Math 3331 - Sample Test 3 solns

1. Solve the following using the variation of parameters

(i)
$$y'' + y = \tan x$$
,
(ii) $y'' + 3y' + 2y = \frac{1}{e^x + 1}$.

1(i). The homogeneous equation is

$$y'' + y = 0$$

The characteristic equation for this is $m^2 + 1 = 0$ giving $m = \pm i$. Thus, the complementary solution is

$$y = c_1 \sin x + c_2 \cos x.$$

Now we vary the parameters

$$y = u\sin x + v\cos x.\tag{1}$$

Taking the first derivative, we obtain

$$y' = u'\sin x + u\cos x + v'\cos x - v\sin x,$$

from which we set

$$u'\sin x + v'\cos x = 0,$$

leaving

$$y' = u\cos x - v\sin x. \tag{2}$$

Calculating one more derivative gives

$$y'' = u'\cos x - u\sin x - v'\sin x - v\cos x.$$
 (3)

Substituting (1) and (3) into the original ODE and canceling gives

$$u'\cos x - \mu\sin x - v'\sin x - \mu\cos x + \mu\sin x + \mu\cos x = \tan x$$

or

$$u'\cos x - v'\sin x = \tan x. \tag{4}$$

Equations (2) and (4) are two equations for u' and v' which we solve giving

$$u' = \sin x, \quad v' = -\frac{\sin^2 x}{\cos x}.$$

Integrating each respectively gives

$$u = -\cos x$$
, $v = \sin x - \ln |\sec x + \tan x|$

and from (2) we obtain the particular solution

$$y = -\cos x \sin x + (\sin x - \ln |\sec x + \tan x|) \cos x$$
$$= -\cos x \ln |\sec x + \tan x|.$$
(5)

This then gives rise to the general solution

$$y = c_1 \sin x + c_2 \cos x - \cos x \ln |\sec x + \tan x|.$$

1(ii). The homogeneous equation is

$$y'' + 3y' + 2y = 0$$

The characteristic equation for this is $m^2 + 3m + 2 = 0$ giving m = -1, -2. Thus, the complementary solution is

$$y = c_1 e^{-x} + c_2 e^{-2x}.$$

Now we vary the parameters

$$y = ue^{-x} + ve^{-2x}.$$
 (6)

Taking the first derivative, we obtain

$$y' = u'e^{-x} - ue^{-x} + v'e^{-2x} - 2ve^{-2x},$$

from which we set

$$u'e^{-x} + v'e^{-2x} = 0, (7)$$

leaving

$$y' = -ue^{-x} - 2ve^{-2x}.$$
 (8)

Calculating one more derivative gives

$$y'' = -u'e^{-x} + ue^{-x} - 2v'e^{-2x} + 4ve^{-2x}.$$
(9)

Substituting (6), (8) and (9) into the original ODE and canceling gives

$$-u'e^{-x} + ue^{-x} - 2v'e^{-2x} + 4ve^{-2x} - 3ue^{-x} - 6ve^{-2x} + 2ue^{-x} + 2ve^{-2x} = \frac{1}{e^{x} + 1}$$
(10)

or

$$-u'e^{-x} - 2v'e^{-2x} = \frac{1}{e^x + 1}.$$
(11)

Equations (7) and (11) are two equations for u' and v' which we solve giving

$$u' = \frac{e^x}{e^x + 1}, \quad v' = -\frac{e^{2x}}{e^x + 1}.$$

Integrating each respectively gives

$$u = \ln(e^x + 1), \quad v = -e^x + \ln(e^x + 1)$$

and from (6) we obtain the particular solution

$$y = \ln (e^{x} + 1) e^{-x} + (-e^{x} + \ln (e^{x} + 1)) e^{-2x}$$

= $(e^{-x} + e^{-2x}) \ln (e^{x} + 1).$ (12)

noting that the piece e^{-x} can be absorbed into the complementary solution. This then gives rise to the general solution

$$y = c_1 e^{-x} + c_2 e^{-2x} + \left(e^{-x} + e^{-2x}\right) \ln\left(e^x + 1\right).$$

2(i)

$$\frac{d\bar{x}}{dt} = \begin{pmatrix} 1 & 2\\ 5 & -2 \end{pmatrix} \bar{x} \tag{13}$$

then the characteristic equation is

$$\begin{vmatrix} \lambda - 1 & -2 \\ -5 & \lambda + 2 \end{vmatrix} = \lambda^2 + \lambda - 12 = (\lambda + 4)(\lambda - 3) = 0,$$

from which we obtain the eigenvalues $\lambda = -4$ and $\lambda = 3$.

Case 1: $\lambda = -4$

In this case we have

$$\begin{pmatrix} -5 & -2 \\ -5 & -2 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

from which we obtain upon expanding $5c_1 + 2c_2 = 0$ and we deduce the eigenvector

$$\bar{c} = \left(\begin{array}{c} 2\\ -5 \end{array}\right),$$

so one solution is

$$\bar{x}_1 = \left(\begin{array}{c}2\\-5\end{array}\right)e^{-4t}.$$

Case 2: $\lambda = 3$

In this case we have

$$\begin{pmatrix} 2 & -2 \\ -5 & 5 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

from which we obtain upon expanding $c_1 - c_2 = 0$ and we deduce the eigenvector

$$\bar{c} = \left(\begin{array}{c} 1\\1 \end{array}\right)$$

from which we obtain the other solution

$$\bar{x}_1 = \left(\begin{array}{c} 1\\1 \end{array}\right) e^{3t}.$$

The general solution to (13) is then given by

$$\bar{x} = c_1 \begin{pmatrix} 2 \\ -5 \end{pmatrix} e^{-3t} + c_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{4t}.$$

2(ii)

Consider

$$\frac{d\bar{x}}{dt} = \begin{pmatrix} 1 & -1\\ 1 & 3 \end{pmatrix} \bar{x}, \quad \bar{x}(0) = \begin{pmatrix} 5\\ -2 \end{pmatrix}$$
(14)

then the characteristic equation is

$$\begin{vmatrix} \lambda - 1 & 1 \\ -1 & \lambda - 3 \end{vmatrix} = \lambda^2 - 4\lambda + 9 = (\lambda - 2)^2 = 0,$$

from which we obtain the eigenvalues $\lambda = 2$ and $\lambda = 2$ – repeated. As in problem 2(i) we find the eigenvector associated with this

Case 1: $\lambda = 2$

In this case we have

$$\begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

from which we obtain upon expanding $c_1 + c_2 = 0$ and we deduce the eigenvector

$$\bar{c} = \left(\begin{array}{c} 1\\ -1 \end{array}\right),$$

so one solution is

$$\bar{x}_1 = \left(\begin{array}{c} 1\\ -1 \end{array}\right) e^{2t}.$$

For the second independent solution we seek a second solution of the form

$$\bar{x}_2 = \bar{u}te^{2t} + \bar{v}e^{2t}.$$
(15)

As shown in class, $\bar{u} = \bar{c}$ and \vec{v} satisfies

$$\begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = - \begin{pmatrix} 1 \\ -1 \end{pmatrix},$$
1 choose
$$(16)$$

or $v_1 + v_2 = -1$. Here, we'll choose

$$\bar{v} = \left(\begin{array}{c} -1\\ 0 \end{array}\right)$$

Therefore, the second solution is

$$\bar{x}_2 = \begin{pmatrix} 1\\ -1 \end{pmatrix} e^{2t} + \begin{pmatrix} -1\\ 0 \end{pmatrix} e^{2t}$$

and the general solution

$$\bar{x} = c_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{2t} + c_2 \left[\begin{pmatrix} 1 \\ -1 \end{pmatrix} t e^{2t} + \begin{pmatrix} -1 \\ 0 \end{pmatrix} e^{2t} \right],$$

Imposing the initial condition gives

$$c_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} + c_2 \begin{pmatrix} -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 5 \\ -2 \end{pmatrix}$$

This gives $c_1 - c_2 = 5$ and $-c_1 = -2$ so $c_1 = 2$ and $c_2 = -3$. The general solution then becomes

$$\bar{x} = 2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{2t} - 3 \left[\begin{pmatrix} 1 \\ -1 \end{pmatrix} t e^{2t} + \begin{pmatrix} -1 \\ 0 \end{pmatrix} e^{2t} \right],$$

2(iii)

$$\frac{d\bar{x}}{dt} = \begin{pmatrix} 6 & -1\\ 5 & 4 \end{pmatrix} \bar{x}.$$
(17)

The characteristic equation is

$$\begin{vmatrix} \lambda - 6 & 1 \\ -5 & \lambda - 4 \end{vmatrix} = \lambda^2 - 10\lambda + 29 = 0.$$

Using the quadratic formula, we obtain $\lambda = 5 \pm 2i$ (so $\alpha = 5$ and $\beta = 2$). For the eigenvectors, we wish to solve

$$\left(\begin{array}{cc} 5+2i-6 & 1\\ -5 & 5+2i-4 \end{array}\right) \left(\begin{array}{c} v_1\\ v_2 \end{array}\right) = \left(\begin{array}{c} 0\\ 0 \end{array}\right),$$

or

$$\begin{pmatrix} -1+2i & 1\\ -5 & 1+2i \end{pmatrix} \begin{pmatrix} v_1\\ v_2 \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix},$$

which means solving

$$-5v_1 + (1+2i)v_2 = 0.$$

One solution is

So here

$$\bar{v} = \begin{pmatrix} 1+2i\\5 \end{pmatrix} = \begin{pmatrix} 1\\5 \end{pmatrix} + \begin{pmatrix} 2\\0 \end{pmatrix} i.$$
$$\bar{z} = \begin{pmatrix} 1\\5 \end{pmatrix} = \bar{z} = \begin{pmatrix} 2\\0 \end{pmatrix}$$

$$\bar{A} = \begin{pmatrix} 1 \\ 5 \end{pmatrix} \quad \vec{B} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}.$$

With $\alpha = 5$ and $\beta = 2$ gives

$$\vec{x}_1 = \left[\begin{pmatrix} 1\\5 \end{pmatrix} \cos 2t - \begin{pmatrix} 2\\0 \end{pmatrix} \sin 2t \right] e^{5t}, \quad \vec{x}_2 = \left[\begin{pmatrix} 1\\5 \end{pmatrix} \sin 2t + \begin{pmatrix} 2\\0 \end{pmatrix} \cos 2t \right] e^{5t}.$$

The general solution is just a linear combination of these two

$$\vec{x} = c_1 \left[\left(\begin{array}{c} 1\\5 \end{array} \right) \cos 2t - \left(\begin{array}{c} 2\\0 \end{array} \right) \sin 2t \right] e^{5t} + c_2 \left[\left(\begin{array}{c} 1\\5 \end{array} \right) \sin 2t + \left(\begin{array}{c} 2\\0 \end{array} \right) \cos 2t \right] e^{5t} + c_2 \left[\left(\begin{array}{c} 1\\5 \end{array} \right) \sin 2t + \left(\begin{array}{c} 2\\0 \end{array} \right) \cos 2t \right] e^{5t} + c_2 \left[\left(\begin{array}{c} 1\\5 \end{array} \right) \sin 2t + \left(\begin{array}{c} 2\\0 \end{array} \right) \cos 2t \right] e^{5t} + c_2 \left[\left(\begin{array}{c} 1\\5 \end{array} \right) \sin 2t + \left(\begin{array}{c} 2\\0 \end{array} \right) \cos 2t \right] e^{5t} + c_2 \left[\left(\begin{array}{c} 1\\5 \end{array} \right) \sin 2t + \left(\begin{array}{c} 2\\0 \end{array} \right) \cos 2t \right] e^{5t} + c_2 \left[\left(\begin{array}{c} 1\\5 \end{array} \right) \sin 2t + \left(\begin{array}{c} 2\\0 \end{array} \right) \cos 2t \right] e^{5t} + c_2 \left[\left(\begin{array}{c} 1\\5 \end{array} \right) \sin 2t + \left(\begin{array}{c} 2\\0 \end{array} \right) \cos 2t \right] e^{5t} + c_2 \left[\left(\begin{array}{c} 1\\5 \end{array} \right) \sin 2t + \left(\begin{array}{c} 2\\0 \end{array} \right) \cos 2t \right] e^{5t} + c_2 \left[\left(\begin{array}{c} 1\\5 \end{array} \right) \sin 2t + \left(\begin{array}{c} 2\\0 \end{array} \right) \cos 2t \right] e^{5t} + c_2 \left[\left(\begin{array}{c} 1\\5 \end{array} \right) \sin 2t + \left(\begin{array}{c} 2\\0 \end{array} \right) \cos 2t \right] e^{5t} + c_2 \left[\left(\begin{array}{c} 1\\5 \end{array} \right) \sin 2t + \left(\begin{array}{c} 2\\0 \end{array} \right) \cos 2t \right] e^{5t} + c_2 \left[\left(\begin{array}{c} 1\\5 \end{array} \right) \cos 2t \right] e^{5t} + c_2 \left[\left(\begin{array}{c} 1\\5 \end{array} \right) \cos 2t \right] e^{5t} + c_2 \left[\left(\begin{array}{c} 1\\5 \end{array} \right) \cos 2t \right] e^{5t} + c_2 \left[\left(\begin{array}{c} 1\\5 \end{array} \right) \cos 2t \right] e^{5t} + c_2 \left[\left(\begin{array}{c} 1\\5 \end{array} \right) \cos 2t \right] e^{5t} + c_2 \left[\left(\begin{array}{c} 1\\5 \end{array} \right) \cos 2t \right] e^{5t} + c_2 \left[\left(\begin{array}{c} 1\\5 \end{array} \right) \cos 2t \right] e^{5t} + c_2 \left[\left(\begin{array}{c} 1\\5 \end{array} \right) \cos 2t \right] e^{5t} + c_2 \left[\left(\begin{array}{c} 1\\5 \end{array} \right) \cos 2t \right] e^{5t} + c_2 \left[\left(\begin{array}{c} 1\\5 \end{array} \right) \cos 2t \right] e^{5t} + c_2 \left[\left(\begin{array}{c} 1\\5 \end{array} \right) \cos 2t \right] e^{5t} + c_2 \left[\left(\begin{array}{c} 1\\5 \end{array} \right) \cos 2t \right] e^{5t} + c_2 \left[\left(\begin{array}{c} 1\\5 \end{array} \right) \cos 2t \right] e^{5t} + c_2 \left[\left(\begin{array}{c} 1\\5 \end{array} \right) \cos 2t \right] e^{5t} + c_2 \left[\left(\begin{array}{c} 1\\5 \end{array} \right) \cos 2t \right] e^{5t} + c_2 \left[\left(\begin{array}{c} 1\\5 \end{array} \right) \cos 2t \right] e^{5t} + c_2 \left[\left(\begin{array}{c} 1\\5 \end{array} \right) \exp 2t \right] e^{5t} + c_2 \left[\left(\begin{array}{c} 1\\5 \end{array} \right) \exp 2t \right] e^{5t} + c_2 \left[\left(\begin{array}{c} 1\\5 \end{array} \right) \exp 2t \right] e^{5t} + c_2 \left[\left(\begin{array}{c} 1\\5 \end{array} \right] e^{5t} + c_2 \left[\left(\begin{array}{c} 1\\5 \end{array} \right) \exp 2t \right] e^{5t} + c_2 \left[\left(\begin{array}{c} 1\\5 \end{array} \right] e^{5t} + c_2 \left[\left(\begin{array}{c} 1\\5 \end{array} \right] e^{5t} + c_2 \left[\left(\begin{array}{c} 1\\5 \end{array} \right] e^{5t} + c_2 \left[\left(\begin{array}{c} 1\\5 \end{array} \right] e^{5t} + c_2 \left[\left(\begin{array}{c} 1\\5 \end{array} \right] e^{5t} + c_2 \left[\left(\begin{array}{c} 1\\5 \end{array} \right] e^{5t} + c_2 \left[\left(\begin{array}{c} 1\\5 \end{array} \right] e^{5t} + c_2 \left[\left(\begin{array}{c} 1\\5 \end{array} \right] e^{5t} + c_2 \left[\left(\begin{array}{c} 1\\5 \end{array} \right] e^{5t} + c_2 \left[\left(\begin{array}{c} 1\\5 \end{array} \right] e^{5t} + c_2 \left[\left(\begin{array}{c} 1\\5 \end{array} \right] e^{5t} + c_2 \left[\left(\begin{array}{c} 1\\5 \end{array} \right] e^{5t} + c_2 \left[\left$$