

CAPABILITY STATEMENT

Robert A. Leishear, Ph. D., P.E., PMP
ASME Fellow, NACE Senior Corrosion Technologist, NACE Senior Internal Corrosion Technologist
Leishear Engineering, LLC
Email – leishear@aol.com, Website – leishearengingineeringllc.com
205 longleaf Court, Aiken, S. C., 29803, 803-641-6753

CAREER SUMMARY

Robert A. Leishear, Ph. D., P. E., PMP is a Fellow of the American Society of Mechanical Engineers (ASME), a Consulting Engineer for Leishear Engineering, LLC, a licensed Professional Engineer in South Carolina, and a member of several ASME international piping and pressure vessel committees. He has traveled far from his days of walking on four inch I-beams, 500 feet in the air without fall protection, to his present position as a Doctor of Engineering. His wide range of skills developed along the way are tools to troubleshoot piping system, pump, and fluid flow problems to increase industrial business successes. As an Engineering Consultant, his current research interests are dedicated primarily to investigations for water main breaks, gas pipeline explosions, and nuclear power plant explosions.

Recent research at Pantex, a nuclear weapons assembly plant in Amarillo, Texas was performed to investigate 22 years of piping failures in a fire suppression system. Water hammer was identified and corrective actions were implemented. Underground water main breaks were nearly eliminated when partial recommendations were implemented.

Dr. Leishear troubleshoots technical problems and has solved long misunderstood engineering problems by inventing new theory as required – some failure problems were misunderstood for more than a century. In short, diverse experience as a tradesman and engineer, along with 24 years of night school, were earned to design, build, and operate industrial systems, with a specialty in Fluid, Structural, and Machinery Dynamics. As a lead research, design, and test engineer on many projects, he applied inventive solutions to engineering problems, and saved Savannah River Site (SRS) well in excess of \$78,000,000 over twenty four years.

To document project successes, he wrote an ASME book along with more than 85 publications that included Conference and Honors Journal papers, along with articles in the Mensa World Journal, the AWWA Opflow magazine, the NACE Materials Performance Magazine, and the ASME Magazine that were printed to 280,000 members in 158 countries in total. Research topics included: pump and piping design; fluid mechanics; mixing; fluid transients; non-Newtonian fluids; mass transfer: nuclear reactors; nuclear reactor accidents; explosions; machinery and structural failure analysis; vibrations; vacuums; structural dynamics; and stress analysis.

Skills include teaching experience, a sheet metal mechanic apprenticeship, welding and electrician training, a Bachelor's degree in Mechanical Engineering from Johns-Hopkins University, membership in ASME piping committees, attendance in ASME piping courses, completion of two years of Process Engineer training for nuclear facilities, and Masters and Doctorate degrees in Mechanical Engineering from the University of South Carolina (USC), which targeted industrial and nuclear processes. A second PhD for a Doctorate in Nuclear Engineering is in process.

Dr. Leishear also earned a dozen corporate awards, several ASME awards, and a Mensa Intellectual Creativity Award. His skills, continuing education, and his major accomplishments are summarized below.

KEYWORDS

Troubleshooting, Fluid Flow, Vibrations, Failure Analysis, Piping Design, Corrosion, Pumps, Mechanical Seals, Gas Flow, Fires, Explosions, Machinery, Mixing, Pilot Scale Testing, and Piping Failures.

Major Accomplishments: Failure Analysis and Design

Troubleshooting Skills	Problem Definition	Cost Savings	Publications	Awards
Machinery Vibration	1.3 Million dollar	\$20,000,000	ASME: Journals and	SRS V.P.
Analysis	pump failures	Six σ Analysis	Conferences	Award
Piping Failure	200 Piping failures	\$15,000,000	ASME Book, "Fluid	ASME
Analysis	over 40 years		Mechanics, Water Hammer,	Fellow: 3% of
			Dynamic Stresses, and Piping	140,000
			Design"	members are
			ASME: Honors Journal papers	Fellows
Pilot Scale	Experimental testing:	\$3,500,000	ASME: Magazine, Journal,	SRS Vice
Experiments, Mixing	Mixing of one		and Conferences	President's
and Mass Transfer	million gallon tanks		AIChE Conferences	Award
Engineering Design,	Remotely operated	\$40,000,000	Department of Energy:	SRS Vice
Testing, Installation,	robotic arm used in a		Conference	President's
and Operations	high radiation area			Award
Fires and Explosions	Explosions and fires	In progress	ASME: Magazine,	Mensa Award
	in nuclear reactor		Conferences, and Journals	for
	plants – Fukushima,		Mensa World Journal	Intellectual
	Three Mile Island			Achievement
Engineering Design	Electronic connector	n/a	Installed worldwide on all	U.S. Patent.
	for first strike		personal computers and	Westinghouse
	nuclear protection on		printers for many years, and	President's
	military aircraft radar		still used extensively	Award
Trades	Electrician, HVAC	Welder, Fitter	Sheet Metal Mechanic	Carpenter

Ph. D. / Postgraduate Studies: Failure Analysis and Design

		J	3. I dilate Allalysis		
Fluid Mechanics	Fluid Flow	Mass Transfer,	Water Hammer	Advanced	Thermal
	and Gas	Diffusion, and		Thermodynamics	Hydraulics
	Dynamics	Heat Transfer			
Structures and	Fatigue and	Machinery and	Metallurgy,	HVAC Design	Structural
Machinery	Fracture	Building	Journeyman Sheet	and Servicing,	Shock Waves
	Mechanics	Vibrations	Metal Mechanic	Electrician	and Acoustics
Computer	Fluent	Ansys	AFT, Water	Matlab	Autodyne
Modeling		Structural	Hammer		
Combustion	Combustion	Combustion	Explosions	Combustion	Explosion
	Kinetics	Physics	_	CFD Modeling	CFD Modeling
Nuclear	Reactor	Reactor Design	Safeguards and	Radiation	Risk and
Engineering	Materials	and Fuel Cycles	Security	Shielding	Safety
					Analysis
Nuclear Reactor	Heat and	Reactor Core	Reactor Fuel	Reactor Physics:	Uncertainty
Modeling	Fluid Flow:	Modeling:	Depletion: Origen	Polaris, Triton,	Analysis:
	Relap5, Trace	Parcs		Keno, Mavrik	Tsunami
Process Engineer	Steam	Power	Instrumentation	Heat	Compressors,
	Systems,	Distribution	and Process	Exchangers,	Valves,
	Safety Valves		Control, VFDs,	Fans, Diesel	Pumps,
			Motors	Generators	Regulators
Piping and Pump	ASME B31.1,	High	Non-destructive	Piping Dynamics	Pump Design,
Design	B31.3 Piping,	Temperature	Analysis, Pressure	and Earthquake	Mechanical
	and Section	and High	Vessel Inspector,	Design, Fitness	Seal Design,
	VIII Pressure	Pressure Design	Piping Failure	for Service	and Mixing
	Vessels	of Piping	Analysis		Technology
Codes	NQA-1	ASTM, API	DOT, DOE, DOD	ISO, NIST	Hydraulic Inst.
NACE Corrosion	Pipeline	Corrosion	Cathodic	Protective	Coating
	Corrosion	Design	Protection	Coatings	Inspections