$r_{oP} = \frac{d_{oP}}{2}$	=D21/2
Addendum circle diameter of Gear, <i>mm</i>	$d_{oG} = d_G + 2 \; a = \; d_G + 2 \; m$	=D16+(2*D8)
Addendum circle radius of Gear, mm	$r_{oG} = \frac{d_{oG}}{2}$	=D23/2
Step 3: Calculation of basic parameters about Base Circle		
Drive side base circle diameter of Pinion, <i>mm</i>	$d_{bP} = d_{P} cos \emptyset_{D}$	=D14*COS(D7*PI()/180)
Drive side base circle radius of Pinion, <i>mm</i>	$r_{bP1} = \frac{d_{bP}}{2}$	=D26/2
Drive side base circle diameter of Gear, <i>mm</i>	$d_{bG} = d_G cos \emptyset_D$	=D16* COS(D7*PI()/180)
Drive side base circle radius of Gear, mm	$r_{bG} = \frac{d_{bG}}{2}$	=D28/2
	ep 4: Calculation of Contact Ratio	
Angle A, degree	$A = \cos^{-1} \left(\frac{d_{\partial G}}{d_{\partial G}} \right) \textbf{OR} A = \cos^{-1} \left(\frac{N_G * \cos \emptyset}{d_{\partial G} * P} \right)$	=(ACOS(D28/D23))*180/PI()
Angle β , degree	$\beta = \tan^{\wedge}(-1)\{\tan \emptyset \ - \ [N_G/N_p * (\tan A - \tan \emptyset) \]\}$	= (ATAN(TAN(D7*PI()/180) - ((D6/D5)*(TAN(D31 *PI()/180)-

Table S2. Calculation of Circular tooth thickness at LPSTC and HPSTC

Step 8: Circular tooth thickness at LPSTC

Involute angle at pitch circle,	$\theta = \tan \phi - \phi$
Circular tooth thickness at pitch circle	$t_c = \frac{p}{2}$
Pressure angle at LPSTC in Pinion	$\phi_{\mathit{LP}} = cos^{-1} \Big(\frac{d_{\mathit{bP}}}{d_{\mathit{LP}}} \Big)$
Involute angle at LPSTC	$\theta_{\mathit{LP}} = an \phi_{\mathit{LP}} - \phi_{\mathit{LP}}$
in Pinion Circular tooth	
thickness at LPSTC in Pinion	$t_{cLP} = d_{LP} * \left(\frac{t_c}{d_p} + \theta - \theta_{LP}\right)$

at LPSTC in Pinion

Pressure angle at LPSTC in Gear

Involute angle at LPSTC in Gear $\theta_{LG} = \cos^{-1}\left(\frac{d_{bG}}{d_{LG}}\right)$ at LPSTC in Gear

at LPSTC in Gear, Circular tooth thickness $t_{cLG} = d_{LG} * \left(\frac{t_c}{d_G} + \theta - \theta_{LG}\right)$

Step 8: Circular tooth thickness at HPSTC

at LPSTC in Gear

Pressure angle at HPSTC in Pinion	$\phi_{HP} = cos^{-1} \left(\frac{d_{bP}}{d_{HP}} \right)$
Involute angle at HPSTC in Pinion	$\theta_{HP} = \tan \phi_{HP} - \phi_{HP}$
Circular tooth thickness at HPSTC in Pinion	$t_{cHP} = d_{HP} * \left(\frac{t_c}{d_p} + \theta - \theta_{HP}\right)$
Pressure angle at HPSTC in Gear	$\phi_{HG} = cos^{-1} \left(\frac{d_{bG}}{d_{HG}} \right)$
Involute angle at HPSTC in Gear	$\theta_{HG} = \tan \phi_{HG} - \phi_{HG}$
Circular tooth thickness at HPSTC in Gear	$t_{cHG} = \ d_{HG} * \left(\frac{t_c}{d_G} + \theta - \ \theta_{HG} \right)$
