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m* – carrier effective mass
n – carrier concentration
μ – carrier mobility
L – Lorenz factor (2.4 x 10–8 J2 K–2 C–2)
Cv – heat capacity
lph – phonon mean free path
vs – mean velocity of sound (phonons)

Thermal conductivity:
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Phonon glass electron crystals

• Clathrates and skutterudites with framework 
structures containing guest cations.

• Loosely-bound “rattler” guest atoms lead to 
reduction of phonon velocities and therefore 
thermal conductivity.

• This does not inhibit electronic transport which is 
mediated through covalent framework.

Reducing intrinsic thermal conductivity:

• Increased structural complexity

– Large unit cell

– High molecular weight

– Layering/superlattices

• Disorder within the unit cell

– Mass/strain disorder through 
alloying

– Rattler effects

• Chemical bonding

– Strong anharmonicity

– Soft chemical bonding
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Oxides
• Titanates have unique electronic structures 

with multiple carriers resulting from high 
symmetry of crystal structure

n-type



Titanates

𝜏𝑝𝑑
−1 =

𝑉𝜔4

4𝜋𝜈p
2𝜈g
 

𝑖

𝑓𝑖 1 −
𝑚𝑖
 𝑚

2

+  

𝑖

𝑓𝑖 1 −
𝑟𝑖
 𝑟

2

Mass term Size term

ΓMF ΓSF

Phonon mean free path is directly proportional to phonon 
relaxation time (τ)

𝜅𝑙𝑎𝑡𝑡 =
1
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Phonon relaxation time due to point defect scattering:
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Lattice contribution dominant in oxides and is proportional to 
phonon mean free path (lph):

Matthiessen’s rule for scattering mechanism contributions to 
total thermal resistance:

Material ΓMF κ300 K

Sr0.9Y0.1TiO3 1.93 × 10–5 5.50

Sr0.9Dy0.1TiO3 5.58 × 10–2 4.50

Sr1–xLa0.67x0.33xTiO3, x=0.8 0.404 2.50

La0.5Na0.5TiO3 0.513 ?



Point defect scattering

Material ΓMF κ300 K

Sr0.9Y0.1TiO3 1.93 × 10–5 5.50

Sr0.9Dy0.1TiO3 5.58 × 10–2 4.50

Sr1–xLa0.67x0.33xTiO3, x=0.8 0.404 2.50

La0.5Na0.5TiO3 0.513 2.20

Cation substitution:

• STO and SDTO both display phonon-crystal 
characteristics

– typical T–1 dependence of κ at high temperatures

• Experimental data of STO and SDTO reproduced well by 
modified Callaway model for crystalline materials

• ΓMF of LNTO contributes 99.9% of total Γ parameter

– ΓSF contribution is negligible

• Introduction of high-mass contrast “disorder” through A 
site substitution reduces κ by 80% at room temperature.

Daniels and Savvin et al., Energy Environ. Sci., 10 (2017), 1917



Phonon mean free path
Cation substitution:

• Constant κ of LNTO above room 
temperature

• Close comparison against theoretical 
minimum (κmin) given by Cahill model for 
disordered solids

• Constant phonon MFP as function of T for 
LNTO due to vibrations localised over 
interatomic distances

Daniels and Savvin et al., Energy Environ. Sci., 10 (2017), 1917
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A site disorder
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Cation disorder:

• Despite glassy κ, material is 
perfectly crystalline

• A site cations disordered 
across the site

• Glassy behaviour of κ arises 
from random distribution of 
high-mass contrast cations

• Yields phonon-glass 
crystalline properties



Phonon glass La0.5Na0.5TiO3
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SrTiO3

Sr2+
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SrTiO3

Sr2+

La0.5Na0.5TiO3

La3+/Na+

Phonon glass La0.5Na0.5TiO3
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Static DFT calculations

La0.5Na0.5TiO3

Phonon density of states:

• Low frequency region (<300 cm-1)  
contributes heavily to thermal 
conductivity

• Region well defined (narrow) for 
SrTiO3

• Resonance at ~110 cm-1 agrees 
well with value used in Debye-
Callaway model used to describe κ

• A site cation disorder and high 
mass contrast results in 
broadened low-frequency region

• Flattening of phonon dispersions 
similar to clathrates and 
skutterudites

Calculations performed by Dr Sanliang Ling, UCL
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Phonon localisation in La0.5Na0.5TiO3

Phonon localisation:

• Computed average separation 
(daverage) between 10 atoms 
exhibiting largest 
displacements for each phonon 
mode

• Coherent phonon transport in 
STO through well-established 
periodic nearest neighbour 
couplings

• Phonons are more localised in 
LNTO as a result of disorder

Calculations performed by Dr Sanliang Ling, UCL



La0.5Na0.5Ti1–xNbxO3
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B site substitution:

• LNTO is hexagonal with R-3c

symmetry

• Substitution of Nb5+ expands unit cell 
and reduces octahedral tilting



Band structures
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Calculations performed by Dr Sanliang Ling, UCL

• Coexistence of dispersive and dispersion-less 
bands at the bottom of the conduction band is 
retained in LNTO



Electronic properties

Daniels and Savvin et al., Energy Environ. Sci., 10 (2017), 1917

B site substitution:

• Increasing carrier concentration increases σ, 
but decreases S

• Able to extract carrier concentrations 
through fitting of Seebeck data

• Large grain boundary contributions to σ
limit the power factor



La0.5Na0.5Ti1–xNbxO3
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Conclusions & plans

Future plans:

• Explore high-mass contrast combinations to target other phonon glass systems

• Optimise processing of titanate ceramics to enhance PF further

Conclusions:

• Phonon engineering of SrTiO3 through substitution to La0.5Na0.5TiO3 results in 
phonon-glass thermal conductivity

• Chemistry of La0.5Na0.5TiO3 analogous to that of SrTiO3, meaning it can be doped 
either through A or B site

• Phonon-glass thermal conductivity is retained upon B site substitution with donor 
Nb5+ which enhances electronic transport

• Thermal and electronic transport are largely decoupled in La0.5Na0.5Ti1–xNbxO3, 
yielding PGEC characteristics
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