
IJRECE VOL. 5 ISSUE 1 JAN.-MAR. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 37 | P a g e

The Hybrid Code Clone Detection Technique Using

Genetic Algorithm and Artificial Intelligence (FFNN)
Gagandeep Kaur1, Dr. Bikrampal Kaur2

1M.Tech Scholar, 2Professor

CSE department, Chandigarh Engineering College, Landran

Abstract - Code Clone has an adverse influence on code

quality and also code clones are most frequent problems that

may appear in a software project. Code clones also have an

impact on the effort of sustaining code that consequence in

loss of time and money. Software systems are getting many

unpredictable as the framework develops where keeping up

such framework is an essential concern for the software

commerce. Code clone is a particular type of the elements

which are making software maintenance further challenging.
The duplicate of code fragments and after that reuse by

sticking with or without minor changes or adjustments and

this type of reuse methodology of existing code is called

code cloning and the pasted code fragment (with or without

alterations) is recognized as a clone of the first one. The

significant danger of cloning is that it increases the

maintenance process. Cloning is fundamentally the method

for software reclaim and also this becomes the important

need of today's surroundings. That is the cause why code

cloning has been widely utilized as a part of vast software

businesses. In this thesis, utilization of feed forward neural
network classifier for the detection of code clone. In the first

step we use metrics based approach to identify code clone

then later. In metric technique identify the function

overloading, line of code. After feature extraction we, apply

the genetic optimization means identify the reduction of the

repeating functions and lines of codes. We use feed forward

neural network classifier for classification and then evaluate

it in some specific parameters like FAR, FRR and Accuracy.

The whole stimulation has been taken place in MATLAB

2016a. From the results, it had been concluded that

proposed technique are giving good results.

Keywords - Code clone, metric technique, feed forward

neural network, performance metric and function

overloading.

I. INTRODUCTION
The Code clone is one of the factors or computer program

that makes software maintenance more difficult [1]. It is a

code block of source files which is duplicate or similar to

another code block. Code clones concept is use in various

reasons such as reusing code by 'code-and-paste' and others

which make the source files very difficult to change

consistently. If the faults are found in one code of block

then the entire cloned blocks are needs change or adjustment

and it becomes extra difficult tasks to keep if the system

becomes very large.so we are use different approach or

techniques to detect clone in software. Like Token-Based,

text based, metric based and every approach use a unique

way to detect code clone in system. But the code clone has

many benefit or limitation. In case of advantages we discuss

the code clone use Code fragment proves its usability by

coping and reusing numerous times in the system that can

be combined in a library and announce its reuse potential

officially [2]. Finding similar code may also useful in

detecting plagiarism and copyright infringement [3]. And

used for compact device by reducing the source code size. A

part from the profits of code clones, it has more than one
impact on the feature, reusability and maintainability of a

software system. The following are the lists of some

problems are having cloned code in a system. If the code

section covers a bug and that section is reused through

coping and pasting without or with small adaptations, the

bug of the real section may remain in all the pasted sections

in the system and therefore, the chance of bug propagation

may increase significantly in the system . When increased

trouble in a system then maintains or up gradation of system

is more difficult. The reason of code cloning, clones does

not occur in the software themselves. There are various
reasons that tend the developer to do cloning [4]. A short

description for some of the factors is discussed in time limit

One of the major causes of code cloning is that a certain

time limit is assigned to developer to finish a project. To do

this developer just copy and paste the existing one and adapt

to their current need. Language Limitation Clones can be

presented due to the limitations of the language. Sometimes,

the developers are forced to copy because of limitations of

their knowledge in that particular programming language.

Difficulty in Understanding Large System It is generally

difficult to understand a big software system. These force

the developers to use the example-oriented programming by
adapting previously developed existing code. In this section

I explained that the code clone definition, detection, reason

and list of code clone detection. Section II, we examine the

previous work of the code cloning. In Section III, examine

that the code clone process and types of the cloning.Section

IV defined that the proposed technique and flow of the

proposed work with the help of data flow diagram

explained. In section V and VI examine the result

discussion and conclusion and future scope of the code

clone.

II. RELATED WORK

ImanKeivanlooet, al 2015 [4] defined that code clones are

unavoidable entities in software ecosystems. A variety of

clone-detection algorithms are available for discovery code

clones.). For Type-3 clone discovery at technique

granularity (i.e., similar methods with changes in

IJRECE VOL. 5 ISSUE 1 JAN.-MAR. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 38 | P a g e

statements), dissimilarity threshold was one of the possible

configuration parameters. In this paper propose a threshold-

free approach to detect the Type-3 clones at method

granularity across a large number of uses. Our approach

uses an unsupervised learning algorithm, i.e., k-means, to

determine true and false clones. RidhiGarg et.al; 2014 [5]
discussed the Code clone detection was widely accepted and

being carried out at the industrial level using a number of

tools. But laterally with clone detection, clone management

also becomes an imperative area of exploration. This paper

discusses a method to rank the clone discovery results in

order to manage them easily. Chanchal Kumar Roy et.al

2007 [6] described about the Code duplication or copying a

code fragment and then reuse by pasting with or without any

modifications of code smell in software maintenance. In this

paper survey the state of the art in clone detection research.

Balwinder Kumar et.al 2015 [7] described Code clones are

the duplicated code which degrade the software quality and
hence growth the maintenance cost. Recognition of clones

in a large software system was very tedious tasks but it was

needed to improve the design or structure and quality of the

software products. So In this paper, various types of metric

based clone detection approach and techniques are

discussed. DebarshiChatterji et.al 2013 [8] defined that

the Code clones are a common occurrence in most software

systems. Their presence was believed to an effect on the

maintenance process. So this paper describes an extended

replication of a controlled experiment (i.e. a strict

replication with an additional task) that analyses the
properties of cloned bugs (i.e. bugs in cloned code) on the

databaseconception of programmers.

III. PROCESS OF DETECTION CODE CLONE

Conservation is said to be the most exclusive part of

software development. Code cloning not only results in

raising the maintenance effort but also increases the

prospect of errors in software’s. Because of the difficulties

caused due to code cloning, it is required to recognize code
clones from software’s. The ID process is known as clone

detection.

a) Pre-processing: In the initial phase of clone detection

process the objective source is distributed as well as

comparison area is determined [9]. The principle targets to

be considered in this phase are deciding the source units,

evacuating uninteresting parts, and deciding the correlation
unit. All the source code uninteresting to the comparison

phase is filtered in this phase. After removing the

uninteresting code, the remaining main code is partitioned

into a set of disjoint fragments called source units.

b) Transformation: In the next stage, the source code's

comparison unit is transformed to another intermediate

internal representation of ease of comparison or for

extracting the comparable properties. The transformation

could be very simple by just removing the white space and

comments [10] or could be very complex by generating

PDG representation [11] or extensive source code

transformation.

c) Match Detection: The transformed code is given as input to

a suitable comparison unit, where it is compared with each

other in order to find the match. The order of comparison

units are used to sum up the adjacent similar units to form

larger units. The output of the comparison unit is a list of

matches with respect to the transformed code. These
matches can be either the clone pair candidate or they have

to be aggregated to form clone pair candidates. Then every

clone pair is generally represented with the location

information of the matched parts in the transformed code.

d) Formatting: In this stage, the clone pair list obtained with

respect to the transformed code is then converted to a clone

pair list obtained with respect to the original code base.

This one is at that moment transformed into line numbers

on the original source files.

e) Post-pre-processing: This stage helps out in filtering the

false positives in two ways such as manual analysis and

visualization tool.
f) Manual Analysis: once the first main code has been

extricated, the underdone code of the clones of the clone

couples imperilled to the specific manual analysis, with the

intention of filtering out the entire possible false positive.

g) Visualization: To speed up the manual analysis in filtering

out the false positives, visualization tool is used to

visualize the clone pair.

In table 1 below described that to detect the clones to image

out the problems and to help best software understandability

and maintenance.

Concerning the detection of duplicated code, numerous

methods have been successfully useful on industrial systems.

These techniques can be roughly [12] classified into following

categories:

Table 1: Techniques of Code Cloning

Technique Name

Description

String –based

separated into a number of strings

Token –based

lacer tool divides the program into a stream of

tokens

Syntactic -based

to convert source program into parse trees

Parse-tree based

One performs design matching on the tree to

search for same sub—trees.

Metric Based
Metrics are calculated from program and these are

used to find duplicated code.

Hybrid –based
Combination of other clone detection techniques.

IV. METHODOLOGY

The proposed algorithm used in code clone i.e genetic

algorithm used for optimization and FFNN used for

classification.

IJRECE VOL. 5 ISSUE 1 JAN.-MAR. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 39 | P a g e

A. Pseudo Code of Genetic Algorithm

Genetic algorithm is computer programs that simulator

the processes of natural evolution in order to solve

difficulties and to model evolutionary systems.

Differenttypesofthreeoperators [13]:

a) Selection

b) Crossover and

c) Mutation

Input :

a) population size A

b) Elitism rate B

c) Mutation C

d) Iterations/gens D

Output: Solution Y

//Definition

1. Initialize A randomly solution

feasible;

2. Save all the random solution in

the population popl;
3. For i=1 to D do

// elitisim

Number of elitism ne=A.B;

Select the positive outfit ne solutions

in popl and save in popl;

// Crossover

Number of crossover Nc-(A-ne)/2;

For j=1 to nc do

Random selection two solutions X1

and X2;

Save X3 and X4 to popl;
End for

//Mutation

For j=1 tons do

Select a solution Xi from popl;

Mutation each bit of Xi with the

feasible output by modifying Xj’;

End if

Change Xj with Xj n popl;

End for

// Changing

Change popl=popl1+popl2;
End for

// Refining the fit solution.

Return the fit output x in popl;

B. Feed Forward Neural Network

The Multilayer layer feed forward neural network performs

operation in two modes i.e. training and prediction [15]. The

training of the MLF neural network and for the prediction of

MLF neural network there is need of two data sets, training

data set and testing data set for the prediction of accuracy. The

training of feed forward neural network is mainly done using

Back propagation algorithm [14].

In this work FFNN and metric based approach will be used for

clone discovery. The whole implementation will take place in

following manner:

 Input data

 Apply Metric based technique to get features extraction.

 After Feature extraction, we apply the optimization
technique.

 Last one classification of code clones using Feed

Forward Neural Network. For the prediction of code

clone, data is collected & normalized. Then a single

layer perception neural network is created and trained

with the given dataset. After training, the network is

tested by the testing dataset and it predicts whether the

software project classes have the code clones or not.

 Evaluate the performance parameters like far, frr and

accuracy.

Fig.1 Proposed Flow chart

V. RESULT ANALYSIS

The main GUI of the code clone detection system in which
metric based method and neural network has been used.

This approach calculates metrics from source code and uses

Start

Load Text file of programming

Apply Metric Technique

Find the matrix of loaded file

Apply optimization Technique for

reduction

Classify the optimize data through

FFNN

Training _set

Testing _set

Upload the

programming file

Repeat the step 2

and 3, 4

 Detect clone and

calculate parameters

Stop

IJRECE VOL. 5 ISSUE 1 JAN.-MAR. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 40 | P a g e

these metrics to measure clones in software. Rather than

working on source code directly this approach use metrics to

detect clones. After this re-checking will be done using NN

classifier. Then Result evaluation will takes place.

Fig.2 False Acceptance Rate –FFNN

A system's FAR typically is stated as the ratio of the number
of false acceptances divided by the number of identification

attempts. Same here, plot a graph which uses the FAR

parameter for the proposed approach.

Fig.3 False Rejection Rate –FFNN

A system's FRR typically is stated as the ratio of the number

of false rejections divided by the number of identification

attempts. Above figure shows the rate of FRR for proposed

approach.

Fig.4 Accuracy-FFNN

Figure defines the accuracy description of the random

errors, measures of statistical variability. Accuracy is how

close a measured value is to the actual (true) value. Above
figure shows the accuracy value for proposed method and it

has been clearly seen that accuracy for proposed method is

good.

Table no: 2 Comparisons between Accuracy (FFNN

and ANN)
Category Accuracy (Existing) Accuracy(Proposed)

Code 1 96 97

Code 2 95 96.7

Code 3 90 97.8

Fig.5 Comparison between Accuracy proposed and

existing work

In this figure represents the comparison between
proposed and existing work. In feed forward

technique improve the accuracy parameters.

Accuracy is how close a measured value is to the actual

(true) value. Above figure shows the accuracy value for

IJRECE VOL. 5 ISSUE 1 JAN.-MAR. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 41 | P a g e

proposed method and it has been clearly seen that accuracy

for proposed method is good.

Table no: 3 Comparisons between False Acceptance
Rate (FFNN and ANN)

Category FAR(Existing) FAR(Proposed)

Code 1 0.06 0.04

Code 2 0.08 0.06

Code 3 0.013 0.067

Fig.7 False Acceptance Rate comparison with

Existing and Proposed Work

In this figure shows the comparison existing and proposed
work, false acceptance rate means positive data find using

classification in the testing Module and Extract the unique
Features. The false acceptance rate identifies the value is

the acceptable error is 0.0489. The False Acceptance rate

(FAR) is the probability that the system incorrectly

authorizes a non-authorized code, due to incorrectly

matching the code input with a template.

Table no: 4 Comparisons between False Rejection
Rate (FFNN and ANN)

Category FRR(Existing) FRR(Proposed)

Code 1 0.05 0.05

Code 2 0.07 0.058

Code 3 0.08 0.06

Fig.7 Comparison between FRR (existing and
Proposed) Work

Figure shows comparison between Existing and Proposed

Work, the false rejection rate (FAR) means negative data

collect using Feed forward neural network (FFNN) for
classification and feature identifies the scale invariant

feature transform. The false rejection rate (FAR) compute

the value is 0.05.

VI. CONCLUSION AND FUTURE SCOPE

All the advantages and disadvantages of various approaches

discussed but it clearly shows that no one method is able to

find the clones correctly. All the methodologies talked about

above gives 75-85% exactness in recognition and

examination of code clones however nobody methodology

has the capacity discover all clones more than this precisely.

So it is presumed that metric based system utilizing neural

system give more precise results when contrasted with

different methods. And infer that the metric based clone

discovery methodology utilizing neural system is

exceptionally compelling approach as it found the clones
furthermore helps in recognizing the clones of every sorts.

Utilizing metric based system different elements has been

extricated like no. of functions, private functions, public

functions, function overloading. Future scope lies in the use

of abstract syntax based approach in combination with

neural network or SVM classifier.

VII. REFERENCES

[1]. Lakhotia, Arun, Junwei Li, Andrew Walenstein, and Yun
Yang. "Towards a clone detection benchmark suite and
results archive." In Program Comprehension, 2003. 11th
IEEE International Workshop on, .vol.no.11, pp. 285-286,
IEEE, 2003.

[2]. Baker, Brenda S. "On finding duplication and near-
duplication in large software systems." In Reverse
Engineering, 1995., Proceedings of 2nd Working Conference

on, Vol.no.95,pp. 86-95.,IEEE, 1995.

IJRECE VOL. 5 ISSUE 1 JAN.-MAR. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 42 | P a g e

[3]. C .K. Roy. J.R. Cordy and R. Koschke, “Comparison and
Evaluation of Code Clone Detection Techniques and Tools:
A Qualitative Approach." Science of Computer
Programming, vol.74. no. 7. pp. 470-495. May 2009.

[4]. Keivanloo, Iman, Feng Zhang, and Ying Zou. "Threshold-
free code clone detection for a large-scale heterogeneous

Java repository." In 2015 IEEE 22nd International
Conference on Software Analysis, Evolution, and
Reengineering (SANER), pp. 201-210. IEEE, 2015.

[5]. Garg, Ridhi, and RajkumarTekchandani. "An approach to
rank code clones for efficient clone management."
In Advances in Electronics, Computers and Communications
(ICAECC), 2014 International Conference on, pp. 1-5. IEEE,
2014.

[6]. Roy, Chanchal Kumar, and James R. Cordy. "A survey on
software clone detection research." Queen’s School of

Computing TR 541, no. 115 (2007): 64-68.

[7]. Kumar, Balwinder, and Satwinder Singh. "Code Clone
Detection and Analysis Using Software Metrics and Neural
Network-A Literature Review." Complexity 1, no. 2 (2015):
3.

[8]. Chatterji, Debarshi, Jeffrey C. Carver, Nicholas A. Kraft, and
Jan Harder. "Effects of cloned code on software
maintainability: A replicated developer study." In WCRE,
pp. 112-121. 2013.

[9]. Balazinska, Magdalena, Ettore Merlo, Michel Dagenais,
Bruno Lague, and Kostas Kontogiannis. "Measuring clone

based reengineering opportunities." In Software Metrics
Symposium, 1999. Proceedings. Sixth International, vol.no.5,
pp. 292-303. IEEE, 1999.

[10].T. Kaniiya. S. Kusumoto. and K. Inoue. "CCFinder: A
MultiLinguistic Token- Based Code Clone Detection System
for Large Scale Source Code." IEEE Trans. Software
Eng..vol. 28.no. 7. pp. 654-670. July 2002.

[11].Ducasse, Stéphane, Matthias Rieger, and Serge Demeyer. "A
language independent approach for detecting duplicated

code." In Software Maintenance, 1999.(ICSM'99)
Proceedings. IEEE International Conference on, Vol.no.1,
pp. 109-118., IEEE, 1999.

[12].Tairas, Robert, and Jeff Gray. "Phoenix-based clone
detection using suffix trees." In Proceedings of the 44th
annual Southeast regional conference, Vol.no.8, pp. 679-

684. ACM, 2006.

[13].Patenaude, J-F., Ettore Merlo, Michel Dagenais, and Bruno
Laguë. "Extending software quality assessment techniques to
java systems." In Program Comprehension, 1999.
Proceedings. Seventh International Workshop on, vol.no.3,
pp. 49-56., IEEE, 1999.

[14].Krinke, Jens. "Identifying similar code with program
dependence graphs." In Reverse Engineering, 2001.
Proceedings. Eighth Working Conference on, vol.no.4, pp.
301-309. IEEE, 2001.

[15].Marcus, Andrian, and Jonathan I. Maletic. "Identification of
high-level concept clones in source code." In Automated
Software Engineering, 2001.(ASE 2001). Proceedings. 16th
Annual International Conference on, vol. 2, pp. 107-114.
IEEE, 2001.

http://28.no/

