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Abstract  

In the present paper, results on characterization of inner derivations in Banach algebras are discussed. 

Some techniques are employed for derivations due to Mecheri, Hacene, Bounkhel and Anderson. Let H 

be an infinite dimensional complex Hilbert space and B(H) the algebra of all bounded linear operators 

on H. A generalized derivation δ: B(H) → B(H) is defined by δA,B(X) = AX −XB, for all X ∈ B(H) and 

A,B fixed in B(H). An inner derivation is defined by δA(X) = AX −XA, for all X ∈ B(H) and A fixed in 

B(H). Norms of inner derivations have been investigated by several mathematicians. However, it is 

noted that norms of inner derivations implemented by norm-attainable operators have not been 

considered to a great extent. In this study, we investigate properties of inner derivations which are 

strictly implemented by norm-attainable and we determine their norms. The derivations in this work are 

all implemented by norm-attainable operators. The results show that these derivations admit tensor 

norms of operators. 
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Introduction 

Derivation has been an area of interest 

for many mathematicians and researchers 

particularly their properties. There are several 

results on the studies of norms of inner 

derivations, aspects of underlying algebras of 

these derivations and the structures of the 

operators inducing these derivations [1]. A good 

number of these studies are on the conditions 

necessary for derivations (generalized) to be 

inner derivations. To begin with, Sakai [2] 

proved that every derivation on a von Neumann 

algebra or on a simple C*-algebra is inner. Elliot 

[3] used a generalized Sakai”s theorem (every 

derivation on a simple C∗-algebra is determined 

by a multiplier) to show that every derivation in 

the class of separable approximately finite-

dimensional C∗-algebra can be approximated 

arbitrarily closely in norm by a derivation which 

is determined by a multiplier on a non-zero 

closed two-sided ideal and that the multiplier 

may be chosen to have norm bounded fixed 

multiple of the norm of the derivation.  

The fact that the underlying algebra 

significantly affects the behaviour of the 

derivation in question, Elliot [4,5], later proved 

that every derivation of a AW∗-algebra of type 

III (or of type I) is inner using properties of 

derivations of continuous fields of C∗-algebras 

and that if a given quotient of an AW∗-algebra is 

known to have only inner derivations, then its 

tensor product with a separable commutative C∗-

algebra with unit also has this property (i.e every 

derivation in it is inner). Kadison did a lot of 

research on the relationship between derivation 

and inner derivations of a C∗-algebra and also 

extension of these to automorphisms. Indeed, 

[6,7] proved that each derivation of a C∗-algebra 

B(H) extends to an inner derivation of the weak 

operator closure of B(H).  

In [8] Kadison noted that since with 

respect to automorphisms, a derivation δ on a 

C∗-algebra B(H) of all bounded linear operators 

acting on a Hilbert space H is spatial when there 

is a bounded operator B on H such that an inner 

derivation δA = BA−AB, then there is no non-

spatial derivations of C∗-algebras and non-inner 

derivations of von Neumann algebras. In 

particular, he showed that each derivation of a 

hyperfinite von Neumann algebra is inner. In [8] 

used the idea of locality to formulate that every 
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norm-continuous locally inner derivation on a 

von Neumann algebra into itself is an inner 

derivation. In [9] they discussed extensively on 

the range of the elementary operators. Some 

authors used topological approaches in their 

analysis of inner derivations while focusing on 

the underlying algebras. Other properties like 

continuity, linearity, trace, measurability, 

normality, spectra of inducing operator have 

been used in the analysis of derivations. For 

example, In [10] it was proved that any z-linear 

derivation on L(M) is linear and hence is 

automatically continuous in the measure 

topology for a type I von Neumann algebra M 

with center z and a faithful normal semi-finite 

trace τ , so that L(M) is the algebra of all τ-

measurable operators affiliated with M. In [11], 

they used the spectrum of a generalized 

derivation δA,B(X) = AX −XB to prove that the 

generalized derivation is convexoid if and only if 

the inducing operators A,B are convexoid and 

also investigated cases when generalized 

derivations are inner. He further proved that this 

is true for standard operator algebras. 

Research Methodology 

The key terms used in the methodology 

are defined here. 

Definition 2.1 ([12], Definition 1.2) A Banach 

space is a complete normed space. 

Definition 2.2 ([13], Definition 33.1) A Hilbert 

space H is an inner product space which is 

complete under the norm induced by its inner 

product. 

Definition 2.3 ([14,] Definition 3.1) Let   f   be a 

function on an open subset U of a Banach space 

X  into Banach space  Y. f  is Gateaux 

differentiable at x  U if there is bounded and 

linear operator T: X Y such that Tx(h)= 

  for every h X. The operator 

T is called the Gateaux derivative of f at x. 

Definition 2.4 ([15], Definition 0.1) Let X be a 

complex Banach space. Then y X is orthogonal 

to x X if for all complex  there 

holds . 

Definition 2.5 ([16], Section 2) Let T  B(H) be 

compact. Then s1 (T)  s2 (T) … 0 are the 

singular values of T i.e the eigenvalues of T = 

 counted according to multiplicity and 

arranged in descending order. For 1 p  ∞, Cp= 

Cp (H) is the set of those compact T  B(H) with 

finite p-norm, p=  = 

. 

Results and Discussions 

Lemma 3.1. Let H, K be Hilbert spaces and 

suppose that u ∈ B(H) and v ∈ B(K). Then there 

is a unique operator (u ˆ⊗v ∈ B(H ˆ⊗K) such 

that (u ˆ⊗v)(x ⊗ y) = u(x) ⊗ v(y) (x ∈ H, y ∈ 

K). Moreover, ∥u ˆ⊗v∥ = ∥u∥∥v∥. 
Proof. The map (u, v) → u⊗v is bilinear, so to 

show that u⊗v : H⊗K → H ⊗ K is bounded, 

we may assume that u and v are unitaries [14], 

since the unitaries span the C*-algebras B(H) 

and B(K). If z ∈ H ⊗ K, then we may write z = 

Σxi ⊗ yi where y1, ..., yn are orthogonal. Hence, 

 ∥(u ⊗ v)(z)∥2
 =Σnu(xi) ⊗ v(yi)

2
=∥(xi)∥

2∥(yi)∥
2
 = 

∥z∥2
. Consequently, ∥u ⊗ v∥ = 1. Thus, for all 

operators u, v on H, K respectively, the linear 

map u ⊗ v is bounded on H ⊗K and hence has 

an extension to a bounded linear map u ˆ⊗v on 

H ˆ⊗K. The maps B(H) → B(H ˆ⊗K) defined 

by u 7→ u ⊗ idk (where idK is identity in K) 

and B(K) → B(H ˆ⊗K) defined by v → idK ⊗v 

(where idH is identity in H) are * 

homomorphisms and therefore isometric. Hence, 

∥u ˆ⊗id∥ = ∥u∥ and ∥id ˆ⊗v∥ = ∥v∥. Therefore, 

∥u ˆ⊗v∥ = ∥(u ˆ⊗id)(id ˆ⊗v)∥ ≤ ∥u ˆ⊗id∥∥id 

ˆ⊗v∥ = ∥u∥∥v∥. 
If ϵ is a sufficiently small positive number, and if 

u, v are not zero, then there are unit vectors x and 

y such that ∥u(x)∥ > ∥u∥ − ϵ > 0 and ∥v(y)∥ > 

∥v∥ − ϵ > 0. Hence,  

∥(u ˆ⊗v)(x ⊗ y)∥ = ∥u(x)∥∥v(y)∥ > (∥u∥ − 

ϵ)(∥v∥ − ϵ) 

⇒ ∥u ˆ⊗v∥ > (∥u∥ − ϵ)(∥v∥ − ϵ). As ϵ → 0 we 

obtain ∥u ˆ⊗v∥ ≥ ∥u∥∥v∥. This completes the 

proof. 

Theorem 3.2 Let T : H1 → H2 and S : K1 → K2 be 

bounded operators between Hilbert spaces. Then 

there exists a unique bounded operator T ˆ⊗S : 

H1 ˆ⊗K1 → H2 ˆ⊗K2 such that 

 (T ˆ⊗S)(x⊗y) = T(x)⊗S(y) ∀ x ∈ H1 and ∀ y ∈ 

K1. Moreover, ∥T ˆ⊗S∥ = ∥T∥∥S∥. 
Proof. Since the algebraic tensor product H1 ⊗ 

K1 is dense in H2 ⊗ K2, there may exists at most 

one bounded operator satisfying the desired 

condition. Further, by the identity  

∥x ⊗ y∥ = ∥x∥∥y∥ for the norm in the Hilbert 

tensor product, for this hypothetical operator 

 T ⊗ S we would have from the definition of 

norm, 
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∥T ˆ⊗S∥ ≥ sup{∥(T ˆ⊗S)(x ⊗ y)∥ : x ∈ B(H)1 , y 

∈ B(K)1 } = sup{∥T(x)∥∥S(y)∥ : x ∈ BH1 , y ∈ 

BK1 }= ∥T∥∥S∥. We must show that this operator 

indeed exists and ∥T ˆ⊗S∥ ≤ ∥T∥∥S∥. We state 

the following lemma which gives a solution. 

Lemma 3.3. There exists a bounded operator T 

ˆ⊗I : H1 ˆ⊗K1 → H2⊗K1 such that 

 (T ˆ⊗I)(x⊗y) = T(x)⊗y for all x ∈ H1 and y ∈ 

K1. Moreover, ∥T ˆ⊗I∥ ≤ ∥T∥. 
Proof. Consider the bilinear operator R: H1 ×K1 

→ H2 ˆ⊗K1 : (x, y) 7→ T(x) ⊗ y. Suppose R′ : 

H1 ⊗ K1 → H2 ˆ⊗K1. Take u ∈ H1 × K1, and a 

representation u =Σn xi⊗yi. Without loss of 

generality, we can assume that the system y1, ..., 

yn ∈ K1 is orthonormal. 

The system x1 ⊗ y1, ..., xn ⊗ yn ∈ H1 ⊗ K1 and 

T(x1) ⊗ y1, ..., T(xn) ⊗ yn ∈ H1 ⊗K1 is 

orthogonal in H2 ˆ⊗K1. Therefore, using the 

Pythagorean equality we have 

∥R′(u)∥2
 = ΣnT(xi) ⊗ yi

2∥T(xi)∥
2
≤ ∥T∥2

= 

∥T∥2∥u∥2
. 

Thus, R′ is a bounded operator from the pre-

Hilbert space H1⊗K1 to the Hilbert space H2 

ˆ⊗K1, and ∥R∥ ≤ ∥T∥. Extending this by 

continuity to the whole H1 ˆ⊗K1, we obtain the 

operator T ˆ⊗I with required properties. Now 

we complete the proof of the theorem. Similarly 

to the lemma, we obtain a bounded linear 

operator I ˆ⊗S : H2 ˆ⊗K1 → H2 ˆ⊗K2 such that 

 (I ˆ⊗S)(x ⊗ y) = x ⊗ S(y) for all x ∈ H2 and y 

∈ K1 and ∥I ˆ⊗S∥ ≤ ∥T∥. 
Put T ˆ⊗S := (I ˆ⊗S)(T ˆ⊗I) : H1 ˆ⊗K1 → H2 

ˆ⊗K2. By the multiplicative inequality for the 

operator norm, this operator is bounded and ∥T 

ˆ⊗S∥ ≤ ∥T∥∥S∥ but from the definition, 

∥T ˆ⊗S∥ ≥ ∥T∥∥S∥ so ∥T ˆ⊗S∥ = ∥T∥∥S∥.This 

completes the proof. 

Theorem 3.4. If a, b ∈ B(H), and let a ⊗ b 

denote the tensor product 

of a and b then ∥a ⊗ b + b ⊗ a∥ ≤√(2∥a∥2∥b∥2
 + 

2∥b∗a∥2
.) 

Proof. 

∥a ⊗ b + b ⊗ a∥2
 = ⟨a ⊗ b + b ⊗ a, a ⊗ b + b 

⊗ a⟩ 
= ⟨a ⊗ b, a ⊗ b⟩ + ⟨a ⊗ b, b ⊗ a⟩ + ⟨b ⊗ a, a 

⊗ b⟩ + ⟨b ⊗ a, b ⊗ a⟩ 
= ⟨a, a⟩⟨ b, b⟩ + ⟨a, b⟩⟨b, a⟩ + ⟨b, a⟩⟨a, b⟩ + ⟨b, 

b⟩⟨a, a⟩ 
= ∥a∥2∥b∥2

 + ∥b∥2∥a∥2 
+ ⟨a, b⟩⟨b, a⟩ + (⟨a, b⟩)(⟨b, 

a⟩) (⟨a, b⟩ = ⟨b, a⟩) 
= ∥a∥2∥b∥2 

+ ∥b∥2∥a∥2
 + 2Re⟨a, b⟩⟨b, a⟩ 

So by Cauchy-Schwarz inequality, 

∥(a ⊗ b) + (b ⊗ a)∥2
 ≤ ∥a∥2∥b∥2

 + ∥b∥2∥a∥2 
+ 

2∥a∥∥b∥∥b∥∥a∥≤ 2∥a∥2∥b∥2 
+ 2∥a∥∥b∥∥b∥∥a∥. 

Therefore, ∥(a ⊗ b) + (b ⊗ a)∥2
 ≤ 2∥a∥2∥b∥2

 + 

2∥a∥∥b∥∥b∥∥a∥………………………(1) 

But ∥b∥ = ∥b∗∥ so replacing ∥b∥ by ∥b∗∥ in the 

second summand on the right hand side of 

Equation (1), we get ∥a ⊗ b + b ⊗ a∥2
 ≤ 

2∥a∥2∥b∥2
 + 2∥b∗a∥2

. Taking the positive square 

root on both sides yields the desired result. 

Theorem 3.5. Let H be a complex Hilbert space, 

B(H) the algebra of bounded linear operators on 

H. Let δa,b : B(H) → B(H) be defined by δa,b(x) = 

ax − xb, ∀ x ∈ B(H) where a, b are fixed in B(H). 

Then ∥δa,b∥ = ∥a∥∥b∥. 

Proof.  By definition, ∥δa,b|B(H)∥ = sup 

{∥δa,b(x)∥ : x ∈ B(H), ∥x∥ = 1} . This implies that  

∥δa,b|B(H)∥ ≥ ∥δa,b(x)∥, ∀ x ∈ B(H), ∥x∥ = 1. So ∀ 

ϵ > 0, ∥δa, b|B(H)∥ − ϵ < ∥δa,b(x)∥, ∀ x ∈ B(H), 

∥x∥ = 1. But, ∥δa,b|B(H)∥ − ϵ < ∥ax − xb∥ ≤ 

∥a∥∥b∥. Since ϵ is arbitrary, this implies that 

∥δa,b|B(H)∥ ≤ ∥a∥∥b∥. ………………(2)  

On the other hand, let ξ, η ∈ H, ∥ξ∥ = ∥η∥ = 1, ϕ 

∈ H∗. 

Now,∥δa,b|B(H)∥ ≥ ∥δa,b(x)∥ :∀ x ∈ B(H), ∥x∥ = 1. 

But, ∥δa,b(x)∥ = sup {∥(δa,b(x))η∥ : ∀ η ∈ H, ∥η∥ = 

1} = sup {∥(ax − xb)η∥ : η ∈ H, ∥η∥ = 1} . 

Setting a = (ϕ ⊗ ξ1), ∀ ξ1 ∈ H, ∥ξ1∥ = 1 and b = 

(φ ⊗ ξ2), ∀ ξ2 ∈ H, ∥ξ2∥ = 1, we have, 

∥δa,b|B(H)∥ ≥ ∥δa,b(x)∥ ≥ ∥(δa,b(x))η∥ 

= ∥(ax − xb)η∥ 

= ∥((ϕ ⊗ ξ1)x(φ ⊗ ξ2))η∥ 
= ∥(ϕ ⊗ ξ1)x − x(φ(η)ξ2)∥ 
= ∥(ϕ ⊗ ξ1)φ(η)x − x(ξ2)∥ 
= |φ(η)|∥(ϕ ⊗ ξ1)x − x(ξ2)∥ 

= ∥a∥∥b∥. 
Therefore, 

∥δa,b|B(H)∥ ≥ ∥a∥∥b∥. …………………(3) 

Hence by Inequalities (2) and (3), ∥δa,b|B(H)∥ = 

∥a∥∥b∥. 

Corollary 3.6. Let H be a complex Hilbert space, 

B(H) the algebra of bounded linear operators on 

H. Let δa : NA(H) → NA(H) be defined by δa,b(x) 

= ax − xa, ∀ x ∈ NA(H) where a is fixed in 

NA(H). Then ∥δa∥ = 2∥a∥. 

Proof. This follows from an analogous proof of 

Stampfli and the theorem above. 

Conclusions 

A number of research studies have been done on 

inner derivations and norm-attainability of 

operators and they have obtained fundamental 
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results. Norms of derivations is a very interesting 

area of study in functional analysis and it has not 

been exhausted. In our case, we considered 

norms of generalized and inner derivations. 

Efforts thus can be directed on determining the 

lower estimate of the norm of a general 

elementary operator acting on general Banach 

algebras. The study of inner derivations is 

applicable in video imagery in near shore 

oceanographic field study, velocity spectral-

digital computer derivation, embryonic stem cell 

line derived from human blastocysts, study on 

creep fatigue evaluation procedures for high-

chronium steels and the study and interpretation 

of the chemical characteristics of natural water 

amongst others. This study forms a recipe for 

understanding quantum mechanics.   
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