APPENDIX

Estimation and Validation of Highest Point Single Tooth Contact in Spur Gears using Spreadsheet Application

K. M. Abubacker*, V. Suresh Babu
Department of Mechanical and Industrial Engineering,
Caledonian College of Engineering, Seeb, Sultanate of Oman.

*Corresponding author's e-mail: abubacker@caledonian.edu.om

Table S1. Depicts input parameters, its nomenclature, formula and Excel coding

Step 1: Calculation of basic parameters about Pitch Circle	
Circular pitch, $m m \quad p=\pi m=\frac{\pi d}{N}$	$=P I() * D 8$
Pitch circle diameter of pinion, $m m \quad d_{p}=m * N_{p}$	$=D 8 * D 5$
Pitch circle radius of pinion, $m m \quad r_{p}=\frac{d_{p}}{2}$	$=$ D14/2
Pitch circle diameter of Gear, mm $d_{G}=m * N_{G}$	$=D 8 * D 6$
Pitch circle radius of Gear, mm $\quad r_{G}=\frac{d_{G}}{2}$	$=$ D16/2
Step 2: Calculation of basic parameters about Addendum Circle	
Addendum, $m m \quad a=m$	$=D 8$
Dedendum, $m m \quad b=1.25 * m$	$=1.25 * D 8$
Addendum circle diameter of $d_{o p}=d_{p}+2 a=d_{p}+2 m$ Pinion, $m m$	$=D 14+(2 * D 8)$
$\begin{aligned} & \text { Addendum circle radius of Pinion, } \\ & m m\end{aligned} r_{o P}=\frac{d_{o P}}{2}$	$=D 21 / 2$
Addendum circle diameter of $d_{o G}=d_{G}+2 a=d_{G}+2 m$	$=D 16+(2 * D 8)$
Addendum circle radius of Gear, $r_{o G}$${ }^{d_{O G}}$	$=D 23 / 2$
Step 3: Calculation of basic parameters about Base Circle	
Drive side base circle diameter of $\quad d_{b P}=d_{p} \cos \emptyset_{D}$	$=D 14 * \operatorname{Cos}(D 7 * P I() / 180)$
Drive side base circle radius of $\quad r_{b P_{1}}=\frac{d_{b p}}{2}$ Pinion, $m m$	$=D 26 / 2$
$\begin{aligned} & \text { Drive side base circle diameter of } \\ & \text { Gear } m m\end{aligned} d_{b G}=d_{G} \cos \emptyset_{D}$	$=D 16 * \operatorname{Cos}(D 7 * P I() / 180)$
$\begin{aligned} & \text { Drive side base circle radius of } \\ & \text { Gear, } m m\end{aligned} r_{b G}=\frac{d_{b G}}{2}$	$=D 28 / 2$
Step 4: Calculation of Contact Ratio	
Angle A, degree $A=\cos ^{-1}\left(\frac{d_{b G}}{d_{0 G}}\right) \quad \text { oRA } A \cos ^{-1}\left(\frac{N_{\mathrm{s}} * \cos \vartheta}{d_{O G} * P}\right)$	$=(\operatorname{ACOS}(D 28 / D 23)) * 180 / P I($
	$\begin{aligned} & =(\operatorname{ATAN}(T A N(D 7 * P I() / 180) \\ & =\quad((D 6 / D 5) *(T A N(D 31) \\ & * P I() / 180)- \end{aligned}$

Angle α, degree	$a=\cos ^{-1}\left(\frac{d_{p p}}{d_{v p}}\right) \quad o{ }^{2} a-\cos ^{-1}\left(\frac{X_{P} * \cos \rho}{d_{o p} p P}\right)$	$=(A C O S(D 26 / D 21)) * 180 / P I($
Angle B, degree	$B=\tan ^{-1}\left\{\tan \phi-\left[\left(\frac{N_{\rho}}{N_{G}}\right)+(\tan \alpha-\tan \phi)\right]\right\}$	$\begin{aligned} & =(A T A N(T A N(D 7 * P I() / 180) \\ & -\quad((D 5 / D 6) *(T A N(D 33 \\ & * P I() / 180)- \\ & \operatorname{TAN}(D 7 * P I() / 180))))) * 180 / P \\ & I() \end{aligned}$
Contact ratio m_{f}	$\begin{aligned} & m_{f}=\frac{\begin{array}{c} \sqrt{\left(r_{o G}{ }^{2}-r_{b b}{ }^{2}\right)}+\sqrt{\left(r_{o p}^{2}-r_{\left.b P^{2}\right)}\right.}-\left[\left(r_{G}+r_{p}\right) \sin \emptyset\right] \end{array}}{p \cos \emptyset} \\ & O R \\ & m_{f}=\frac{N_{G}}{2 \pi}(\tan A-\tan B) O R \\ & m_{f}=\frac{N_{p}}{2 \pi}(\tan \alpha-\tan \beta) \end{aligned}$	$\begin{aligned} & =(D 6 /(2 * P I())) *(T A N(D 31 * P \\ & I() / 180)-T A N(D 34 * P I() / 180)) \end{aligned}$
Step 5: Calculation of Contact Diameters / Contact Radius		
Contact diameter in Pinion, mm	$d_{c P}=\frac{d_{p} \cos \emptyset}{\cos \beta} \boldsymbol{O R} d_{c P}=\frac{N_{p} \cos \emptyset}{P \cos \beta}$	$\begin{aligned} & =(D 14 * \operatorname{COS}(D 7 * P I() / 180)) / \\ & \operatorname{COS}(D 32 * \operatorname{PI}() / 180) \end{aligned}$
Contact radius in Pinion, mm	$r_{c p}=\frac{d_{c p}}{2}$	= D37/2
diameter in Gear, mm	$d_{c G}=\frac{d_{G} \cos \emptyset}{\cos B} \boldsymbol{O R} d_{c G}=\frac{N_{G} \cos \emptyset}{P \cos B}$	$\begin{aligned} & =(D 16 * \operatorname{COS}(D 7 * P I() / 180)) / \\ & \operatorname{COS}(D 34 * P I() / 180) \end{aligned}$
Contact radius in Gear, mm	$r_{c G}=\frac{d_{c G}}{2}$	= D39/2
Step 6: Calculation of LPSTC Diameters / LPSTC Radius		
Angle $\boldsymbol{\varepsilon}$, degree	$\varepsilon=\tan ^{-1}\left[\tan \alpha-\frac{2 \pi}{N_{p}}\right]$	$\begin{aligned} & =(A T A N(T A N(D 33 * P I() / 180) \\ & -(2 * P I() / D 5))) * 180 / P I() \end{aligned}$
LPSTC diameter in pinion, $m m$	$d_{L P}=\frac{d_{p} \cos \emptyset}{\cos \varepsilon} \boldsymbol{O R} d_{L P}=\frac{N_{p} \cos \emptyset}{P \cos \varepsilon}$	$\begin{aligned} & =D 14 * \operatorname{COS}(D 7 * P I() / 180) / C \\ & O S(D 42 * P I() / 180) \end{aligned}$
LPSTC radius in pinion, $m m$	$r_{L P}=\frac{d_{L P}}{2}$	$=D 43 / 2$
Angle E, degree	$\mathrm{E}=\tan ^{-1}\left[\tan A-\frac{2 \pi}{N_{G}}\right]$	$\begin{aligned} & =(A T A N(T A N(D 31 * P I() / 180) \\ & -(2 * P I() / D 6))) * 180 / P I() \end{aligned}$
LPSTC diameter in Gear, mm	$d_{L G}=\frac{d_{G} \cos \emptyset}{\cos \mathrm{E}} \boldsymbol{O R} d_{L G}=\frac{N_{G} \cos \emptyset}{P \cos \mathrm{E}}$	$\begin{aligned} & =D 16 * \operatorname{Cos}(D 7 * P I() / 180) / C \\ & O S(D 45 * P I() / 180) \end{aligned}$
LPSTC radius in Gear, mm	$r_{L G}=\frac{d_{L G}}{2}$	$=D 46 / 2$
Step 7: Calculation of HPSTC Diameters / HPSTC Radius		
Angle f, degree	$f=\tan ^{-1}\left[\tan \beta-\frac{2 \pi}{N_{p}}\right]$	$\begin{aligned} & =(A T A N(T A N(D 32 * P I() / 180) \\ & +(2 * P I() / D 5))) * 180 / P I() \end{aligned}$
HPSTC diameter in pinion, mm	$d_{H P}=\frac{d_{p} \cos \emptyset}{\cos f} \boldsymbol{O R} d_{H G}=\frac{N_{p} \cos \emptyset}{P \cos f}$	$\begin{aligned} & =D 14 * \operatorname{Cos}(D 7 * P I() / 180) / C \\ & O S(D 49 * P I() / 180) \end{aligned}$
HPSTC radius in pinion, mm	$r_{H P}=\frac{d_{H P}}{2}$	$=D 50 / 2$
Angle F , degree	$F=\tan ^{-1}\left[\tan B-\frac{2 \pi}{N_{G}}\right]$	$\begin{aligned} & =(A T A N(T A N(D 34 * P I() / 180) \\ & +(2 * P I() / D 6))) * 180 / P I() \end{aligned}$
HPSTC diameter in Gear, mm	$d_{H G}=\frac{d_{G} \cos \emptyset}{\cos F} \text { OR } d_{H G}=\frac{N_{G} \cos \emptyset}{P \cos F}$	$\begin{aligned} & =D 16 * \operatorname{COS}(D 7 * P I() / 180) / C \\ & O S(D 52 * P I() / 180) \end{aligned}$
HPSTC radius in Gear, mm	$r_{H G}=\frac{d_{H G}}{2}$	= D53/2

Table S2. Calculation of Circular tooth thickness at LPSTC and HPSTC

Step 8: Circular tooth thickness at LPSTC			
Involute angle at pitch circle,	$\theta=\tan \phi-\phi$		
Circular tooth thickness at pitch circle	$t_{c}=\frac{p}{2}$		
Pressure angle at LPSTC in Pinion	$\phi_{L P}=\cos ^{-1}\left(\frac{d_{b P}}{d_{L P}}\right)$		
Involute angle at LPSTC	$\theta_{L P}=\tan \phi_{L P}-\phi_{L P}$		
in Pinion		\quad	Circular tooth
:---			
thickness			
at LPSTC in Pinion	$\quad t_{c L P}=d_{L P} *\left(\frac{t_{c}}{d_{p}}+\theta-\theta_{L P}\right)$		

