Ubqln3, a Testis-Specific Gene, is Dispensable for Embryonic Development and Spermatogenesis in Mice

Increasing lines of evidence suggest that the ubiquitin-proteasome pathway (UPP) plays a key role in spermatogenesis (Hou and Yang, 2013). Ubiquilins are ubiquitin-like proteins, all of which contain an amino-terminal UBL domain and a carboxy-terminal ubiquitin-associated (UBA) domain in its structure. Among all ubiquilin proteins identified so far, Ubiquilin 3 is the only one that has been reported to be testis-specific (Conklin et al., 2000). By examining the expression of *Ubqln3* mRNAs and protein in eight different mouse organs using quantitative PCR (qPCR) and Western blot, we found that *Ubqln3* was indeed expressed exclusively in the testis, with both transcript and protein detectable in the testes starting at postnatal Day 28 (P28); the highest levels were detected in adult testes (Fig. 1A–D).

The onset of testicular *Ubgln3* expression at P28 coincides with the elongation steps during late spermiogenesis, suggesting that Ubgln3 is mainly expressed in elongating/elongated spermatids. To define its physiological role in the testis, we generated Ubgln3 global knockout mice (on the C57BL/6J background) using a targeted embryonic stem cell line (cell-line number 11472C-G12) obtained from the Knockout Mouse Project repository; in this case, a gene-trap cassette (LacZ-pA) had recombined with exon 2 of Ubqln3, leading to a "gene trap" allele (Fig. 1E). Neither Ubgln3 mRNAs (Fig. 1F) nor UBQLN3 protein (Fig. 1B) was detected in homozygous knockout mice, suggesting that these animals are truly *Ubgln3*-null (herein called Ubqln3 KO mice). Both male and female Ubgln3 KO mice were viable and displayed normal development, with no discernible differences in growth compared to wild-type (WT) mice. Together, these data indicate that Ubgln3 is dispensable for embryonic and postnatal development in mice.

To determine the fertility of *Ubqln3* KO males, we performed a fecundity test using *Ubqln3* KO males bred with fertility-proven adult WT females. Our breeding data showed that no significant difference in either litter size or litter interval compared to those WT breeding pairs over a 6-month period (data not shown), suggesting that *Ubqln3* KO males are fertile. Consistent with their normal fertility, both sperm count and sperm motility are comparable between gametes isolated from *Ubqln3* KO and WT males (Fig. 1G–H) and histological analyses of *Ubqln3* KO testes and sperm demonstrated normal spermatogenesis and sperm morphology (Fig. 1I–J). Taken together, these

data indicate that *Ubqln3* is not required for male germ-cell development or spermatogenesis in mice. Interestingly, *Ubqln1*, *Ubqln2*, and *Ubqln4* transcript abundance was increased significantly in *Ubqln3* KO compared to WT testes (Fig. 1F), suggesting that other members of the ubiquilin family may compensate for the loss of *Ubqln3*. Therefore, the testis-specific expression of *Ubqln3* is dispensable for both embryonic development and spermatogenesis in mice.

SHUIQIAO YUAN, ¹ WEIBING QIN, ² CONNOR R. RIORDAN, ¹ HAYDEN MCSWIGGIN, ¹ HUILI ZHENG, ¹ AND WEI YAN ^{1,*} ¹Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada ²Family Planning Research Institute of Guangdong, Guangzhou, China

*Corresponding author:
Department of Physiology and
Cell Biology,
University of Nevada Reno
School of Medicine,
Reno, NV 89557.
Email: wyan@medicine.nevada.edu
Grant sponsor: National Institutes of Health (NIH);
Grant numbers: HD060858, HD071736,

Published online 16 March 2015 in Wiley Online Library (wileyonlinelibrary.com).

DOI 10.1002/mrd.22475

Mol. Reprod. Dev. 82: 266–267, 2015. © 2015 Wiley Periodicals, Inc.

Received 1 February 2015; Accepted 21 February 2015

ACKNOWLEDGMENT

This work was supported, in part, by National Institutes of Health (NIH) Grants HD060858, HD071736, and HD074573 (to W.Y.).

REFERENCES

HD074573

Conklin D, Holderman S, Whitmore TE, Maurer M, Feldhaus AL. 2000. Molecular cloning, chromosome mapping and characterization of UBQLN3 a testis-specific gene that contains an ubiquitin-like domain. Gene 249(1–2):91–98.

Hou CC, Yang WX. 2013. New insights to the ubiquitin-proteasome pathway (UPP) mechanism during spermatogenesis. Mol Biol Rep 40(4):3213–3230.

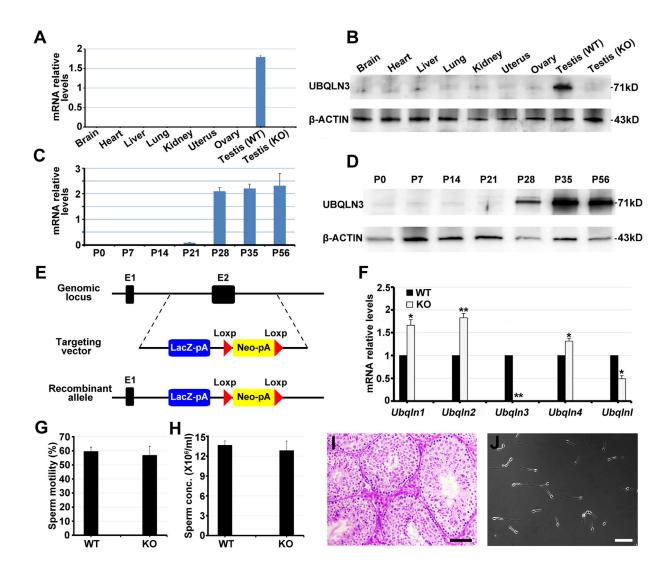


Figure 1. Ubqln3 is a testis-specific gene dispensable for spermatogenesis. A: qPCR analyses of Ubqln3 mRNA levels in eight organs of adult mice. B: A representative Western blot showing that UBQLN3 is exclusively detected in wild-type (WT) but not in Ubqln3 KO testes. (The rabbit polyclonal UBQLN3 antibody (1:1000) was purchased from ProteinTech Group, Inc. [Chicago, IL], catalog number 13568-1AP.) C: qPCR analyses of Ubqln3 mRNA levels in developing testes. Testes at postnatal Day 0 (P0, newborn), P7, P14, P21, P28, P35, and P56 were analyzed. D: A representative Western blot showing UBQLN3 expression in developing mouse testes. E: Schematic illustration of the targeting strategy for generating a Ubqln3-null allele in mouse embryonic stem cells. F: qPCR assays showing mRNA levels of five ubiquilin-family genes in Ubqln3 KO testes. P < 0.05, P < 0.05, P < 0.01 compared to WT (n = 3, Student's t-test). G and H: Normal sperm concentration and sperm motility in Ubqln3 KO males. I: Normal histology in Ubqln3 KO testes. J: Representative phase-contrast micrograph showing Ubqln3 KO sperm. Scale bars, 100 μm (I) or 50 μm (J).