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Abstract

Let T be a Quasi - * - class A normal operator on a complex Hilbert space H. In this paper, we prove
that if E is the Riesz idempotent for a non-zero isolated point A of the spectrum of T € B(H) of Quasi -
* _ class A normal operator, then E is self-adjoint and EH = ker(T — 1) = ker (T — 2)". We will also prove
a necessary and sufficient condition for T &9 S to be quasi - * - class A normal where T and S are both

non-zero operators.
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Introduction

Studies on Hilbert space operators has
been carried out over a period of time by
several authors [1]. Let B(H) denote the
algebra of all bounded linear operators acting
on an infinite dimensional separable Hilbert
space H. For a positive operators A and B, we
write A > B if A— B > 0. If A and B are
invertible [2] and positive operators, it is well
known that A > B implies that log A > log B
[3]. However from [4], log A >log B does not
necessarily imply A > B. A result due to [5]
states that for invertible positive operators A
and B, log A > log B if and only if A" > (A™
B'A")Y2 for all r > 0 [6]. For an operator T, let
U|T| denote the polar decomposition of T,
where U is a partially isometric operator, |T| is
a positive square root of T T and ker (T) = ker
(U) = ker (|T[), where ker(T) denotes the
kernel of operator T [7]. An operator T €
B(H) is positive, T > 0, if (Tx, x) > 0, for all
X€H and posinormal if there exists a positive
A such that TT" = T'AT. Here 1 is called
interrupter of T [8]. In other words, an
operator T is called posinormal if TT <
c“T'T, where T is the adjoint of T and ¢ > 0
[9]. An operator T is said to be herminormal
if T is hyponormal and T'T commutes with
TT". An operator T is said to be p -
posinormal if (TT )p < ¢*(T'T)p for some ¢ >
0 [10]. It is clear that p - posinormal is

posinormal. An operator T is said to be p -
hyponormal, for p€(0, 1), if (T'T)p > (TT)p.
In [11], they have characterized class A
operator as follows. An operator T belongs to
class A if and only if (T*|T|T)¥? > T'T. An
operator T is said to be paranormal if ||T%x|| >
[|T||? and * - paranormal if |[T%x|| > ||T x||?
for all unit vector x € H [12].

Recently, authors in [13] have
considered the new class of operators: An
operator T € B(H) belongs to = - class A
normal if |T?| > |T'|°. The authors of [14]
have extended x - class A normal operators to
quasi - * - class A normal operators. An
operator T € B(H) is said to be quasi - = -
class A normal if T'|T?|T > T'|T'|°T and quasi
- - paranormal if |[T"Tx||? < ||Tx||||Tx||, for
all x € H [15]. An operator T is said to be
Quasi - * - class A normal operator [16] on a
complex Hilbert space H if T (|T?| — |T [T >
0.

As a further generalization, [17] has
introduced the class of k - quasi - * - class A
normal operators. An operator T is said to be
k - quasi - = - class A normal operator on a
complex Hilbert space H if T" (|T%| — [TH)T >
0 where k is a natural number. An operator T
is called normal if T'T = TT and (p, k) -
quasihyponormal if T*(T'T)" — (TT)")T >0
(0 < p <1, k €N). The authors in [18-23]
introduced p - hyponormal, p -
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quasihyponormal and k - quasihyponormal
operators,  respectively. The following
classification has been done on these
operarors [24, 25, 26]: p - hyponormal c p -
posinormal < (p, k) - quasiposinormal, p -
hyponormal < p -quasihyponormal < (p, k)
- quasihyponormal c ((p, k -
quasiposinormal and hyponormal < k -
quasihyponormal < (p, k) - quasihyponormal
c (p, k) — quasiposinormal for a positive
integer k and a positive number 0 <p < 1. If
T € B(H), we shall write N(T) and R(T) for
the null space and the range of T,
respectively [27].

Also, let o(T) and o,(T) denote the
spectrum and the approximate point spectrum
of T, respectively. An operator T is called
Fredholm [28] if R(T) is closed, a(T) = dim N(T)
< oo and A(T) = dim H/R(T) < co. Moreover if
i(T) = a(T) — B(T) = 0, then T is called Weyl.
The essential spectrum o(T) and the Weyl
oW(T) are defined by g¢(T) ={A €C: T — 11is
not Fredholm}andeW(T) ={2 €C: T — 11is
not Weyl} respectively. It is known [29,30]
that 0.(T) < oW(T) < oe(T)U acc o(T)
where we write acc K for the set of all
accumulation points of K < C. If we write
iso K = K\ acc K, then we let z00(T) = {1 €
150 o(T) : 0 < a(T — A) < o). We say that
Weyl’s theorem holds for T if o(T)\eW(T) =
700(T).

Let op(T) denotes the point spectrum
of T, i.e., the set of its eigenvalues. Let
ajp(T) denotes the joint point spectrum of T.
We note that 1 € gjp(T) if and only if there
exists a non-zero vector x such that Tx = Ax ,
T'x = Jx. It is evident that 6j,(T) < ap(T). It
is well known that, if T is normal, then
ajp(T) = op(T). If T = UJ|T| is the polar
decomposition of T and 1 = |1]e” be the
complex number, [4] > 0, |e”| = 1. Then 1 €
ajp(T) if and only if there exist a non-zero
vector x such that Ux = e, |T|x = |4|x. Let
oap(T) denotes the approximate point
spectrum of T, i.e., the set of all complex
numbers A which satisfy the following
condition: there exists a sequence {x,} of
unit vectors in H such that lim, (T — A)x, =
0. It is evident that op(T) < oap(T). It is
evident that ocjap(T) < 0ap(T), for all T €
B(H). It is well known [5] that, for a normal
operator T, gjap(T) = 0ap(T) = a(T). An
operator T € B(H) is said to have the single-

valued extension property (or SVEP) if for
every open subset G of C and any analytic
function f : G — H such that (T —2z)f(z)=0 on
G, we have f(z2)=0 on G. An operator T € B(H)
is said to have Bishop’s property () if for
every open subset G of C and every sequence
fo : G — H of H - valued analytic functions
such that (T — z)f,(z) converges uniformly to 0
in norm on compact subsets of G, fu(2)
converges uniformly to 0 in norm on compact
subsets of G. An operator T € B(H) is said to
have Dunford’s property (C) if HT(F) is closed
for each closed subset F of C.

It is well known [7, 9] that Bishop’s
property () = Dunford’s property (C) =
SVEP. Let T € B(H) and let Ay, be an
isolated point of u(T). Then there exists a
positive number r > 0 such that {A €C: A —
Ao < r} flu(T) = {Ao}. Let y be the boundary
of {A €C: A— Ap <r}. In general, it is well
known that the Riesz idempotent E is not an
orthogonal projection and a necessary and
sufficient condition for E to be orthogonal is
that E is self-adjoint.

In [15], the author showed that if T
satisfies the growth condition G, then E is
self-adjoint and E(H) = ker(T — Ao). Recently,
[11] and [18] obtained Stampfli’s result for
quasi - class A normal operators and
paranormal operators. In general even if T is a
paranormal operator, the Riesz idempotent E
of T with respect to Ag is not necessarily self -
adjoint. In this study we show that if E is the
Riesz idempotent for a nonzero isolated point
Ao of the spectrum of a quasi - * - class A
normal operator T, then E is self - adjoint and
EH = ker(T — Ag) = ker(T*— Ap).

Materials and methods
Lemma 2.1.

([12, Theorem 2.2, Theorem 2.3]) (1) Let T E
B(H) be quasi - * - class A operator and T does
not have a dense range, then if T is an quasi - * -
class A operator and M is its invariant subspace,
then the restriction Ty of T to M is also an quasi
- * - class A operator.

Lemma 2.2.

[12, Theorem 2.4] Let T € B(H) is an quasi -
* - class A operator. If A=0and (T — A)x =
0 for some x E H, then (T — A) x = 0.
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Lemma 2.3.

Let T € B(H) is an quasi - * - class A
operator. Then T is isoloid.

Proof.

Let TeB(H) is an quasi - * - class A
operator with representation given in
Lemma 2.1. Let z be an isolated point in
o(T). Since o(T) = o(T1) U {0}, z is an
isolated point in o(T1) or z = 0. If z is an
isolated point in o(T1), then z € op(T1).
Assume that z = 0 and z is not in o(T1).
This completes the proof.

Theorem 2.4.

Let A € B(H) is an quasi - * - class A normal
operator and let A be a non-zero isolated point of
o(A). Let DA denote the closed disk that
centered at A such that DA " 6(A) = {A}.
Then the Riesz idempotent E is self adjoint.

Proof.

If A is quasi - * - class A normal operator,
then A is an eigenvalue of A and EH = ker(A
— A)* by Lemma 2.3. Since ker(A — A*) c
ker(A — A)" by Lemma 2.2, it suffices to
show that ker(A — A)" c ker(A — A). Since
ker(A — A) is a reducing subspace of A by
Lemma 2.2 and the restriction of a quasi - * -
class A normal operator to its reducing
subspaces is also a quasi - * - class A normal
operator by Lemma 2.1, hence A can be
written as follows: A = A @ Al on H =
ker(A — A) @ (ker(A — A))', where Al is *-
class A normal with ker(Al — A) = {0}.
Since A E 6(A) = {A} Uo(Al) is isolated, the
only two cases occur, one is A € o(Al) and
the other is that A is an isolated point of 6(A1)
and this contradicts the fact that ker(Al —A) =
{0}. Since Al is invertible as an operator on
(ker(A—A))', ker(A—A) = ker(A—A)". Next, we
show that E is self-adjoint.  Since
EH=ker(A—A)=ker(A—A)*,we have ((z
— A))-'E = (z — M)-'E. This completes the
proof.

Results and discussions

The tensor products T ¢ S preserves
many properties of T, S € B(H), but by no
means all of them. Thus, whereas the
normaloid property is invariant under tensor
products; again, whereas T & S is normal if
and only if T and S are normal [10, 16], there
exist paranormal operators T and S such that

T &9 S is not paranormal [4]. It is shown in
[11] that T &S is quasi-class A if and only if
S, T are quasi-class A operators. In the
following theorem we will prove a necessary
and sufficient condition for T &9 S to be quasi
- = - class A operator where T and S are both
non-zero operators. Recall that (T & S)(T ®
S)=TT &S'S and so, by the uniqueness of
positive square roots, |T &S| = |T|" &)|S|' for
any positive rational number r. From the
density of the rationales in the real, we
obtain |T &@ S|' = |T|' ¢ |S|' for any positive
real number p. If T, > T, and S; > Sy, then Ty
&S1 > T2 &S; (see, [17]).

Theorem 3.1.

Let S, T € B(H) be non-zero normal operators.
Then T @ S is quasi - * - class A normal
operator if and only if one of the following
holds:

a)S and T are quasi - = - class A normal
operators.

b) S=0o0r T?=0.
Proof.

Since T @ S is quasi - * - class A operator if and
only if (T ® S)'(T ® S)F - (T Q@ ) N(T ®
S) > 0e T(TY - TPHT @ S|S%S +
TITPT ® S(IS?% — |ST))S > 0.Hence the
sufficiency is clear. Conversely, assume that T
&® S is quasi - = - class A operator. Then for
every x, y € H we have (T (T} -
T )T x)(ST1S%SY, y) + (T[T FTx,x)(S°(IS?|
- IS )Sy, y) 2 0(3.1)

It suffices to prove that if (a) does not hold, then
(b) holds. Suppose that T2 = 0 and $*= 0. To the
contrary, assume that T is not a quasi - * - class
A operator, then there exists X0 € H such that
(T°(T? = [TP)Tx0,x0) = o < 0 and (T |T JTxO,
x0 = B> 0. From (3.1) we have a + B(S|S?|Sy,
y)= B(S’|S ISy, y), for all y € H. (3.2)

Thus S is quasi - * - class A operator since a
+ B < B. Using the H"older-McCarth

inequality we have (S'|S?[Sy,y) = ((S**S%)"?
Sy, Sy) < |LSyUZ(llz)(S*ZSZSy,Sy)llz —
ISylllIS°yll and(S°IS"*Sy, y) = (SS'Sy, Sy)
= ((S'S)y, S'sy) = |Is Syl>. Thus, (a +
B)ISyIIS®ylI=BIIS SyII*.  (3.3)

Since S is a quasi - * - class A
operator, Lemma 2.1 imply that H =
ran(S*) @ ker S™*.Then Sl is - class A,
S% =0 and o(S) = 6(S1)u{0}. Therefore (3.3)
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implies (o + B)|ISIn|IS°m| = BIIS :SIn|F*, for
all n € ran S*. Since S1 is * - class A and * -
class A is normaloid. Thus taking supremum
on both sides of the above inequality, we have
(o + B)|IS1]|* = B||S*1S1||°. Therefore, S; = 0.
Hence S' = 0. This contradicts the
assumption S?= 0. Hence T must be a quasi -
* - class A operator. A similar argument
shows that S is also quasi - * - class A normal
operator. This completes the proof.

Corollary 3.2.

Let S", T" € B(H) be non-zero normal power
operators. Then T" ® S" is quasi - = - class A"
normal operator if and only if one of the
following holds:

c) S" and T" are quasi - = - class A normal
operators.

d) Either S"=0or T" = 0.
Proof:

Follows from Theorem 3.1 and considering
all non-zero natural number n greater than 2
for case b.

Conclusions

In the present work we have characterized
Hilbert space operators which are Quasi - * -
class A normal operator. We have shown that if
S, T €B(H) are non-zero normal operators. Then
T ¢ S is quasi - * - class A normal operator if
and only if one of the following holds: S and T
are quasi - = - class A normal operators, and
that either S =0 or T? = 0. These results are
useful in classification oh Hilbrt space
operators.

Conflicts of interest
The authors declare no conflict of interest.
References

[1] Sun LL, Gao W, Zhang MM, Li C, Wang
AG, Su YL, Ji TF. Composition and
Antioxidant Activity of the Anthocyanins
of the Fruit of Berberis heteropoda
Schrenk. Molecules 2014;19:19078-96.

[2] Aluthge A, On p - hyponormal operators
for 0 < p < 1. Integral Equations Operator
Theory 1990;13(3):307-15.

[3] Aluthge A, Some generalized theorems on
p - hyponormal operators. Integral
Equations Operator Theory
1996;24(4):497-501.

[4]

[5]
[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Arora SC, and Arora P. On p -
quasihyponormal operators for 0 < p < 1.
Yokohama Math J 1993;41:25-9.

Ando T. Operators with a norm condition,
Acta Sci Math (Szeged) 1973; 33:169- 78.
Ando T. On some operator inequalities.
Math Ann 1987;279(1):157-59.

Campbell SL, Gupta BC. On k -
quasihyponormal operators. Math.
Joponica 1978;23:185-89.

Rhaly HC. Posinormal Operators. J Math
Soc Japan 1974,46:587-605.

Duggal BP, Jeon IH, Kim IH. Weyl’s
theorem in the class of algebraically p -
hyponormal operators. Comment Math
Prace Mat 2000;40:49-56.

Fututa T, Ito M, Yamazaki T. A subclass
of paranormal including class of log -
hyponormal and several related classes.
Scientiae Mathematicae 1998;1:389-403.
Hou JC. On the tensor products of
operators. Acta Math Sinica
1992;9(2):195-202.

Jeon IH, Kim IH. On operators satisfying
T*T2|T ~ T*|T|2T, Linear Algebra Appl
2006;418(2):854-62.

Shen JL, Zuo F, Yang CS. On Operators
Satisfying T*|T2[T ~ T*T*2T. Acta
Mathematica Sinica 2010;26:2109-16.
Mecheri S. Isolated points of spectrum of k
- quasi - * - class A operators. Studia Math
2012;208(1):87-96.

Shen JL, Zuo F, Yang CS. On operators
satisfying T*|T2|T ~ T*|T*2|T Part 1l. Acta
Math. Sinica. 2013;32:3100-40.

Stampfli JG. Hyponormal operators and
spectral density. Trans Amer Math Soc
1965;117:469-76.

Saito T. Hyponormal operators and related
topics, Lectures on operator algebras
Lecture Notes in Math., Springer, Berlin;
1972.

Stochel J. Seminormality of operators from
their tensor product. Proc Amer Math Soc
1996;124(1):135-40.

Uchiyama A. On isolated points of the
spectrum of paranomal operators. Integral
Equations Operator Theory 2006;55:145-
51.

Xia D. Spectral Theory of Hyponormal
Operators. Birkhauser Verlag, Boston;
1983.

©2018 The Authors. Published by G. J. Publications under the CC BY license. 206



Yuvaraj and Jayalakshmi, 2018. Extraction, purification and analysis of biological activity of anthocyanin like compound...

[21]

[22]

[23]

[24]

[25]

[26]

Ringrose JR. Compact Non-self-adjoint
operators, Van Nostrand Reinhold,
London; 2015.

Schatten R. Norm ideals of completely
continuous  operators, Springer-Verlag,
Berlin; 2017.

Taylor AE, Lay DC. Introduction to
functional analysis, 2nd ed., John Wiley
and Sons, New York; 2014.

Okelo NB; Agure JO, Ambogo DO.
Norms of elementary operators and
characterization ~ of  Norm-Attainable
operators. Int J Math Anal 2010;4:1197-
204.

Vijayabalaji S, Shyamsundar G. Interval-
valued intuitionistic  fuzzy transition
matrices, Int J Mod Sci Technol 2016;
1(2):47-51.

Judith J O, Okelo NB, Roy K, Onyango T.
Numerical Solutions of Mathematical
Model on Effects of Biological Control on
Cereal  Aphid  Population Dynamics,
IJIMST, 2016; 1(4): 138-143.

[27]

[28]

[29]

[30]

[31]

*khkhkkhkik

Judith J O, Okelo NB, Roy K, Onyango T.
Construction and Qualitative Analysis of

Mathematical Model for Biological
Control on Cereal Aphid Population
Dynamics. Int J Mod Sci Technol

2016;1(5):150-58.

Vijayabalaji S, Sathiyaseelan N. Interval-
Valued Product Fuzzy Soft Matrices and
its Application in Decision Making. Int J
Mod Sci Technol 2016;1(7):159-63.
Chinnadurai V, Bharathivelan K. Cubic
Ideals in Near Subtraction Semigroups. Int
J Mod Sci Technol 2016;1(8):276-82.
Okello B, Okelo NB, Ongati O.
Characterization of Norm Inequalities for
Elementary Operators. Int J Mod Sci
Technol 2017;2(3):81-4.

Wafula AM, Okelo NB, Ongati O. Norms
of Normally Represented Elementary
Operators. Int J Mod Sci Technol
2018;3(1):10-6.

©2018 The Authors. Published by G. J. Publications under the CC BY license. 207



