# Math 2371 Calc III Sample Test 3 

1.(i) Is the following vector field conservative?

$$
\vec{F}=<y z+3, x z+4 y, x y+3 z^{2}>
$$

If so, find the potential $\phi$. Use this to evaluate

$$
\int_{c}(y z+3) d x+(x z+4 y) d y+\left(x y+3 z^{2}\right) d z
$$

where $c$ is any path from $(0,0,0)$ to $(1,2,3)$.

1. (ii) Is the following vector field conservative?

$$
\vec{F}=<2 x y, x^{2}+z^{2}, 2 y z>
$$

If so, find the potential $\phi$. Use this to evaluate

$$
\int_{c} 2 x y d x+\left(x^{2}+z^{2}\right) d y+2 y z d z
$$

where $c$ is any path from $(0,0,0)$ to $(1,2,3)$.
2. Evaluate the following line integral $\int_{c} x y d s$ where $c$ is counterclockwise direction around a circle of radius 1 from $(1,0)$ to $(0,1)$.
3. Green's Theorem is

$$
\int_{C} P d x+Q d y=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A
$$

Verify Green's Theorem where $\vec{F}=<y^{2}, x^{2}+2 x y>$ and $R$ is the region bound by the curves $y=x^{2}, y=1$ and $x=0$ in $Q 1$.
4. Evaluate $\iint_{S} z d S$ where $S$ is the surface of the paraboloid $z=1-x^{2}-y^{2}, z \geq 0$.
5. Find the flux $\iint_{S} \vec{F} \cdot \hat{n} d S$ of the vector field $\vec{F}=<2 x, 2 y, 2 z+2>$ through the surface of the plane $x+y+z=1$ in the first quadrant.

