1. Using n rectangles and the limit process, find the area under the given curve.

$$
y=3 x-x^{2} \text { on }[1,3]
$$

Sol: The thickness of each rectangle is $\Delta x=\frac{3-1}{n}=\frac{2}{n}$. We choose $x_{i}^{*}=1+\frac{2 i}{n}$ so the height of the $i^{t h}$ rectangles is $h_{i}=f\left(x_{i}^{*}\right)=3\left(1+\frac{2 i}{n}\right)-\left(1+\frac{2 i}{n}\right)^{2}$. Next, the area of this rectangle is $A_{i}=f\left(x_{i}^{*}\right) \Delta x=\left[3\left(1+\frac{2 i}{n}\right)-\left(1+\frac{2 i}{n}\right)^{2}\right] \frac{2}{n}$
Thus,

$$
\begin{aligned}
A & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[3\left(1+\frac{2 i}{n}\right)-\left(1+\frac{2 i}{n}\right)^{2}\right] \frac{2}{n} \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{4}{n}+\frac{4 i}{n^{2}}-\frac{8 i^{2}}{n^{3}}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{4}{n} \cdot n+\frac{4}{n^{2}} \cdot \frac{n(n+1)}{2}-\frac{8}{n^{3}} \cdot \frac{n(n+1)(2 n+1)}{6}\right) \\
& =4+2-\frac{8}{3}=\frac{10}{3}
\end{aligned}
$$

2a. A manufacturer wants to design a box with an open top having a square base and an area of 27 sq . inches. What dimensions will produce a box with maximum volume?

Sol: First draw and label a picture (not included here). If we denote the side of the square base by x and the height y, the volume of the box is $V=x^{2} y$ and the area $A=x^{2}+4 x y=27$. Solving the latter for y gives

$$
\begin{equation*}
y=\frac{27-x^{2}}{4 x} \tag{1}
\end{equation*}
$$

so the volume becomes

$$
\begin{equation*}
V=x^{2} \cdot \frac{27-x^{2}}{4 x}=\frac{27 x-x^{3}}{4} \tag{2}
\end{equation*}
$$

Now

$$
\begin{equation*}
V^{\prime}=\frac{27-3 x^{2}}{4} \tag{3}
\end{equation*}
$$

and $V^{\prime}=0$ when $x= \pm 3$ from which we take the positive case. Since $V^{\prime \prime}=3 x / 2<0$ when $x=3$ we have a maximum. With $x=3$, then $y=\frac{27-3^{2}}{4 \cdot 3}=\frac{3}{2}$. The dimensions are $3^{\prime \prime} \times 3^{\prime \prime} \times 3 / 2^{\prime \prime}$.
$2 b$. A rectangular dog pen is being built against the side of a house using 100 ft of fencing for the remaining 3 sides. What is the maximum area?

Sol: First draw and label a picture (not included here). If we denote the sides of the pen by x and y then the area is $A=x y$ and the fence is $P=2 x+y=100$. Solving the latter for y gives

$$
\begin{equation*}
y=100-2 x \tag{4}
\end{equation*}
$$

so the volume becomes

$$
\begin{equation*}
A=x(100-2 x)=100 x-2 x^{2} \tag{5}
\end{equation*}
$$

Now

$$
\begin{equation*}
A^{\prime}=100-4 x \tag{6}
\end{equation*}
$$

and $A^{\prime}=0$ when $x=25$. Since $A^{\prime \prime}=-4<0$ we have a maximum. With $x=25$, then $y=100-2(25)=50$. The dimensions are $25^{\prime} \times 50^{\prime}$.
3. Find the area bound by the following curves

$$
y=x^{2} \quad y=2-x, \quad x=0, \quad x, y \geq 0
$$

We sketch the curves to find the region of interest. The intersection points between the two curves are

$$
x^{2}=2-x \Rightarrow x^{2}+x-2=0 \Rightarrow(x+2)(x-1)=0 \Rightarrow x=1,-2
$$

and only $x=1$ is applicable.

The area is then given by

$$
A=\int_{0}^{1}\left(2-x-x^{2}\right) d x=2 x-\frac{x^{2}}{2}-\left.\frac{x^{3}}{3}\right|_{0} ^{1}=2-\frac{1}{2}-\frac{1}{3}=\frac{7}{6}
$$

Often one mistakes the region and calculates the other region so we'll do it here. Using vertical rectangles, we'll need two integrals so

$$
\begin{aligned}
A & =\int_{0}^{1} x^{2} d x+\int_{1}^{2}(2-x) d x \\
& =\left.\frac{x^{3}}{3}\right|_{0} ^{1}+\left.\left(2 x-\frac{x^{2}}{2}\right)\right|_{1} ^{2} \\
& =1 / 3+((4-2)-(2-1 / 2))=5 / 6
\end{aligned}
$$

Using horizontal rectangle we note the intersection point of $x=1$ which gives $y=1$ and so the area is

$$
A=\int_{0}^{1}(2-y-\sqrt{y}) d y=2 y-\frac{y^{2}}{2}-\left.\frac{2}{3} y^{3 / 2}\right|_{0} ^{1}=5 / 6
$$

4. For the given $y=f(x)$ function and point $x=a$ calculate both $d y$ and Δy.

$$
\begin{array}{lll}
\text { (i) } f(x)=x^{2}, & x=2, & d x=\Delta x=.1 \\
\text { (ii) } f(x)=x^{3}-x+1, & x=1, & d x=\Delta x=.05
\end{array}
$$

Sol:
$4(i) \Delta y=f(2.1)-f(2)=(2.1)^{2}-2^{2}=.41 d y=f^{\prime}(x) d x=2 x d x$ and when $x=2$ and $d x=.1$ gives $d y=.4$.
$4($ ii $) \Delta y=f(1.05)-f(1)=\left(1.05^{3}-1.05+1\right)-\left(1^{3}-1+1\right)=.1076 d y=f^{\prime}(x) d x=$ $\left(3 x^{2}-1\right) d x$ and when $x=1$ and $d x=.05$ gives $d y=.10$.
5. Evaluate the following

$$
\begin{aligned}
\text { (i) } \frac{d}{d x} & \int_{1}^{x} \sin \left(t^{2}\right) d t=\sin \left(x^{2}\right) \\
\text { (ii) } \frac{d}{d x} \int_{x}^{x^{2}} \sqrt{1+t^{2}} d t & =\frac{d}{d x} \int_{x}^{0} \sqrt{1+t^{2}} d t+\frac{d}{d x} \int_{0}^{x^{2}} \sqrt{1+t^{2}} d t \\
& =-\frac{d}{d x} \int_{0}^{x} \sqrt{1+t^{2}} d t+\frac{d}{d x} \int_{0}^{x^{2}} \sqrt{1+t^{2}} d t \\
& =-\sqrt{1+x^{2}}+\sqrt{1+\left(x^{2}\right)^{2}} \cdot 2 x
\end{aligned}
$$

6. Evaluate the following indefinite integrals
(i) $\int \sec ^{2} x \tan x d x$

Let $u=\sec x$ so $d u=\sec x \tan x d x$ and the integral becomes

$$
\int u d u=\frac{u^{2}}{2}+c=\frac{\sec ^{2} x}{2}+c
$$

(ii) $\int \frac{e^{1 / x}}{x^{2}} d x$

Let $u=\frac{1}{x}$ so $d u=-\frac{1}{x^{2}} d x$ and the integral becomes

$$
\int-e^{u} d u=-e^{u}+c=-e^{1 / x}+c
$$

(iii) $\int \frac{x}{(x+1)^{2}} d x$

Let $u=x+1$ so $d u=d x$ and the integral becomes

$$
\int \frac{u-1}{u^{2}} d u=\int\left(\frac{1}{u}-\frac{1}{u^{2}}\right) d u=\ln |u|+\frac{1}{u}+c=\ln |x+1|+\frac{1}{x+1}+c
$$

(iv) $\int_{1}^{5} x \sqrt{x-1} d x$

Let $u=x-1$ so $d u=d x$ and the limits

$$
x=1 \Rightarrow u=0 \text { and } x=5 \Rightarrow u=4
$$

and the integral becomes

$$
\int_{0}^{4}(u+1) \sqrt{u} d u=\int_{0}^{4} u^{3 / 2}+u^{1 / 2} d u=\frac{2}{5} u^{5 / 2}+\left.\frac{2}{3} u^{3 / 2}\right|_{0} ^{4}=\frac{64}{5}+\frac{16}{3}=\frac{272}{15}
$$

(v) $\int_{0}^{\pi / 4} \sin x \cos x d x$

Let $u=\sin x$ so $d u=\cos x d x$ and the limits

$$
x=0 \Rightarrow u=0 \text { and } x=\pi / 4 \Rightarrow u=\sqrt{2} / 2
$$

and the integral becomes

$$
\int_{0}^{\sqrt{2} / 2} u d u=\left.\frac{u^{2}}{2}\right|_{0} ^{\sqrt{2 / 2}}=\frac{1}{4}
$$

(vi) $\int_{0}^{3} \frac{x}{\sqrt{x^{2}+16}} d x$

Let $u=x^{2}+16$ so $d u=2 x d x$ and the limits

$$
x=0 \Rightarrow u=16 \text { and } x=3 \Rightarrow u=25
$$

and the integral becomes

$$
\int_{16}^{25} \frac{\frac{1}{2} d u}{\sqrt{u}}=\left.\sqrt{u}\right|_{16} ^{25}=\sqrt{25}-\sqrt{16}=5-4=1
$$

