Fluency, Word Problems, and

 Mathematics Intervention
MA+:

MA+折

Sarah R. Powell, Ph.D.

Professor
College of Education
The University of Texas at Austin

Introduce yourself.

Describe your strengths in supporting mathematics.

Describe an opportunity for growth.

Fluency, Word Problems, and Mathematics Intervention for Students
srpowell@utexas.edu @sarahpowellphd www.sarahpowellphd.com

Instructional Platform

Instructional Delivery

Instructional Strategies

Instructional Platform

x $\mathrm{A}+\dot{1}$

What's the continuum of mathematics support?

Anita Archer (2019)

Instructional Platform

evidence-based strategy
A method or strategy that has shown consistent and positive results

What's the continuum of mathematics support?

IES

Assisting Students Struggling with Mathematics: Intervention in the Elementary Grades

What Works Clearinghouse ${ }^{\mathrm{TM}}$

WWC 20y006

Students require modeling and practice on how to use the language of mathematics.

Students should use hands-on tools, virtual manipulatives, drawings, and other visuals to understand mathematics concepts and procedures.

Teachers should use systematic and explicit instruction to help students develop a strong foundation for specific mathematics skills.

Teachers should use fluency building activities to build counting fluency and fluency with the operations.

Students should learn how to set up and solve word problems by combining an attack strategy with a focus on word-problem schemas.

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES

Vocabulary

$x A+1 \dot{1}$

$x A+1 \cdot 1$

Use formal math language

Use terms precisely

Use semantic maps

Use word walls

difference

The result of subtracting or the result when
comparing two numbers.

$$
5-4=1
$$

horizontal line

A straight line that goes from left to right or right to left.
1 is the difference

equivalent

Two numbers that have the same value.

total

The result or sum when adding numbers.

$$
5+7=12
$$

Use flash cards

addend

divisor
factor
dividend
quotient
sum
difference

Use glossaries

equal - with the same value

equation - expressions with an equal sign

$$
5=2+3
$$

edge - line segment between faces

Glosario de Matemáticas

Tėrmino	Definición
adición (add)	Juntar o agregar.
algoritmo (algorithm)	Es una serie de pasos organizados que describe el proceso que se debe seguir, para dar solución a un problema especifico.
alinear (array)	Un conjunto de objetos, imágenes o números alineados en columnas y filas.
ancho (width)	La medida de un lado de un objeto, generalmente el lado más corto.
ángulo (angle)	Dos semirrectas o segmentos de linea recta que comparten un punto final.
ángulo agudo (acute angle)	Un ángulo que mide menos de 90°.
ángulo obtuso (obtuse angle)	Un ángulo que mide entre $90^{\circ} \mathrm{y} 180^{\circ}$.
ángulo recto (right angle)	Un ángulo que mide exactamente 90°.
área (area)	La cantidad de unidades cuadradas que cubre una figura geométrica cerrada.
balance presupuestario (balance the budget)	Un presupuesto es cuando la cantidad total de dinero gastado, ahorrado y compartido es igual al ingreso total.
báscula (balance scale)	Instrumento de medición que se utiliza para medir el peso o la carga.
base (computación) (base (computation))	Un número que se multiplica por un exponente.
base (geometria) (base (geometry))	La forma inferior de una figura tridimensional.

Use anchor charts

Addition Computation

1
17 addend
+59 addend
76
sum

Quadrilaterals

Rhombus

Square

Trapezoid
\square

Use graphic organizers

Use games

square	circle	decagon	triangular prism	cone
cylinder	cube	sphere	line	pyramid
paraltelogram	octagon	FREE	trapezoid	oval
kite	pentagon	cylinder	rectangle	line
hexagon	rhombus	triangle	quadrilateral	rectangular
				prism

Use games

Use discussion

Use technology

Prîcabul Math

Addition \&
Subtraction

Geometry \&
Measurement

Multiplication \& Division

Statistics \&
Probability

Numbers \&
Operations

Ratios \&
Proportional
Relationships

Use math writing

1 Would hale cole af by not parting them into thirds because he, put 1 and $\frac{2 / 3}{2}$ but the ancwes should be Mrs, So hex I would draw thee lines the make them into so pieces but put next to cocrotlef. Then vow shade in 3 of the squares and keep the offers done then that row be the correct way to do $3 / 3$.

What Alex did wrong was that it was
that he las five pectrokes but fogey ape different cites so first what I would do is. draw s rectanacs side by bide then what you Wow do to clade \Rightarrow of then ane the toul equal as c_{5} thant wows be the correct why to sole it.
Lewd holp Bo out by he shored three eectrogls wish is corect bat the he left 5 shaded woe there hood Only pe 2 Sent mectandegs so if lou cone a_{3} feetongtes then then arouses would be plo and that is the correct i day to sate it.

Use read-alouds

Model and practice

```
Teacher Let's work on addition. Today, let's think about addition as combining. What does it mean to combine?
Students Put together.
Teacher When we combine, we put things together. When you cook, you put ingredients together. For example, to make macaroni and cheese, you combine what?
Students Macaroni noodles and cheese!
Teacher That's right. You combine macaroni and cheese! Now, let's think about combining numbers. Look at this problem.
(Show problem.)
```


Make sure students use mathematics vocabulary as much as adults do!

$x A+|\cdot|$

Where does VOCABULARY fit within your scope and sequence? What are your plans for your teachers?

Students require modeling and practice on how to use the language of mathematics.

Students should use hands-on tools, virtual manipulatives, drawings, and other visuals to understand mathematics concepts and procedures.

Teachers should use systematic and explicit instruction to help students develop a strong foundation for specific mathematics skills.

Teachers should use fluency building activities to build counting fluency and fluency with the operations.

Students should learn how to set up and solve word problems by combining an attack strategy with a focus on word-problem schemas.

Representations

$x A+1 \cdot 1$

Students require modeling and practice on how to use the language of mathematics.

Students should use hands-on tools, virtual manipulatives, drawings, and other visuals to understand mathematics concepts and procedures.

Teachers should use systematic and explicit instruction to help students develop a strong foundation for specific mathematics skills.

Teachers should use fluency building activities to build counting fluency and fluency with the operations.

Students should learn how to set up and solve word problems by combining an attack strategy with a focus on word-problem schemas.

Model and Practice

$x A+1 \dot{1}$

MODELING
 step-by-step explanation

Planned examples

PRACTICE

Guided practice
Independent practice

SUPPORTS

Ask high-level and low-level questions
Eliciting frequent responses
Providing affirmative and corrective feedback

Students require modeling and practice on how to use the language of mathematics.

Students should use hands-on tools, virtual manipulatives, drawings, and other visuals to understand mathematics concepts and procedures.

Teachers should use systematic and explicit instruction to help students develop a strong foundation for specific mathematics skills.

Teachers should use fluency building activities to build counting fluency and fluency with the operations.

Students should learn how to set up and solve word problems by combining an attack strategy with a focus on word-problem schemas.

Fluency

$x A+1 \dot{1}$

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES

Fluency

Mathematics fluency, particularly fluency with facts and computation, is related to overall mathematics performance.
(Bailey et al., 2012; Cirino et al., 2019; Koponen et al., 2007, 2017; Vukovic et al., 2014

Fact fluency practice improves mathematics fact performance.
(Burns et al., 2010; Codding et al., 2011; McCallum et al., 2004; Nelson et al., 2013; Poncy et al., 2010; schutte et al., 2015; stocker \& Kubina, 2017)

$$
\begin{aligned}
& \text { Fluency is } \\
& \text { doing } \\
& \text { mathematics } \\
& \text { easily and } \\
& \text { accurately. }
\end{aligned}
$$

Fluency in

 mathematics makes mathematics easier.Fluency
provides less stress on working memory.

Fluency helps students build confidence with
mathematics.

With fluency, it is important to emphasize both conceptual learning and procedural learning.

Addition	Subtraction
Multiplication	Division

Ease and accuracy

Memorization or automaticity
$x \mid A+1 \cdot 1$

	-
	\| A + +

List different types of fluency. Discuss whether they require memorization.

100 addition facts

Single-digit addends sum to a single- or doubledigit number

$$
\begin{aligned}
5 & \text { (addend) } \\
+\quad 4 & \text { (addend) } \\
\hline 9 & \text { (sum) }
\end{aligned}
$$

Count one set, count another set, put sets together, count sum

$$
2+3=5
$$

Change

Start with a set, add the other set, count sum

$$
2+3=5
$$

Parts put together into a total

Karly saw 4 cardinals and 5 blue jays. How many birds did Karly see?

Change
An amount that increases or decreases

Premila had \$4. Then they earned \$5 for cleaning their room. How much money does Premila have now?

$3+9=$

If you teach elementary: What's a Total story to show addition?
If you teach secondary: What's a Change/Join story to show addition?

100 subtraction facts
Subtrahend and difference are single-digit numbers and minuend is single- or double-digit number

Start with a set, take away from that set, count difference

$$
5-3=2
$$

Compare two sets, count difference

$$
5-3=2
$$

Change

An amount that increases or decreases

Bronwyn had 9 cookies. Then they ate 2 of the cookies. How many cookies does Bronwyn have now?

Greater and lesser amounts compared for a

Rachel has 9 apples. Jodie has 2 apples. How many more apples does Rachel have? (How many fewer does Jodie have?)

If you would chose beaches: What's a Change/Separate story to show subtraction?
If you would chose mountains: What's a Difference story to show subtraction?

100 multiplication facts

Multiplication of single-digit factors results in a single- or double-digit product

$$
\begin{aligned}
2 & \text { (factor) } \\
\times 3 & \text { (factor) } \\
\hline 6 & \text { (product) }
\end{aligned}
$$

Show the groups, show the amount for each group, count product

$3 \times 2=6$

Show the groups, show the amount for each group, count product

$$
3 \times 2=6
$$

Comparison

Show a set, then multiply the set

$$
3 \times 2=6
$$

Groups multiplied by number in each group for a product

Rhiannon has 3 boxes of crayons. There are 8 crayons in each box. How many crayons does Rhiannon have altogether?

Comparison

Set multiplied by a number of times for a product

Vivienne had 8 stickers. Jessica had 3 times as many stickers as Vivienne. How many stickers did Jessica have?

$2 \times 5=$

If you wear glasses: What's an Equal Groups story to show multiplication?
If you don't wear glasses: What's a Comparison story to show multiplication?

Division

90 division facts

Divisor and quotient are single-digit numbers and dividend is single- or double-digit number

$$
\left.\begin{array}{l}
8 \div 4=2 \\
\text { (dividend) } \\
\text { (divisor) }
\end{array} \text { (quotient) }\right) ~ \$
$$

Show the dividend, divide equally among divisor, count quotient

Show the dividend, make groups of the divisor, count groups

$$
8 \div 2=4
$$

Division

Groups multiplied by number in each group for a product
Stefanie has 12 pencils. She wants to share them equally among her 2 friends. How many pencils will each friend receive?

Nicole has 12 pencils. She put them into pencil pockets with 6 pencils each. How many pencil pockets did Nicole use?

$12 \div 4=$

If you watch comedies: What's a Partitive story to show division?
If you watch dramas: What's a Quotative story to show division?

Addition

 subtractionBuild fluency with math facts.

- Addition: single-digit addends
- Subtraction: single-digit subtrahend
- Multiplication: single-digit factors
- Division: single-digit divisor

DAILY

BRIEF

Work on small sets of facts
Work on unknown facts
(in combination with known facts)

Dice

Beach Ball

4 plus 6 equals 10.

7 plus 6 equals 13.

2 plus 2 equals 4.

Dominoes

2 times 4 equals 8 .

6 times 9 equals 54 .

7 times 1 equals 7 .

Playing Cards

Wrap-Ups

$x A+\dot{H}$

Mobi Math

9

Flash Cards

Bingo

Math Bingo

12		24	100	
15	0	42	16	20
8	35		6	4
	2	40	27	7
50	10	30	48	14

8 times 10 equals...

3 times 1 equals...

Magic Squares

Magic Squares Board

1. Place the sum or product in the bottom right corner.
2. In the bottom row, create a fact with a sum or product of the bottom right corner.
3. In the right column, create a fact with a sum or product of the bottom right corner.
4. Create two columns with a sum or product of the bottom number.
5. Create two rows with a sum or product of the right column number
6. Write the created facts below.

$$
\begin{aligned}
& 0+2=2 \\
& 5+4=9
\end{aligned} \quad \begin{aligned}
& 2-0=2 \\
& 9-5=4
\end{aligned}
$$

Cover, Copy, Compare

Com, comp		
	9	8
	+6	$\times 6$
	54	48
7		6
$\times 8$		+ 5
56		30
9		7
+9		$\times 9$
81		63
6		8
$\times 7$		$\times 5$
42		40
8		7
$\times 8$		$\times 7$
64		49

File Folder

$6+3=9$
$1+7=8$
$6+4=10$
$7+3=$
$2+7=$
$5+6=$
$4+7=$
$7+8=$
$6+7=$
$7+9=$
$7+6=$
$8+7=$
$7+0=$
$9+6=$
$6+0=$
$6+8=$

Taped Problems

Taped Problems

$\begin{array}{r} 8 \\ \times 8 \\ \hline 64 \end{array}$	$\begin{array}{r} 7 \\ \times 7 \\ \hline 49 \end{array}$	$\begin{array}{r}8 \\ \times 7 \\ \hline\end{array}$
$\begin{array}{r} 6 \\ \times 5 \end{array}$	$\begin{array}{r} 6 \\ \times 7 \end{array}$	$\begin{array}{r} 6 \\ \times 8 \end{array}$
$\begin{array}{r} 5 \\ \times 7 \end{array}$	$\begin{array}{r} 5 \\ \times 5 \end{array}$	$\begin{array}{r} 5 \\ \times 6 \end{array}$
$\begin{array}{r} 6 \\ \times 6 \\ \hline \end{array}$	$\begin{array}{r} 8 \\ \times 6 \end{array}$	$\begin{array}{r}7 \\ \times 6 \\ \hline\end{array}$
$\begin{array}{r} 7 \\ \times 8 \\ \hline \end{array}$	$\begin{array}{r} 8 \\ \times 5 \\ \hline \end{array}$	$\begin{array}{r}7 \\ \times 5 \\ \hline\end{array}$

Games

敞 Reflex
Get your free 30 -day trial

Help your students attain math fact fluency success whether in-person, remote, or through hybrid learning

Game-based system to improve math fact fluency for grades 2-6 in less than 30 days!

*/ Games/ flashard
FAGT MONSTER

Flasheard

subtraction Level 3 1:51
13
6

DAILY

BRIEF

Work on small sets of facts
Work on unknown facts
(in combination with known facts)

Addition	Subtraction
Multiplication	Division

Build fluency with
whole-number computation

Multiplication

Division

1009
124
$-\quad 7$

Addition	Subtraction
Multiplication	Division

> Build fluency with rational-number computation

$\frac{9}{4}-\frac{3}{8}$

$$
\begin{array}{r}
7.892 \\
\div \quad 0.14 \\
\hline
\end{array}
$$

Build fluency with integer computation

$$
\begin{array}{r}
1.4 \\
+\quad-3.9 \\
\hline
\end{array}
$$

6
$\times \quad-12$
$-14-(-7)=$
$-135 \div 2=$

Partial Sums

A.

$$
\begin{array}{r}
74 \\
+\quad 18 \\
\hline 80 \\
+12 \\
\hline 92
\end{array}
$$

в. $\quad 725$

$$
\begin{array}{r}
365 \\
+1,000 \\
+\quad 80 \\
+\quad 10 \\
\hline 1,090
\end{array}
$$

Opposite Change

$$
\begin{aligned}
& \text { A. } 74 \xrightarrow{-4} 70 \\
& +18 \xrightarrow{+4}+22 \\
& \text { 8. } \quad 725 \xrightarrow{+5} 730 \\
& +365^{-5} \xrightarrow{1,090}
\end{aligned}
$$

227
$\begin{array}{r}+\quad 185 \\ \hline\end{array}$

Partial Differences

$$
\text { А. } \begin{array}{rr}
62 \\
-\quad 17 \\
+50 & 305 \\
-\quad 5 & +300 \\
\hline 45 & -90 \\
& -909 \\
\hline
\end{array}
$$

Same Change

A. | $62 \stackrel{+3}{+} 65$ | |
| ---: | ---: |
| $-\quad 17 \stackrel{+3}{\longrightarrow}-20$ | |
| 45 | $-\quad 96 \xrightarrow{+4} 309$ |
| 209 | |

Add Up

Partial Products

$$
\text { A. } \begin{array}{r}
24 \\
\times \quad 43 \\
\hline 800 \\
160 \\
+\quad 60 \\
+\quad 12 \\
\hline 1,032
\end{array}
$$

$\begin{array}{r}132 \\ 8 . \\ \times \quad 53 \\ 5000 \\ 1500 \\ 100 \\ 300 \\ +\quad 90 \\ \hline 6996 \\ \hline\end{array}$

Area (Array)

Lattice

Partial Quotients

A. 12 | 158 |
| ---: |
| -120 |
| $\begin{array}{r}38 \\ -36 \\ 2\end{array}$ |
| |
| |
| |$\frac{3}{13 \mathrm{RZ}}$

$$
\text { B. } \begin{array}{r}
4 \begin{array}{r}
8970 \\
-680 \\
\hline 290 \\
-170 \\
\hline 1720 \\
102 \\
\hline 18
\end{array} \\
\hline 20 \\
\hline 28 R 18
\end{array}
$$

Lattice

8. $3 4 \longdiv { 9 7 0 }$ R 18


```
FLUENCY
What are your strengths?
```

What are your opportunities for growth?
What are your plans for next Monday?
Next month?
Next year?

WORD PROBLEMS
Research and Information

What are your strengths with fluency?

What are your opportunities for growth?

What are your plans for next Monday?
Next month?
Next year?
$|x A+|\cdot|$

Where does FLUENCY fit within your scope and sequence? What are your plans for your teachers?

Students require modeling and practice on how to use the language of mathematics.

Students should use hands-on tools, virtual manipulatives, drawings, and other visuals to understand mathematics concepts and procedures.

Teachers should use systematic and explicit instruction to help students develop a strong foundation for specific mathematics skills.

Teachers should use fluency building activities to build counting fluency and fluency with the operations.

Students should learn how to set up and solve word problems by combining an attack strategy with a focus on word-problem schemas.

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES


```
FLUENCY
What are your strengths?
W\mathrm{ What are your opportunities for growth?}
What are your plans for next Monday?
Next month?
Next year?
WORD PROBLEMS
Research and Information
```

Key words tied to operations is an ineffective wordproblem strategy.
(Karp et al., 2019; Powell et al., 2022)

Using a meta-cognitive strategy improves word-problem performance.
(Freeman-Green et al., 2015; Krawec et al., 2012; Montague et al., 2011; Swanson et al., 2014)

A focus on schemas improves word-problem performance. (Alghamdi et al., 2020; Cook et al., 2020; Flores et al., 2016; Fuchs et al., 2021; Griffin et al., 2019; Jitendra et al., 2013; Lein et al., 2020; Peltier et al., 2020; Powell et al., 2022; Xin \& Xhang, 2009; Zheng et
al., 2013)

1. Keywords tied to operations

Carmelita had 8 pencils fewer than Jenny. If Jenny had 18 pencils, how many pencils did Carmelita have?

Carmelita had 8 pencils fewer than Jenny. If Carmelita had 18 pencils, how many pencils did Jenny have?

Description of Single-Step Word Problems $(n=132)$

	Occurre		$\begin{array}{r} \mathrm{Al}^{2} \\ \text { keyv } \end{array}$		Sch spe keyw	afic $\mathrm{rds}^{\mathrm{a}}$			Keywor to co solu) led ct ${ }^{3}$
Schema	n	\%								
Total	27	20.5	26	96.3	23	88.5	5	19.2	21	80.8
Difference	17	12.9	17	100.0	14	82.4	2	11.8	12	70.6
Change	11	8.3	7	63.6	5	71.4	5	71.4	2	28.6
Equal groups	29	22.0	26	89.7	22	84.6	18	69.2	8	30.8
Comparison	10	7.6	9	90.0	9	100.0	4	44.4	5	55.6
Ratios or proportions	29	22.0	23	79.3	9	39.1	9	39.1	6	26.1
Product of measures	9	6.8	9	100.0	8	88.9	1	11.1	5	55.6
${ }^{3}$ When a problem featured a keyword.										

Description of Multi-Step Word Problems ($n=84$)

Schema	Occurrence of schema ${ }^{\text {a }}$		Any keyword		Keyword(s) led to correct solution ${ }^{\text {b }}$	
	n	\%	n	\%	n	\%
Total	40	47.6	39	97.5	3	7.7
Difference	11	13.1	11	100.0	1	9.1
Change	21	23.8	19	95.0	1	5.3
Equal groups	49	58.3	48	98.0	1	2.1
Comparison	7	8.3	7	100.0	0	0.0
Ratios or proportions	22	25.0	16	76.2	1	6.3
Product of measures	7	8.3	7	100.0	2	28.6

${ }^{3}$ Sum across schemas does not equal 100 because each word problem featured more than one schema.
${ }^{\text {b }}$ When a problem featured a keyword.

Keywords are important to identify and understand

Keywords are the mathematical vocabulary that help an students understand what the story is about and what they need to do

Talk about keywords ("What does more than tell you about?")

But, do not tie a keyword to a specific operation!

2. Presenting problems by operation

1. Noah had 12 books. He got 5 more bo did Nooh have in all?
2. Edward had 5 toy cars cars did Edward have
3. Mariela collected 11 fe How many feathers dic
4. Bonnie found 8 rocks on he backyard. How many rocly

5. Zookeeper Als
qual number ot 567 bananas. How mc How many are left ove

VISION BLEMS
onkey at the zoo an nonkeys in the 200 and ach monkey get? And ach monkey get? And
elfz elf? k them up equally ox and how much

WORD PROBLEMS

Attack Strategies
\quad SOLVE
Study the problem
Organize the information
Line up a plan
Verify the plan
Examine the answer

UPS Check
Understand
Plan
Solve
Check

R-CUBES
Read the problem
Circle key numbers
Underline the question Box action words
Evaluate steps
Solve and check

Teach an attack strategy

Teach about schemas
x

RIDE

Read the problem.
Identify the relevant information.
Determine the operation and unit for the answer.
Enter the correct numbers and calculate, then check the answer.

RICE

RIDGES

Read and record the problem. Illustrate your thinking. Compute.
Explain your thinking.
Read the problem.
I know statement.
Draw a picture.
Goal statement.
Equation development.
Solve the equation.

SUPER

Slowly read the story problem twice.
Underline the question and circle the numbers you need.
picture it. Draw the scenario to show what is happening. Explain the problem with a number sentence.
Rewrite the answer in a sentence.

STAR

SHINES

Slowly and carefully read the problem. Highlight or underline key information. Identify the question by drawing a circle around it.
Now solve the problem. Show your work.
Examine your work for precision, accuracy, and clarity.
Share your answer by writing a sentence.

Stop and read the problem carefully.
Think about your plan and
the strategy you will use.
Act. Follow your plan and solve
the problem.
Review your answer.

SOLVE

Study the problem.

Organize the information.
Line up the plan.
Verify the plan.
Examine the answer.

R-CUBES

Read the problem.
Circle key numbers.
Underline the question.
Box action words.
Evaluate steps.
Solve and check.

UPS,
 Understand
 Read and explain.

Plan
How will you solve the problem?
Solve
Set up and do the math!

Јснеск

Does your answer make sense?

Share your favorite attack strategy.

Teach an attack strategy

Teach about schemas
x

Total

Difference

Change

Equal Groups

Comparison

Ratios/Proportions

Schema and Definition	Equations and Graphic Organizers				Examples			Variations
Total (Combine; Part-partwhole) Parts combined for a sum	$P 1+P 2=T$ (part + part $=$ total)				Sum unknown: Lyle has 11 red apples and 18 green apples. How many apples does Lyle have altogether?	Part unknown: Lyle has 29 red and green apples. If 11 of the apples are red, how many green apples does Lyle have?		More than two parts: Lyle has 34 apples. Of the apples, 11 are red, 18 are green, and the rest are yellow. How many yellow apples does Lyle have?
Difference (Compare) Sets compared for a difference	$B-s=D$ (bigger - smaller = difference)		$G-L=D$ (greater - less $=$ difference) (greater)		Difference unknown: Sasha wrote 85 words in her essay, and Tabitha wrote 110 words. How many fewer words did Sasha write than Tabitha?	Bigger/greater unknown: Tabitha wrote 25 more words than sasha. If Sasha wrote 85 words, how many words did Tabitha write?	smaller/lesser unknown: Tabitha wrote 110 words in her essay. Sasha wrote 25 words fewer than Tabitha. How many words did sasha write?	(None)
Change (Join; Separate) An amount that increases or decreases	$S T+/-C=E$ (start $+/-$ change $=$ end)				End (decrease) unknown: Jorge had \$52. Then, he spent $\$ 29$ at the ballpark. How much money does Jorge have now?	Change (decrease) unknown: Jorge had $\$ 52$ but spent some money when he went to the ballpark. Now, Jorge has $\$ 23$. How much did Jorge spend at the ballpark?	Start (increase) unknown: Jorge has some money, and then he earned $\$ 16$ for babysitting. Now, Jorge has $\$ 68$. How much money did he have to start with? start (decrease) unknown: Jorge had some money. Then, he spent $\$ 29$ at the ballpark and has $\$ 23$ left. How much money did Jorge have before going to the ballpark?	Multiple changes: Jorge had \$78. He stopped and bought a pair of shoes for $\$ 42$ and then he spent $\$ 12$ at the grocery. How much money does Jorge have now?

Material collected from: Griffin \& Jitendra, 2009; Fuchs et al., 2014; Fuchs, Seethaler, et al., 2008; Fuchs et al., 2010; Jitendra, 2002; Kintsch \& Greeno, 1985; Van de Walle, Karp, \& Bay-Williams, 2013.

Total

Additive

Difference

Schemas

Change

Total
Part-part-whole Combine

Parts put together into a total

Mandy saw 3 canoes and 8 kayaks. How many boats did Mandy see?

Mandy saw 11 boats. If 3 of the boats were canoes, how many were kayaks?

Mandy saw 11 boats. 8 of the boats were kayaks, how many were canoes?

Total

"Are parts put together for a total?"

Total

P1 + P2 $=$ T

Difference

Greater and lesser amounts compared for a difference

L'Tanya has 10 pencils. Vickie has 4 pencils. How many more pencils does L'Tanya have?

L'Tanya has 6 more pencils than Vickie. If Vickie has 4 pencils, how many does L'Tanya have?

Vickie has 6 fewer pencils than L'Tanya. L'Tanya has 10 pencils. How many pencils does Vickie have?

Difference

Greater amount

Lesser
amount

Total
"Are parts put together for a total?"

Difference
"Are amounts compared for a difference?"

Difference

$5 \rightarrow$

Change

An amount that increases or decreases

Annette had 6 notebooks. Then, she bought 3 notebooks. How many notebooks does Annette have now?

Annette had 6 notebooks. Then, she bought a few more notebooks. Now, Annette has 9 notebooks. How many notebooks did she buy?

Annette had some notebooks. Then, she bought 3

Change
amount

Start amount

Change

An amount that increases or decreases

Jenny baked 9 cookies. Then, she ate 3 of the cookies. How many cookies does Jenny have now?

Jenny baked 9 cookies. Then, she ate some of the cookies. Now, she has 6 cookies. How many cookies did Jenny eat?

Change amount

Total
"Are parts put together for a total?"

Difference
"Are amounts compared for a difference?"

Change
"Does an amount increase or decrease?"
$1 x A+H$

Change
St $+1-C=$

Total

Difference

Change

Equal Groups

Comparison

Ratios/Proportions

Multiplicative Schemas

Equal Groups

Comparison

Ratios/Proportions

Groups multiplied by number in each group for a product

Evan has 2 boxes. There are 6 muffins in each box. How many muffins does Evan have?

Evan has 12 muffins. They want to place them equally into 2 boxes. How many muffins will Evan place in each box?

Product

Number in each group

Groups

Evan has 12 muffins. They put them into boxes with 6 muffins each. How many boxes did Evan use?

Equal Groups
"Are there groups with an equal number in each group?"

Equal Groups

$$
\begin{aligned}
& G R \times N=P \\
& G R \times E=P
\end{aligned}
$$

$\times A+1 \dot{1}$

Comparison

Set multiplied by a number of times for a product

Joan ran 6 minutes. L'Tanya ran 4 times longer than Joan. How many minutes did l'Tanya run?

Equal Groups

"Are there groups with an equal number in each group?"

Comparison
"Is a set compared a number of times?"

Comparison

(set)

Ratio/Proportion

Description of relationships among quantities

Melissa baked cookies and brownies. The ratio of cookies to brownies was $3: 5$. If she baked 25 brownies, how many cookies did she bake?

Emma typed 56 words in 2 minutes. At this rate, how many words could Emma type in 7 minutes?

Equal Groups

"Are there groups with an equal number in each group?"

Comparison
"Is a set compared a number of times?"
Ratio/Proportion
"Are there relationships among quantities - if this, then this?"
$x A+E$

Ratio/Proportion

Ratio/
Proportion

Multi-step Problems

Find or write your own.
Have a partner solve.

Directive Problems

UPS, UNDERSTAND
 Read and explain.

PLAN
How will you solve the problem?

Solve

Set up and do the math!

What are your strengths with problem solving?

What are your opportunities for growth?

What are your plans for next Monday? Next month?

Next year?

Students require modeling and practice on how to use the language of mathematics.

Students should use hands-on tools, virtual manipulatives, drawings, and other visuals to understand mathematics concepts and procedures.

Teachers should use systematic and explicit instruction to help students develop a strong foundation for specific mathematics skills.

Teachers should use fluency building activities to build counting fluency and fluency with the operations.

Students should learn how to set up and solve word problems by combining an attack strategy with a focus on word-problem schemas.

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES

WORD PROBLEMS

What are your strengths?

What are your opportunities for growth?

What are your plans for next Monday?
Next year?

INSTRUCTIONAL PLATFORM
Instructional Platform
What's YOUR instructional platform? What are your plans for your teachers?

Where does WORDPROBLEM SOLVING fit within your scope and sequence? What are your plans for your teachers?

Resources

xA+

https://intensiveintervention.org

National Center on
INTENSIVE INTERVENTION
at American Institutes for Research

Intensive	Tools	Implementation	Intervention	Information
Intervention ₹	Charts v	Support -	Materials ~	For... •

Intensive Intervention in
 Mathematics Course Content

NCII, through a collaboration with the University of Connecticut, developed a set of course content focused on developing educators' skills in designing and delivering intensive mathematics instruction This content is designed to support faculty and professional development providers with instructing p

MODULE 5: INTENSIVE MATHEMATICS INTERVENTION: INSTRUCTIONAL STRATEGIES service and in-service educators who are developing and/or refining their implementation of intensive mathematics intervention.

> Intensive instruction was recently identified as a high-leverage practice in special educations , and DBI is a research based approach to delivering intensive instruction across content areas (NCII, 2013). This course provides learners with an opportunity to extend their understanding of intensive instruction through in-depth exposure to DBI in mathematics, complete with exemplars from actual classroom teachers.

> NCII, through a collaboration with the University of Connecticut and the National Center on Leadership in Intensive Intervention and with support from the CEEDAR Center『, developed course content focused on enhancing educators' skills in intensive mathematics intervention. The course includes eight modules that can support faculty and professional development providers with instructing pre-service and in-service educators who are learning to implement intensive mathematics intervention through data-based individualization (DBI). The content in this course complements concepts covered in the Features of Explicit Instruction Course and so we suggest that users complete both courses.

https://meadowscenter.org/resource/10-key-mathematics-practices-for-all-elementary-schools-with-strong-evidence-of-effectiveness-from-high-quality-research/

https://meadowscenter.org/resource/10-key-math-practices-for-all-middle-and-high-schools-with-strong-evidence-of-effectiveness-from-high-quality-research/

Instructional Routines for Mathematics Intervention

The purpose of these mathematic instructional routines is to provide educators with materials
to use when providing intervention to students who experience difficully with mathematics. The ouse when providing intervention to students who experience dififculty with mathematics. The
outines address content included in the grades 2.8 Texas Essential Knowiedge and Skills (TEKS). There are 23 modules that include routines and examples - each focused on on diferent mathematical
content. Each of the 23 modules include vocabulay cards and problem sets to use during content. Each of the 23 modulues include vocabulary cards and problem sets to use during instruction. These materials are intended to be implemented explicity with the aim of improving
mathematics outcomes for students. IEA

Module 9:
 Subtraction of Rational Numbers

Problem Sets

A. Proper fractions with like denominators and sums <1 (20)
B. Improper fractions with like denominators and sums >1 (10)
C. Mixed numbers with like denominators and sums >1 (10)
D. Proper fractions with unlike denominator and sums $<1(20)$
E. Improper fractions with unlike denominator and sums >1 (10)

Mixed numbers with unlike denominator and sums >1 (10)
G. Decimals with tenths; no regrouping (20)
H. Decimals with tenths; regrouping (20)
I. Decimals with hundredths; no regrouping (20)
J. Decimals with hundredths; no regrouping (20)
K. Decimals with tenths and hundredths; mix of regrouping (20)

numerator

The term in a fraction that tells how many parts of a fraction.

$$
2 / 3 \frac{2}{3} \text { In these fractions, } 2 \text { is the numerator. }
$$

ones

The digit representing 1.
In the number $4.23,4$ is in the ones place.
https://spedsupportstage.tea.texas.gov/resource-library/instructional-routines-mathematics-intervention

Myths That Undermine Maths Teaching

Sarah R. Powell, Elizabeth M. Hughes, and Corey Peltier

Centre for Independent Studies

MATHS PRACTICES YOU CAN COUNT ON

A Guide to Five Research-Validated
Practices in Mathematics
Sarah R. Powell, Sarah G. King, and Sarah A. Benz

$$
\begin{aligned}
& \text { THE CENTRE FOR } \\
& \hline \text { INDEPENDENT } \\
& \hline \text { STUDIES }
\end{aligned}
$$

Centre for Independent Studies

https://ies.ed.gov/ncee/wwc/PracticeGuide/26

https://www.mathspiral.com

https：／／www．youtube．com／channel／UCE2puwDtUSNXFONIOhmYmvA

Elementary Math Leads Survey

March 11, 2024

Sarah R. Powell, Ph.D.

Professor
College of Education
The University of Texas at Austin

