
Low Resolution Tool Tracking for Microsurgical Training in a
Simulated Environment

Antonio Carlos Furtado, Irene Cheng, Eric Fung, Bin Zheng and Anup Basu

Abstract— In this work, we propose a method that detects
and tracks the tip of tools used in microsurgical training. This
method can be used to provide valuable metrics regarding
the surgeon’s hand movement. It can benefit the training of
surgeons, given the steep learning curve in microsurgery. Unlike
past research, our tool tracking algorithm does not rely on color
based measurements. Thus, it can be used in a broader domain.
Also, our approach is robust to surrounding environments
with non-static background, where background subtraction
techniques are not suitable. Experimental results show that the
proposed tool localization method has high accuracy and is
statistically reliable.

I. INTRODUCTION

Microsurgery has evolved from suturing blood vessels
to performing more complex procedures, and extension to
robot-assisted microsurgery. Despite the technological ad-
vancements, a steep learning curve, costly set-up, restricted
area of vision, loss of depth perception and loss of visual
reference points[1], [2] remain challenging in surgical train-
ing. The current model of training mainly relies on subjective
measures, which are prone to multiple biases and translate
into extra hours of work.

Objective assessment has gained considerable interest in
recent years. Eye and hand movement metrics are the most
widely used performance indicators of surgical expertise[3],
[4], [5]. While technology advancements in eye tracking
sensors have made it easier to obtain eye-related metrics,
hand movement data is still commonly estimated through
tool tracking techniques. Multiple tool tracking methods
have been proposed in the past, most of them focus on
laparoscopic surgical environments[6], [7], [8], [9]. However,
current techniques have certain limitations, since many of
them have special requirements for the experimental setup,
such as the placement of color markers on tools[6], use
of multiple cameras[9], availability of graphics cards[8] or
having a mostly static background[7].

In this paper we propose a tool detection and tracking
strategy which can locate the tool position for a simulated
suture task. Our method does not require any special equip-
ment setup during the experiments. This means that the setup
does not interfere with the actual experiment. Furthermore,
we demonstrate that our method works with low resolution
videos, and is robust to visual artifacts encountered while
record the video of the procedure. As the goal of this method

A.C.F., I.C. and A.B. are with the Department of Computing Sci-
ence, University of Alberta, Edmonton, T6G 2R3, Canada (e-mail:
basu@ualberta.ca)

E.F. and B.Z. are with the Department of Surgery, University of Albert,
Edmonton, T6G 2R3, Canada (e-mail: bzheng1@ualberta.ca)

Fig. 1. Simulated suture environment showing the needle with a line going
through the simulated skin, a needle driver on the right, and an auxiliary
tool on the left.

Fig. 2. Illustration of visual artifacts encountered in a simulation sequence.
On the left side, we demonstrate the occurrence of motion blur. On the right
side, we present a frame that contains ghosting. These two are the major
artifacts found.

is to aid analysis of tool movement, no online usage for this
method is suggested. For this reason, this paper focuses of
the accuracy of the method, rather than computational costs.

II. METHOD
The tool tracking method proposed by this work was

applied on a simulated suture experiment. The complete
procedure was recorded, by placing a camera above the
training pad, in a parallel position. The video was later used
to extract tool tracking metrics. The surgical environment is
illustrated in Figure 1.

Accurate tool tracking is paramount for performance eval-
uation in order to build the evaluation metrics. In this study,
our goal is to track the needle driver used to grasp and guide
the needle. This goal turns out to be challenging, given the
visual artifacts encountered in the recorded video (illustrated
in Figure 2). Our tracking technique needs to overcome these
artifacts. It should also handle situations where the object
may leave and enter the scene multiple times. For this reason,
our tracking method requires a detection mechanism that is
able to identify the object at any given frame, or when it first
appears in the video. The tracking mechanism also serves to
estimate the displacement of the object between frames.

The object detection approach adopted for the needle
driver makes some assumptions about how the tool is po-
sitioned, and how it is oriented. These assumptions are

Fig. 3. Illustration of the process used to extract silhouettes that represent
surgical tools. On the left image, threshold is applied to hue and saturation.
On the right image, thresholded image is followed by a median filter.

based on how the experiments were conducted. The first
assumption is that the needle driver is always operated by
the right hand. Thus, we can also assume that the tool is
north-west oriented. Additionally, given that the same set
of tools are used by all the subjects for all the procedures,
we can also assume that they possess the same color and
texture properties, with some minor lighting variations. Even
though microsurgical tools can present minor differences
in shape and color, the majority tend to be sharp and
monochromatic. Our method can be easily adapted to any
other test environments where these conditions are present.
However, fine-tuning is required for other experiments.

The detection process is started by applying a color
threshold to the image. Here, instead of relying on the
Red-Green-Blue (RGB) color space, we convert the frame
to the Hue-Saturation-Value (HSV) color space. The HSV
color space allows us to isolate the chrominance components
(i.e., the hue and saturation) from the brightness component
(i.e., the value component), which is not possible in the
RGB color space. While other color space standards also
allow chrominance isolation, HSV was chosen because of
the low computational overhead for conversion. By applying
a threshold only to the chrominance components, we are
able to make our detection step more robust against lighting
variations. The thresholding mask result obtained from an
image is illustrated in Figure 3(right). The needle driver
can be seen on the right-side of the image.

Observe that both surgical tools have the same color. This
is a problem when they intersect each other, as shown in
Figure 4. In order to address this issue, we use the Watershed
algorithm[10] for segmenting the two blobs. By applying the
Watershed algorithm we can isolate each blob, and keep track
of the desired tool, which we assume to be held by the right
hand. Tools with different colors can still be handled by our
method. In this case, HSV filtering thresholds need to be
updated accordingly.

After identifying the blob that corresponds to the needle
driver, we use its area to extract interest points in the original
frame. In the current implementation, we used corners as
interest points. Corners are the intersection of two edges.
They represent the point at which the direction of these
two edges change. Therefore, the gradient of the image in
both directions have a high variation, making it easier to
detect and track. We detect these corners by using the Harris
corner detector[11]. The detector starts by computing the

Fig. 4. Sequence illustrating the effect of segmenting blobs through
watershed segmentation. On the left image, blobs are initially connected.
On the right image, watershed segmentation is applied to blob.

Fig. 5. Harris corner detection is applied to a frame. Corners are filtered by
using tool blob area, and only corners inside the needle driver are selected.
Tool tip position is represented by the red point.

first order derivatives (Ix, Iy) of the image, to highlight the
directional intensity variations. A second moment matrix,
which encodes this variation, is calculated for each pixel in
a small neighbourhood, as follows:

Z =

(∑
I2x

∑
IxIy∑

IxIy
∑

I2y

)
A patch defined by Z is accepted as a candidate feature if

its minimum eigenvalue λmin is above a predefined threshold
tf . Given that the eigenvalues of this matrix are sufficiently
large, the patch can be characterized as a corner texture.
Therefore, the higher the threshold value, the greater is the
gradient intensity difference, meaning that it is a stronger
corner candidate. In our case, defining an optimal tf is not
very important because the detected blob already provides a
precise estimate of the tool region.

The corner detection applied to the needle driver is illus-
trated in Figure 5. Note that we do not detect points on the
whole needle driver, but only on the area around the tip. We
discard the candidate corners at the bottom, as they are not
relevant, when estimating the tooltip position, represented by
the red point in Figure 5.

Once the corner points are detected, it is still necessary to
track them. We use the KLT tracker[12], [13] to perform this
task. The objective of the tracker is to compute the translation
(du, dv) of a region, centered on our corner point, which is
calculated iteratively. This computation is based on an optical
flow method. Optical flow methods are used to generate
dense flow fields, which are useful in detecting movements.
They compute the flow fields by calculating the flow vector
of each pixel under the brightness constancy constraint:
I(x, y, t)− I(x+ dx, y + dy, t+ dt) = 0. This computation

is done on the neighbourhood of a pixel. Based on the
brightness constancy constraint, the KLT tracker computes
the displacement of the path using the following formula:(∑

I2x
∑

IxIy∑
IxIy

∑
I2y

)(
du
dv

)
=

(∑
IxIt∑
IyIt

)
where It represents the temporal gradient. Once the updated
location of the interest point is obtained, the KLT tracker
evaluates the quality of the tracked path by using the affine
transformation between the consecutive frames. In case the
sum of squared differences of the current patch and the
projected patch is small enough, they continue tracking the
feature. Otherwise, the feature point is discarded. For our
experiments, if more than 75% of the corner points are
discarded, we rerun the detection method. The detection
should provide new corner points to be tracked. If it fails
to acquire new points, we assume the tool is not present in
the current frame, and the detection method is rerun on the
subsequent frames, until new corner points are found.

We acknowledge the fact that the number and position
of corner points can vary greatly, depending on the tool
orientation. However, based on our ultimate goal, the tool
tip is always assumed to be either the top left or the top
right corner, and its position is derived from other corner
points, as seen on Figure 5. This diminishes the effect of
changes in point detection.

A. Outlier removal

When tracking an object, not every frame produces an
accurate position of the tool tip. Since the detection method
is rerun multiple times (i.e., every time when 75% of the
interest points are lost), and the video is subject to visual
artifacts, the detected tip position might be inconsistent
throughout the video.

By assuming that the tool trajectory will be reason-
ably smooth, we can discard some of these inconsistencies
through an outlier removal filter. This filter can be applied,
individually, to the x and y coordinates of the tool position.
In our implementation, we use a moving window w, and for
each coordinate pw within this window, we verify whether
the following condition holds:

(pw − µw)

stdw
< Tw

where µw and stdw represent the mean and the standard
deviation of w, respectively, and Tw represents a threshold
value. If this condition is true, pw is considered valid.
Otherwise, pw is assigned the value µw. The result following
the outlier filter being applied to the needle driver trajectory
is illustrated in Figure 6. For our experiments, the threshold
value Tw was based on the comparison with ground truth
data. We basically defined a range of possible values, and
measured the mean distance of the filtered data to the ground
truth. We use the threshold value that produced the best
results. The same value can be applied to other recordings,
for which no ground truth data is available.

III. RESULTS

To validate our method, the accuracy of the tracked data
was measured by using ground truth data, manually defined
for each frame from one of the trials. The video used in
our validation method has the resolution of 1280x720 pixels.
The comparison of the ground truth with the tracking data
was obtained through a MATLAB script. We measured both
the distance of the ground truth to the tracked tool tip, as
well as the correlation between their trajectories. Considering
the trajectory, we achieved a 0.9978 correlation value, using
the Pearson scale, which can be considered an extremely
high correlation value, and it demonstrates the robustness of
our tracking algorithm. The comparison between the ground
truth and tracked tool position is illustrated in Figure 7. The
mean euclidean distance between the two trajectories is 43
pixels. It can be observed that tracking is still lost for some
short periods of time. This happens especially when there
is an abrupt position change. Since the mean value is more
sensitive to outliers in the distribution, we also computed the
median value, which is 12 pixels for the driver.

IV. CONCLUSION

In this work we proposed an offline method to estimate the
position of the tool tip in microsurgical training recordings.
This method requires no special experimental setup, and it
is robust to visual artifacts. It uses known features of a tool,
detected in the video, and subsequently tracks the detected
feature points, without relying on background subtraction al-
gorithms, which are not feasible for non-static backgrounds.
Furthermore, our method requires no training data, and it
can easily be employed in other datasets. In future work, we
intend to extend this method to capture additional motion
information, such as tool rotation.

ACKNOWLEDGMENT

We thank NSERC, Canada, and Alberta Innovates Tech-
nology Futures (AITF) for their financial support.

REFERENCES

[1] M. Singh and A. Saxena, “Microsurgery: A useful and versatile tool
in surgical field,” Surgery: Current Research, pp. ISSN: 2161–1076,
April.

[2] A. Ghousia, M. Prabhuji, and R. Lavanya, “Microsurgery: A clinical
philosophy for surgical craftsmanship,” Ejournal of Dentistry, no. 2,
pp. 233–237, 2012.

[3] L. Richstone, M. J. Schwartz, C. Seideman, J. Cadeddu, S. Marshall,
and L. R. Kavoussi, “Eye metrics as an objective assessment of
surgical skill,” Annals of surgery, vol. 252, no. 1, pp. 177–182, 2010.

[4] M. Wilson, J. McGrath, S. Vine, J. Brewer, D. Defriend, and
R. Masters, “Psychomotor control in a virtual laparoscopic surgery
training environment: gaze control parameters differentiate novices
from experts,” Surgical endoscopy, vol. 24, no. 10, pp. 2458–2464,
2010.

[5] N. Stylopoulos and K. G. Vosburgh, “Assessing technical skill in
surgery and endoscopy: a set of metrics and an algorithm (c-pass)
to assess skills in surgical and endoscopic procedures,” Surgical
Innovation, vol. 14, no. 2, pp. 113–121, 2007.

[6] G.-Q. Wei, K. Arbter, and G. Hirzinger, “Automatic tracking of
laparoscopic instruments by color coding,” in CVRMed-MRCAS’97.
Springer, 1997, pp. 357–366.

[7] X. Jiang, B. Zheng, and M. S. Atkins, “Video processing to locate
the tooltip position in surgical eye–hand coordination tasks,” Surgical
innovation, p. 1553350614541859, 2014.

Frame time (in seconds)
0 20 40 60 80 100 120 140

x
co

o
rd

in
at

es
 (

in
 p

ix
el

s)

0

200

400

600

800

1000

1200
Filtered needle driver

Unfiltered
Filtered

Frame time (in seconds)
0 20 40 60 80 100 120 140

y
co

o
rd

in
at

es
 (

in
 p

ix
el

s)

0

100

200

300

400

500

600

700

Unfiltered
Filtered

Fig. 6. Application of the outlier filter to the needle driver trajectory. For easier visualization, trajectory is segmented: x-axis (Top image) and y-axis
(Bottom image).

Frame time (in seconds)
0 20 40 60 80 100 120 140

x
co

o
rd

in
at

es
 (

in
 p

ix
el

s)

0

200

400

600

800

1000

1200

2D trajectory of the Needle Driver
Pearson correlation: 0.999516

Ground Truth
Tracked object

Frame time (in seconds)
0 20 40 60 80 100 120 140

y
co

o
rd

in
at

es
 (

in
 p

ix
el

s)

0

100

200

300

400

500

600

700

Ground Truth
Tracked object

Fig. 7. Trajectory of the tracked needle driver is compared to ground truth data. For easier visualization, trajectory is segmented: x-axis (Top image) and
y-axis (Bottom image).

[8] Z. Pezzementi, S. Voros, and G. D. Hager, “Articulated object tracking
by rendering consistent appearance parts,” in Robotics and Automation,
2009. ICRA’09. IEEE International Conference on. IEEE, 2009, pp.
3940–3947.

[9] F. Pérez, H. Sossa, R. Martı́nez, D. Lorias, and A. Minor, “Video-based
tracking of laparoscopic instruments using an orthogonal webcams
system,” World Acad Sci Eng Technol Int J Med Health Pharm Biomed
Eng, vol. 7, no. 8, pp. 184–187, 2013.

[10] F. Meyer, “Topographic distance and watershed lines,” Signal process-

ing, vol. 38, no. 1, pp. 113–125, 1994.
[11] C. Harris and M. Stephens, “A combined corner and edge detector.”

in Alvey vision conference, vol. 15. Manchester, UK, 1988, p. 50.
[12] B. D. Lucas, T. Kanade et al., “An iterative image registration

technique with an application to stereo vision.” in IJCAI, vol. 81,
1981, pp. 674–679.

[13] J. Shi and C. Tomasi, “Good features to track,” in Computer Vision
and Pattern Recognition, 1994. Proceedings CVPR’94., 1994 IEEE
Computer Society Conference on. IEEE, 1994, pp. 593–600.

