CHEMISTRY I (H)
K, Le Chatelier, and $K_{\text {sp }}$ Practice

1. 1.00 g of each $\mathrm{NO}(\mathrm{g})$ and $\mathrm{Cl}_{2}(\mathrm{~g})$ are placed in an empty $100-\mathrm{mL}$ flask and allowed to reach equilibrium via the following reaction: $2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NOCl}(\mathrm{g})$. The K value of the reaction is $6.25 \times 10^{4} \mathrm{~L} / \mathrm{mol}$.
2. An important reaction in the commercial of hydrogen is:
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=-41 \mathrm{~kJ}$
How will this system at equilibrium shift in each of the five following cases.
a. Gaseous carbon dioxide is removed.
b. Water vapor is added.
c. The pressure is increased by adding helium gas.
d. The temperature is increased.
e. The pressure is increased by decreasing the volume of the reaction container.
3. The solubility of barium carbonate is $7.07 \times 10^{-5} \mathrm{M}$. What is its K_{sp} ?
4. The K_{sp} of iron(III) hydroxide is 8×10^{-16}. How many $\mu \mathrm{g}$ of iron (III) hydroxide could be dissolved in 250 mL of solution?

ANSWERS

1. $[\mathrm{NO}]_{\text {eq }}=0.0520 \mathrm{M}$
$\left[\mathrm{Cl}_{2}\right]_{\mathrm{eq}}=4.89 \times 10^{-4} \mathrm{M}$
$[\mathrm{NOCl}]_{\mathrm{eq}}=0.281 \mathrm{M}$
2. a. shifts right to replenish the lost product
b. shifts right to use excess reactant
c. no shift since He is inert and partial pressures of reactants and products are not affected
d. shifts left to use excess product
e. no shift since the number of moles on each side is the same
3. $\mathrm{K}_{\mathrm{sp}}=5.0 \times 10^{-9}$
4. 1971 g
