Improving Network Connectivity Using Trusted Nodes and Edges

Waseem Abbas, Aron Laszka, Yevgeniy Vorobeychik, Xenofon Koutsoukos

May 24, 2017

Motivation

internet topology

sensor network

infrastructure

social network

- Networks are failure-prone and are vulnerable to attacks that can result in node (edge) removals.
- As a result, connectivity between nodes (required for network operations), might be severely affected.
- We desire networks to be structurally robust, e.g., to remain connected under node (edge) removals.

How can we improve structural robustness (e.g., connectivity) of networks?

Contributions

- We study network connectivity with trusted nodes and edge.
- Main idea: Connectivity can be significantly improved by selecting a small subsets of nodes (edges) as trusted (insusceptible to failures).
- Definitions and generalization of Menger's theorem.
- Compute connectivity with trusted nodes (edges).
- Compute optimal set of trusted nodes to achieve desired connectivity.
- problem complexity
- heuristics
- Numerical evaluation.

Vertex and Edge Connectivity

k-vertex connected:

Graph remains connected if any set of $(k-1)$ vertices are removed.

k-edge connected:

Graph remains connected if any set of $(k-1)$ edges are removed.

$$
k=3
$$

$k=4$

In general, higher connectivity is desired, for instance to improve

- reliability,
- resilience against failures,
- network routing, etc.

Improving Connectivity through Augmentation

Problem

How can we efficiently improve the vertex (edge) connectivity of networks represented as graphs?

Connectivity augmentation: Add minimum number of extra edges strategically to achieve desired network connectivity.

2-connected

3-connected

4-connected

Connectivity augmentation could be prohibitively expensive, or not suitable from security perspective.

Improving Connectivity through Trusted Nodes and Edges

- A different approach:
- Make a small subset of nodes (edges) trusted.
- Trusted nodes and edges:
- They are hardened and are insusceptible to failures.
- Remain operational at all times.

Consequently, the network connectivity can be measured by the number of non-trusted nodes (edges) that need to be removed.

> Instead of redundancy to improve connectivity, we exploit the notion of trustedness of a small sub-network to improve connectivity.

Connectivity through Trusted Nodes (Example)

- The graph is 2 -vertex connected.

- Nodes 6 and 10 are trusted.
- At least four of the non-trusted nodes need to be removed to disconnect the graph. (4-vertex connected).

Connectivity through Trusted Edges (Example)

- The graph is 2 -edge connected.

- Edge $4 \sim 5$ is trusted.
- At least three of the non-trusted edges need to be removed to disconnect the graph. (3-edge connected).

Node and Edge Connectivity with Trusted Nodes

A graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ is \mathbf{k}-vertex connected with trusted nodes $\mathcal{T}_{v} \subset \mathcal{V}$ if there does not exist a set of fewer than k vertices in $\mathcal{V} \backslash \mathcal{T}_{v}$ whose removal disconnects the graph.

A graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ is k-edge connected with trusted nodes $\mathcal{T}_{e} \subset \mathcal{E}$ if there does not exist a set of fewer than k edges in $\mathcal{V} \backslash \mathcal{T}_{e}$ whose removal disconnects the graph.

Related issues:

- theoretical basis (Menger's type result),
- computing connectivity with trusted nodes and edges,
- computing an optimal set of trusted nodes and edges.

Menger's Theorem

Menger's Theorem (Fundamental Theorem of Connectivity)

The minimum number of nodes (edges) whose removal disconnects two nodes, say u and v, is equal to the maximum number of pairwise node-independent (edge-independent) paths from u to v.

Number of node (edge) independent paths between any two nodes

Example:

Menger's Theorem and Connectivity with Trusted Nodes

- Node-independent paths with trusted nodes

The only common node in paths P_{1} and P_{2} is the trusted node.

- Node trusted path

A path with all trusted nodes is a node trusted path.

Theorem

Following statements are equivalent:

- $\mathcal{G}(\mathcal{V}, \mathcal{E})$ is k-vertex connected with trusted nodes \mathcal{T}_{v}.
- For any two non-adjacent vertices u and v, either there exists a node-trusted path between them, or there exists at least k paths between them that are node-independent with \mathcal{T}_{v}.

Menger's Theorem and Connectivity with Trusted Nodes

Example:

- The graph is 4 -vertex connected with $\mathcal{T}_{v}=\{6,10\}$.
- Four node-independent paths between nodes 5 and 9 are shown.

Menger's Theorem and Connectivity with Trusted Edges

- Edge-independent paths with trusted edges

The only common edge in paths P_{1} and P_{2} is the trusted edge.

- Edge trusted path A path consisting of only trusted edges.

Theorem

Following statements are equivalent:

- $\mathcal{G}(\mathcal{V}, \mathcal{E})$ is k-edge connected with trusted edges \mathcal{T}_{e}.
- For any two vertices u and v, either there exists an edge-trusted path between them, or there exists at least k paths between them that are edge-independent with \mathcal{T}_{e}.

Menger's Theorem and Connectivity with Trusted Edges

Example:

- The graph is 3-edge connected with $\mathcal{T}_{e}=\{4 \sim 5\}$.
- Three edge-independent paths between nodes 5 and 9 are shown.

Computing Node Connectivity with Trusted Nodes

From a given $\mathcal{G}(\mathcal{V}, \mathcal{E})$ with trusted nodes $\mathcal{T}_{v} \subset \mathcal{V}$, obtain a new graph $\mathcal{G}^{\prime}\left(\mathcal{V}, \mathcal{E}^{\prime}\right)$ as follows:

- If two nodes in \mathcal{G} are connected by a trusted node, or by a node trusted path; then these nodes are adjacent in \mathcal{G}^{\prime}.

Proposition

Vertex connectivity of \mathcal{G} with $\mathcal{T}_{v}=$ Vertex connectivity of \mathcal{G}^{\prime}

Computing Edge Connectivity with Trusted Edges

From a given $\mathcal{G}(\mathcal{V}, \mathcal{E})$ with trusted edges $\mathcal{T}_{e} \subset \mathcal{E}$, obtain a new graph $\tilde{\mathcal{G}}(\tilde{\mathcal{V}}, \tilde{\mathcal{E}})$ as follows:

- If two nodes in \mathcal{G} are connected by a trusted edge, or by an edge trusted path; then identify these two nodes in $\tilde{\mathcal{G}}$.

Proposition

Edge connectivity of \mathcal{G} with $\mathcal{T}_{e}=$ Edge connectivity of $\tilde{\mathcal{G}}$

Computing Trusted Nodes - Problem Complexity

Finding a minimum set of trusted nodes is computationally hard.

Theorem

Given

- a graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$,
- desired connectivity k^{\prime}, and
- the number of trusted nodes T;
then determining if there exists a $\mathcal{T}_{v} \subset \mathcal{V}$ such that $\left|\mathcal{T}_{v}\right| \leq T$ and \mathcal{G} is k^{\prime}-connected with \mathcal{T}_{v} is NP-hard.

Computing Trusted Nodes - Heuristics

Basic idea:

- Begin with a "sufficient" set of trusted nodes.
- Iteratively remove nodes from the set until no further node can be removed.

Connected dominating set (\ulcorner):

- Every node is either in Γ, or is adjacent to some node in Γ.
- Nodes in 「 induce a connected subgraph.

Computing Trusted Nodes - Heuristics

For any desired k-vertex connectivity with trusted nodes \mathcal{T}_{v},

$$
\left|\mathcal{T}_{\mathrm{v}}\right| \leq \gamma_{\mathcal{G}}
$$

where $\gamma_{\mathcal{G}}$ is the connected domination number of \mathcal{G}.

```
Trusted nodes for vertex connectivity
    Input: \(\mathcal{G}(\mathcal{V}, \mathcal{E}), k^{\prime}\)
    Output: \(\mathcal{T}_{v} \subseteq \mathcal{V}\)
    \(\Gamma \leftarrow\) Conn_Dom_Set \((\mathcal{G})\)
    \(\mathcal{T}_{v} \leftarrow \Gamma\)
    for \(i=1\) to \(|\Gamma|\) do
        \(v \leftarrow\) V_Conn_Trust \(\left(\mathcal{G}, \mathcal{T}_{v} \backslash\{\Gamma(i)\}\right)\)
        if \(v \geq k^{\prime}\) do
        \(\mathcal{T}_{v} \leftarrow \mathcal{T}_{v} \backslash\{\Gamma(i)\}\)
        end if
    end for
```


Computing Trusted Edges - Heuristics

- If \mathcal{T}_{e} is a set of edges in a spanning tree, then edge-trusted path exists between any two nodes.
- Consequently, for any desired k-edge connectivity with trusted edges \mathcal{T}_{e},

$$
\left|\mathcal{T}_{\mathrm{e}}\right| \leq n-\mathbf{1}
$$

```
Trusted edges for edge connectivity
1: Input: \(\mathcal{G}(\mathcal{V}, \mathcal{E}), k^{\prime}\)
2: Output: \(\mathcal{T}_{e} \subseteq \mathcal{E}\)
3: \(\mathcal{E}^{\prime} \leftarrow\) Min_Span_Tree(G)
4: \(\mathcal{T}_{e} \leftarrow \mathcal{E}^{\prime}\)
5: for \(i=1\) to \(\left|\mathcal{E}^{\prime}\right|\) do
6: \(\quad e \leftarrow\) E_Conn_Trust \(\left(\mathcal{G}, \mathcal{T}_{e} \backslash\left\{\mathcal{E}^{\prime}(i)\right\}\right)\)
7: \(\quad\) if \(e \geq k^{\prime}\) do
8: \(\quad \mathcal{T}_{e} \leftarrow \mathcal{T}_{e} \backslash\left\{\mathcal{E}^{\prime}(i)\right\}\)
9: end if
10: end for
```


Numerical Evaluation

Vertex connectivity with trusted nodes

Preferential attachment $\left(n=100, m=3, m_{0}=K_{3}\right)$

$\underset{(n=100, p=0.07)}{\text { Erd"os-Rényi }}$

Random geometric
$(n=100, \delta=0.18)$

Numerical Evaluation

Edge connectivity with trusted edges

Preferential attachment $\left(n=100, m=3, m_{0}=K_{3}\right)$

Erdős-Rényi
$(n=100, p=0.07)$

$\underset{(n=100,}{\text { Random }}$ geometric

Conclusion

- A subset of nodes (edges) can be hardened and can be made trusted.
- Network connectivity can be improved through these trusted components, even in sparse networks, without adding extra links.
- By controlling the number and location of trusted nodes and edges, any desired network connectivity can be obtained.

Future directions:

- Improving other structural robustness measures using trusted components.
- Efficient algorithms to compute trusted nodes and edges.
- An integrated strategy that combines both redundancy and trustedness to improve structural robustness in networks.

Acknowledgments

- National Science Foundation (CNS-1238959)
- Air Force Research Laboratory (FA 8750-14-2-0180)

Thank You

