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Abstract—Many applications require recovering a matrix of4
minimal rank within an affine constraint set, with matrix com-5
pletion a notable special case. Because the problem is NP-hard in6
general, it is common to replace the matrix rank with the nuclear7
norm, which acts as a convenient convex surrogate. While elegant8
theoretical conditions elucidate when this replacement is likely to9
be successful, they are highly restrictive and convex algorithms10
fail when the ambient rank is too high or when the constraint11
set is poorly structured. Nonconvex alternatives fare somewhat12
better when carefully tuned; however, convergence to locally opti-13
mal solutions remains a continuing source of failure. Against this14
backdrop, we derive a deceptively simple and parameter-free prob-15
abilistic PCA-like algorithm that is capable, over a wide battery16
of empirical tests, of successful recovery even at the theoretical17
limit where the number of measurements equals the degrees of18
freedom in the unknown low-rank matrix. Somewhat surprisingly,19
this is possible even when the affine constraint set is highly ill-20
conditioned. While proving general recovery guarantees remains21
evasive for nonconvex algorithms, Bayesian-inspired or otherwise,22
we nonetheless show conditions whereby the underlying cost func-23
tion has a unique stationary point located at the global optimum;24
no existing cost function we are aware of satisfies this property.25
The algorithm has also been successfully deployed on a computer26
vision application involving image rectification and a standard col-27
laborative filtering benchmark.28

Index Terms—Rank minimization, affine constraints, matrix29
completion, matrix recovery, empirical Bayes.30

I. INTRODUCTION31

R ECENTLY there has been a surge of interest in finding32

minimum rank matrices subject to some problem-specific33

constraints often characterized as an affine set [1]–[7]. Mathe-34

matically this involves solving35

min
X

rank [X] s.t. b = A (X) , (1)

where X ∈ Rn×m is the unknown matrix, b ∈ Rp represents36

a vector of observations and A : Rn×m → Rp denotes a linear37

mapping. An important special case of (1) commonly applied38
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to collaborative filtering is the matrix completion problem 39

min
X

rank [X] s.t. X ij = (X0)ij , (i, j) ∈ Ω, (2)

where X0 is a low-rank matrix we would like to recover, but 40

we are only able to observe elements from the set Ω [1], [2]. 41

Unfortunately however, both this special case and the general 42

problem (1) are well-known to be NP-hard, and the rank penalty 43

itself is non-smooth. Consequently, a popular alternative is to 44

instead compute 45

min
X

∑

i

f (σi [X]) s.t. b = A (X) , (3)

where σi [X] denotes the i-th singular value of X and f is 46

usually a concave, non-decreasing function (or nearly so). In 47

the special case where f(z) = I[z �= 0] (i.e., an indicator func- 48

tion) we retrieve the matrix rank; however, smoother surrogates 49

such as f(z) = log z or f(z) = zq with q ≤ 1 are generally pre- 50

ferred for optimization purposes. When f(z) = z, (3) reduces 51

to convex nuclear norm minimization. A variety of celebrated 52

theoretical results have quantified specific conditions, heavily 53

dependent on the singular values of matrices in the nullspace 54

of A, where the minimum nuclear norm solution is guaranteed 55

to coincide with that of minimal rank [1], [3], [6]. However, 56

these guarantees typically only apply to a highly restrictive set 57

of rank minimization problems, and in a practical setting non- 58

convex algorithms can succeed in a much broader range of 59

conditions [2], [5], [6]. 60

In Section II we will summarize state-of-the-art non-convex 61

rank minimization algorithms that operate under affine con- 62

straints and point out some of their shortcomings. This will 63

be followed in Section III by the derivation of an alternative 64

approach using Bayesian modeling techniques adapted from 65

probabilistic PCA [8]. Section IV will then describe connections 66

with nuclear norm minimization, convergence issues, and prop- 67

erties of global and local solutions. The latter includes special 68

cases whereby any stationary point of the intrinsic cost func- 69

tion is guaranteed to have optimal rank, illustrating an under- 70

lying smoothing mechanism which leads to success over com- 71

peting methods. We next discuss algorithmic enhancements in 72

Section V that further improve recovery performance in prac- 73

tice. Section VI contains a wide variety of numerical compar- 74

isons that highlight the efficacy of this algorithm, while Section 75

Section VII presents a computer vision application involving 76

image rectification and a standard collaborative filtering bench- 77

mark. Technical proofs and algorithm update rule details are 78

contained in the Appendix. Portions of this work have previ- 79

ously appeared in conference proceedings [9]. 80
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Before proceeding, we highlight several main contributions81

as follows:82

1) Bayesian inspiration can take uncountably many different83

forms and parameterizations, but the devil is in the details84

and existing methods offer little opportunity for both the-85

oretical inquiry and substantial performance gains solving86

(1). In this regard, we apply carefully-tailored modifica-87

tions to a veteran probabilistic PCA model leading to sys-88

tematic theoretical and empirical insights and advantages.89

Model justification is ultimately based on such meticulous90

technical considerations rather than merely the presumed91

qualitative legitimacy of any underlying prior distribu-92

tions.93

2) Non-convex algorithms have demonstrated some im-94

provement in estimation accuracy over the celebrated con-95

vex nuclear norm; however, this typically requires the in-96

clusion of one or more additional tuning parameters to97

incrementally inject additional objective function curva-98

ture and avoid bad local solutions. In contrast, for solving99

(1) our non-convex Bayesian-inspired algorithm requires100

no such parameters at all, and noisy relaxations necessi-101

tate only a single, standard trade-off parameter balancing102

data-fit and minimal rank.1103

3) Over a wide battery of controlled experiments with104

ground-truth data, our approach outperforms all existing105

algorithms that we are aware of, Bayesian, non-convex, or106

otherwise. This includes direct head-to-head comparisons107

using the exact experimental designs and code prepared108

by original authors. In fact, even whenA is ill-conditioned109

we are consistently able to solve (1) right up to the the-110

oretical limit of any possible algorithm, which has never111

been demonstrated previously.112

II. RELATED WORK113

Here we focus on a few of the latest and most effective rank114

minimization algorithms, all developed within the last few years115

and evaluated favorably against the state-of-the-art.116

A. General Non-Convex Methods117

In the non-convex regime, effective optimization strategies118

attempt to at least locally minimize (3), often exceeding the per-119

formance of the convex nuclear norm. For example, [6] derives120

a family of iterative reweighted least squares (IRLS) algorithms121

applied to f(z) = (z2 + γ)q/2 with q, γ > 0 as tuning parame-122

ters. A related penalty also considered, which coincides with the123

limit as q → 0 (up to an inconsequential scaling and translation),124

is f(z) = log(z2 + γ), which maintains an intimate connection125

with rank given that126

log z = lim
q→0

q−1 (zq − 1) and lim
q→0

zq = I [z �= 0] , (4)

where I is a standard indicator function. Consequently, when127

γ is small,
∑

i log(σi [X]2 + γ) behaves much like a scaled128

1While not our emphasis here, similar to other Bayesian frameworks, even this
trade-off parameter can ultimately be learned from the data if a true, parameter-
free implementation is desired across noise levels.

and translated version of the rank, albeit with nonzero gradients 129

away from zero. 130

The IRLS0 algorithm from [6] represents the best-performing 131

special case of the above, where
∑

i log(σi [X]2 + γ) is min- 132

imized using a homotopy continuation scheme merged with 133

IRLS. Here a fixed γ is replaced with a decreasing sequence 134

{γk}, the rationale being that when γk is large, the cost func- 135

tion is relatively smooth and devoid of local minima. As the 136

iterations k progress, γk is reduced, and the cost behaves more 137

like the matrix rank function. However, because now we are 138

more likely to be within a reasonably good basin of attraction, 139

spurious local minima are more easily avoided. The downside 140

of this procedure is that it requires a pre-defined heuristic for 141

reducing γk , and this schedule may be problem specific. More- 142

over, there is no guarantee that a global solution will ever be 143

found. 144

In a related vein, [5] derives a family of iterative reweighted 145

nuclear norm (IRNN) algorithms that can be applied to virtu- 146

ally any concave non-decreasing function f , even when f is 147

non-smooth, unlike IRLS. For effective performance however 148

the authors suggest a continuation strategy similar to IRLS0. 149

Moreover, additional tuning parameters are required for differ- 150

ent classes of functions f and it remains unclear which choices 151

are optimal. While the reported results are substantially better 152

than when using the convex nuclear norm, in our experiments 153

IRLS0 seems to perform slightly better, possibly because the 154

quadratic least squares inner loop is less aggressive in the initial 155

stages of optimization than weighted nuclear norm minimiza- 156

tion, leading to a better overall trajectory. Regardless, all of these 157

affine rank minimization algorithms fail well before the theoreti- 158

cal recovery limit is reached, when the number of observations p 159

equals the number of degrees of freedom in the low-rank matrix 160

we wish to recover. Specifically, for an n × m, rank r matrix, 161

the number of degrees of freedom is given by r(m + n) − r2 , 162

hence p = r(m + n) − r2 is the best-case boundary. In practice 163

if A is ill-conditioned or degenerate the achievable limit may be 164

more modest. 165

A third approach relies on replacing the convex nuclear norm 166

with a truncated non-convex surrogate [2]. While some com- 167

petitive results for image impainting via matrix completion are 168

shown, in practice the proposed algorithm has many parameters 169

to be tuned via cross-validation. Moreover, recent comparisons 170

contained in [5] show that default settings perform relatively 171

poorly. 172

Finally, a somewhat different class of non-convex algorithms 173

can be derived using a straightforward application of alternating 174

minimization [10]. The basic idea is to assume X = UV T for 175

some low-rank matrices U and V and then solve 176

min
U ,V

‖ b −A
(
UV T

)
‖F (5)

via coordinate decent. The downside of this approach is that it 177

can be sensitive to data correlations and requires that U and 178

V be parameterized with the correct rank. In contrast, our em- 179

phasis here is on algorithms that require no prior knowledge 180

whatsoever regarding the true rank. This is especially important 181

in application extensions that may manage multiple low-rank 182
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matrices such that prior knowledge of all individual ranks is not183

feasible.184

B. Bayesian Methods185

From a probabilistic perspective, previous work has applied186

Bayesian formalisms to rank minimization problems, although187

not specifically within an affine constraint set. For example,188

[11]–[13] derive robust PCA algorithms built upon the lin-189

ear summation of a rank penalty and an element-wise sparsity190

penalty. In particular, [12] applies an MCMC sampling approach191

for posterior inference, but the resulting iterations are not scal-192

able, subjectable to detailed analysis, nor readily adaptable to193

affine constraints. In contrast, [11] applies a similar probabilis-194

tic model but performs inference using a variational mean-field195

approximation. While the special case of matrix completion196

is considered, from an empirical standpoint its estimation ac-197

curacy is not competitive with the state-of-the-art non-convex198

algorithms mentioned above. Finally, without the element-wise199

sparsity component intrinsic to robust PCA (which is not our200

focus here), [13] simply collapses to a regular PCA model with201

a closed-form solution, so the challenges faced in solving (1) do202

not apply. Consequently, general affine constraints really are a203

key differentiating factor.204

From a motivational angle, the basic probabilistic model with205

which we begin our development can be interpreted as a care-206

fully re-parameterized generalization of the probabilistic PCA207

model from [8]. This will ultimately lead to a non-convex algo-208

rithm devoid of the heuristic tuning strategies mentioned above,209

but nonetheless still uniformly superior in terms of estimation210

accuracy. We emphasize that, although we employ a Bayesian211

entry point for our algorithmic strategy, final justification of the212

underlying model will be entirely based on properties of the213

underlying cost function that emerges, rather than any putative214

belief in the actual validity of the assumed prior distributions215

or likelihood function. This is quite unlike the vast majority of216

existing Bayesian approaches.217

C. Analytical Considerations218

Turning to analytical issues, a number of celebrated theoret-219

ical results dictate conditions whereby substitution of the rank220

function with the convex nuclear norm in (1) is nonetheless guar-221

anteed to still produce the minimal rank solution. For example,222

if A is a Gaussian iid measurement ensemble and X0 ∈ Rn×n223

represents the optimal solution to (1) with rank[X0 ] = r, then224

with high probability as the problem dimensions grow large, the225

minimum nuclear norm feasible solution will equal X0 if the226

number of measurements p satisfies p ≥ 3r(2n − r) [14].227

The limitation of this type of result is two-fold. First, in the228

above situation the true minimum rank solution only actually re-229

quires p ≥ r(2n − r) measurements to be recoverable via brute230

force solution of (1), and the remaining difference of a factor231

of three can certainly be considerable in many practical situa-232

tions (e.g., requiring 300 measurements is far more laborious233

than only needing 100 measurements). Secondly though, and234

far more importantly, all existing provable recovery guarantees235

place extremely strong restrictions on the structure of A, e.g.,236

strong restrictions on the singular value decay of matrices in 237

the nullspace of A. Such conditions are unlikely to ever hold in 238

realistic application settings, including the image rectification 239

example we describe in Section VII.A (in fact, these conditions 240

are usually incapable of even being checked). In contrast, the 241

algorithm we propose is empirically observed to only require 242

the theoretically minimal number of measurements even when 243

such nullspace conditions are violated in many cases. While a 244

general theoretical guarantee of this sort is obviously not pos- 245

sible, we do nonetheless provide several supporting theoretical 246

results indicative of why such performance is at least empirically 247

obtainable. 248

III. ALTERNATIVE ALGORITHM DERIVATION 249

In this section we first detail our basic distributional assump- 250

tions followed by development of the associated update rules 251

for inference. 252

A. Basic Model 253

In contrast to the majority of existing algorithms organized 254

around practical solutions to (3), here we adopt an alternative, 255

probabilistic starting point. We first define the Gaussian likeli- 256

hood function 257

p (b|X;A, λ) ∝ exp
[
− 1

2λ
‖ A (X) − b ‖2

2

]
, (6)

noting that in the limit as λ → 0 this will enforce the same 258

constraint set as in (1). Next we define an independent, zero- 259

mean Gaussian prior distribution with covariance νiΨ on each 260

column of X , denoted x:i for all i = 1, . . . ,m. This produces 261

the aggregate prior on X given by 262

p (X;Ψ,ν) =
∏

i

N (x:i ;0, νiΨ) ∝ exp
[
x	Ψ

−1
x
]
, (7)

where Ψ ∈ Rn×n is a positive semi-definite symmetric matrix,2 263

ν = [ν1 , . . . , νm ]	 is a non-negative vector, x = vec[X] 264

(column-wise vectorization), and Ψ = diag[ν] ⊗ Ψ, with ⊗ 265

denoting the Kronecker product. It is important to stress here 266

that we do not necessarily believe that the unknown X actually 267

follows such a Gaussian distribution per se. Rather, we adopt 268

(7) primarily because it will lead to an objective function with 269

desirable properties related to solving (1). 270

Moving forward, given both likelihood and prior are Gaus- 271

sian, the posterior p(X|b;Ψ,ν,A, λ) is also Gaussian, with 272

mean given by an X̂ such that 273

x̂ = vec
[
X̂

]
= ΨA	(

λI + AΨA	)−1
b. (8)

2Technically Ψ must be positive definite for the inverse in (7) to be de-
fined. However, we can accommodate the semi-definite case using the fol-
lowing convention. Without loss of generality assume that Ψ = RR	 for
some matrix R. We then qualify that p(X; Ψ, ν) = 0 if x /∈ span[R],
and p(X; Ψ, ν) ∝ exp[− 1

2 x	(R	)
†
R†x] otherwise. Equivalently, through-

out the paper for convenience (and with slight abuse of notation) we define

x	Ψ
−1

x = ∞ when x /∈ span[R], and x	Ψ
−1

x = x	(R	)
†
R†x other-

wise. This will come in handy, for example, when interpreting the bound in
(12) below. Note also that the final cost function (10) we will ultimately be
minimizing requires no such inverse anyway.
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Here A ∈ Rp×nm is a matrix defining the linear operator A274

such that b = Ax reproduces the feasible region in (1). From275

this expression it is clear that, if Ψ represents a low-rank co-276

variance matrix, then each column of X̂ will be constrained277

to a low-dimensional subspace resulting overall in a low-rank278

estimate as desired. Of course for this simple strategy to be suc-279

cessful we require some way of determining a viable Ψ and the280

scaling vector ν.281

A common Bayesian strategy in this regard is to marginalize282

over X and then maximize the resulting likelihood function283

with respect to Ψ and ν [15], [13], [16]. This involves solving284

max
Ψ∈H + ,ν≥0

∫
p (b|X;A, λ) p (X;Ψ,ν) dX, (9)

where H+ denotes the set of positive semi-definite and symmet-285

ric n × n matrices. After a −2 log transformation and applica-286

tion of a standard convolution-of-Gaussians integration, solving287

(9) is equivalent to minimizing the cost function288

L (Ψ,ν) = b	Σ−1
b b + log |Σb |, (10)

where289

Σb = AΨA	 + λI and Ψ = diag [ν] ⊗ Ψ. (11)

Here Σb is the covariance of b given Ψ and ν.290

B. Update Rules291

Minimizing (10) is a non-convex optimization problem, and292

we employ standard upper bounds for this purpose leading to an293

EM-like algorithm, somewhat related to [8]. In particular, we294

compute separate bounds, parameterized by auxiliary variables,295

for both the first and second terms of L(Ψ,ν). While the gen-296

eral case can easily be handled and may be applicable for more297

challenging problems, here for simplicity and ease of presenta-298

tion we consider minimizing L(Ψ) � L(Ψ,ν = 1), meaning299

all elements of ν are fixed at one (and such is the case for all300

experiments reported herein, although we are currently explor-301

ing situations where this added generality could be especially302

helpful).303

Based on [16], for the first term in (10) we have304

b	Σ−1
b b ≤ 1

λ
‖ b − Ax ‖2

2 + x	Ψ
−1

x (12)

with equality whenever x satisfies (8). For the second term we305

use306

log |Σb | ≡ m log |Ψ| + log |λA	A + Ψ
−1 |

≤ m log |Ψ| + tr
[
Ψ−1∇Ψ−1

]
+ C, (13)

where because log |λA	A + Ψ
−1 | is concave with respect to307

Ψ−1 , we can upper bound it using a first-order approximation308

with a bias term C that is independent of Ψ. Equality is obtained309

when the gradient satisfies310

∇Ψ−1 =
m∑

i=1

Ψ − ΨA	
i

(
AΨA	 + λI

)−1
AiΨ, (14)

where Ai ∈ Rp×n is defined such that A = [A1 , . . . ,Am ].311

Finally given the upper bounds from (12) and (13) with X312

and ∇Ψ−1 fixed, we can compute the optimal Ψ in closed form 313

by optimizing the relevant Ψ-dependent terms via 314

Ψopt = arg minX tr
[
Ψ−1

(
XX	 + ∇Ψ−1

)]
+ m log |Ψ|

=
1
m

[
X̂X̂

	
+ ∇Ψ−1

]
. (15)

By agnostically starting with Ψ = I and then iteratively com- 315

puting (8), (14), and (15), we can then obtain an estimate for Ψ, 316

and more importantly, a corresponding estimate for X given by 317

(8) at convergence. We refer to this basic procedure as BARM 318

for Bayesian Affine Rank Minimization. The next section will 319

describe in detail why it is particularly well-suited for solving 320

problems such as (1). 321

IV. PROPERTIES OF BARM 322

Here we first describe a close but perhaps not intuitively- 323

obvious relationship between the BARM objective function and 324

canonical nuclear norm minimization. We then discuss desirable 325

properties of global and local minima before concluding with a 326

brief examination of convergence issues. 327

A. Connections with Nuclear Norm Minimization 328

On the surface, it may appear that minimizing (10) is com- 329

pletely unrelated to the convex problem 330

min
X

‖ X ‖∗ s.t. b = A (X) (16)

that is most commonly associated with practical rank mini- 331

mization implementations. However, a close connection can be 332

revealed by considering the modified objective function 333

L′ (Ψ) = b	Σ−1
b b + tr

[
Ψ

]
, (17)

which represents nothing more than (10), with ν = 1 and with 334

log |Σb | being replaced by tr[Ψ]. Now suppose we minimize 335

(17) with respect to Ψ ∈ H+ obtaining some Ψ∗. We then go 336

on to compute an estimate of X using (8). Note that if we apply 337

the bound from (12) to the first term in (17), then this estimate 338

for X equivalently solves 339

min
Ψ∈H + ,X

1
λ
‖ b − Ax ‖2

2 + x	Ψ
−1

x + tr
[
Ψ

]
, (18)

with x = vec[X] as before. If we first optimize over Ψ, it is eas- 340

ily demonstrated that the optimal value of Ψ equals (XX	)
1/2

. 341

Plugging this value into (18), simplifying, and then applying the 342

definition of the nuclear norm, we arrive at 343

min
X

1
λ
‖ b − Ax ‖2

2 + 2‖ X ‖∗, (19)

Furthermore, in the limit λ → 0 (applied outside of the 344

minimization), (19) becomes equivalent to (16). For more 345

information regarding the duality relationship between vari- 346

ance/covariance space and coefficient space, at least in the 347

related context of compressive sensing models, please refer 348

to [16]. 349

Consequently, we may conclude that the central distinc- 350

tion between the proposed BARM cost function and nuclear 351

norm minimization is an intrinsic A-dependent penalty function 352
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log |Σb | which is applied in covariance space. In Section IV.B353

we will examine desirable properties of this non-convex sub-354

stitution, highlighting our desire to treat the underlying BARM355

probabilistic model as an independent cost function that may be356

subject to technical analysis independent of its Bayesian origins.357

B. Global/Local Minima Analysis358

As discussed in Section II one nice property of the359 ∑
i log(σi [X]) penalty employed (approximately) by IRLS0360

[6] is that it can be viewed as a smooth version of the matrix361

rank function while still possessing the same set of minimum,362

both global and local, over the affine constraint set, at least if we363

consider the limiting situation of
∑

i log(σi [X]2 + γ) when γ364

becomes small so that we may avoid the distracting singularity365

of log 0. Additionally, it possesses an attractive form of scale366

invariance, meaning that if X∗ is an optimal feasible solution,367

a block-diagonal rescaling of A nevertheless leads to an equiv-368

alent rescaling of the optimum (without the need for solving369

an additional optimization problem using the new A). This is370

very much unlike the nuclear norm or other non-convex surro-371

gates that penalize the singular values of X in a scale-dependent372

manner.373

In contrast, the proposed algorithm is based on a very differ-374

ent Gaussian statistical model with seemingly a more tenuous375

connection with rank minimization. Encouragingly however,376

the proposed cost function enjoys the same global/local minima377

properties as
∑

i log(σi [X]2 + γ) with γ → 0. Before present-378

ing these results, we define spark[A] as the smallest number379

of linearly dependent columns in matrix A [17]. All proofs are380

deferred to the Appendix.381

Lemma 1: Let b = Avec[X], where A ∈ Rp×nm satisfies382

spark[A] = p + 1. Also define r as the smallest rank of any fea-383

sible solution. Then if r < p/m, any global minimizer {Ψ∗,ν∗}384

of (10) in the limit λ → 0 is such that x∗ = Ψ
∗
A	(AΨ

∗
A	)

†
b385

is feasible and rank[X∗] = r with vec[X∗] = x∗.386

Lemma 2: Additionally, let Ã = AD, where D = diag387

[α1Γ, . . . , αmΓ] is a block-diagonal matrix with invertible388

blocks Γ ∈ Rn×n of unit norm scaled with coefficients αi > 0.389

Then iff {Ψ∗,ν∗} is a minimizer (global or local) to (10) in the390

limit λ → 0, then {Γ−1Ψ∗,diag[α]−1ν∗} is a minimizer when391

Ã replaces A. The corresponding estimates of X are likewise392

in one-to-one correspondence.393

Remarks: The assumption r = rank[X∗] < p/m in Lemma394

1 is completely unrestrictive, especially given that a unique,395

minimal-rank solution is only theoretically possible by any al-396

gorithm if p ≥ (n + m)r − r2 , which is much more restrictive397

than p > rm. Hence the bound we require is well above that398

required for uniqueness anyway. Likewise the spark assumption399

will be satisfied for any A with even an infinitesimal (con-400

tinuous) random component. Consequently, we are essentially401

always guaranteed that BARM possesses the same global op-402

timum as the rank function. Regarding Lemma 2, no surrogate403

rank penalty of the form
∑

i f(σi [X]) can achieve this result404

except for f(z) = log z, or inconsequential limiting translations405

and rescalings of the log such as the indicator function I[z �= 0]406

(which is related to the log via arguments in Section II).407

While these results are certainly a useful starting point, the 408

real advantage of adopting the BARM cost function is that lo- 409

cally minimizing solutions are exceedingly rare, largely as a 410

consequence of the marginalization process in (9), and in some 411

cases provably so. A specialized example of this smoothing can 412

be quantified in the following scenario. 413

Suppose A is now block diagonal, with diagonal blocks Ai 414

such that bi = Aix:i producing the aggregate observation vec- 415

tor b = [b	
1 , . . . , b	

m ]
	

. While somewhat restricted, this situa- 416

tion nonetheless includes many important special cases, includ- 417

ing canonical matrix completion and generalized matrix com- 418

pletion where elements of Z = WX0 are observed after some 419

transformation W , instead of X0 directly. 420

Theorem 1: Let b = Avec[X], where A is block diagonal, 421

with blocks Ai ∈ Rpi ×n . Moreover, assume pi > 1 for all i 422

and that ∩inull[Ai ] = ∅. Then if minXrank[X] = 1 in the 423

feasible region, any minimizer {Ψ∗,ν∗} of (10) (global or local) 424

in the limit λ → 0 is such that x∗ = Ψ
∗
A	(AΨ

∗
A	)

†
b is 425

feasible and rank[X∗] = 1 with vec[X∗] = x∗. Furthermore, 426

no cost function in the form of (3) can satisfy the same result. 427

In particular, there can always exist local and/or global minima 428

with rank greater than one. 429

Remarks: This result implies that, under extremely mild con- 430

ditions, which do not even depend on the concentration proper- 431

ties of A, the proposed cost function has no minima that are not 432

global minima, at least in this rank-one case. (The minor techni- 433

cal condition regarding nullspace intersections merely ensures 434

that high-rank components cannot simultaneously “hide” in the 435

nullspace of every measurement matrix Ai ; the actual A opera- 436

tor may still be highly ill-conditioned.) Thus any algorithm with 437

provable convergence to some local minimizer is guaranteed to 438

obtain a globally optimal solution.3 439

Although a global optimal guarantee for finding a rank-one 440

matrix sounds somewhat limited, such a guarantee is not pos- 441

sible with any other penalty function of the standard form 442∑
i f(σi [X]), which is the typical recipe for rank minimization 443

algorithms, convex or not. Moreover, finding rank one matrices 444

subject to affine constraints represents a crucial component of 445

applications such as phase retrieval [18], [19]. 446

Additionally, if a unique rank-one solution exists to (1), then 447

the unique minimizing solution to (10) will produce this X via 448

(8). Crucially, this will occur even when the minimal number 449

of measurements p = n + m − 1 are available, unlike any other 450

algorithm we are aware of that is blind to the true underlying 451

rank.4 Moreover, as evident from the experiments, the proposed 452

algorithm always successfully finds the global optimal in many 453

situations where the underlying matrix has a rank much higher 454

than one. Therefore, although we can only provide theoretical 455

guarantee for the rank-one case, the underlying intuition that 456

local minima are smoothed away arguably carries over to situa- 457

tions where the rank is greater than one. 458

3Note also that with minimal additional effort, it can be shown that no sub-
optimal stationary points of any kind, including saddle points, are possible.

4It is important to emphasize that the difficulty of estimating the optimal low-
rank solution is based on the ratio of the d.o.f. in X to the number of observations
p. Consequently, estimating X even with r small can be challenging when p is
also small, meaning A is highly overcomplete.
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Fig. 1. Plots of different surrogates for matrix rank in a 1D feasible subspace. Here the convex nuclear norm does not retain the correct global minimum. In
contrast, although the non-convex

∑
i
log(σi [X]2 + γ) penalty exhibits the correct minimum when γ is sufficiently small, it also contains spurious minima.

Only BARM smoothes away local minimum while simultaneously retaining the correct global optima.

C. Visualization of BARM Local Minima Smoothing459

To further explore the smoothing effect and complement The-460

orem 1, it helps to visualize rank penalty functions restricted to461

the feasible region. While the BARM algorithm involves mini-462

mizing (10), its implicit penalty function on X can nonetheless463

be numerically obtained across the feasible region in a given464

subspace of interest; for other penalties such as the nuclear465

norm this is of course trivial. Practically it is convenient to ex-466

plore a 1D feasible subspace generated by X∗ + ηV , where467

X∗ is the true minimum rank solution, V ∈ null[A], and η468

is a scalar. We may then plot various penalty function values469

as η is varied, tracing the corresponding 1D feasible subspace.470

We choose V = X1 − X∗, where X1 is a feasible solution471

with minimum nuclear norm; however, random selections from472

null[A] also show similar characteristics.473

Fig. 1 provides a simple example of this process. A is gen-474

erated randomly with all zeros and a single randomly placed475

‘1’ in each row leading to a canonical matrix completion prob-476

lem. X∗ ∈ R5×5 is randomly generated as X∗ = uv	, where477

u and v are iid N (0, 1) vectors, and so X∗ is rank one. Finally,478

p = 10 elements are observed, and therefore A has 10 rows and479

5 × 5 = 25 columns. η is varied from −5 to 5 and the values of480

the nuclear norm,
∑

i log(σi [X]2 + γ), and the implicit BARM481

cost function are displayed.482

From the figure we observe that the minimum of the nuclear483

norm is not produced when the rank is smallest, which occurs484

when η = 0; hence the convex cost function fails for this prob-485

lem. Likewise, the
∑

i log(σi [X]2 + γ) penalty used by IRLS0486

displays an incorrect global minimum when the tuning param-487

eter γ is large. In contrast, when γ is small, while the global488

minimum may now be correct, spurious local ditches have ap-489

peared in the cost function.5 Therefore, any success of the IRLS0490

algorithm depends heavily on a carefully balanced decaying se-491

quence of γ values, with the hope that initial iterations can steer492

the trajectory towards a desirable basin of attraction where local493

5Technically speaking, these are not provably local minima since we are
only considering a 1D subspace of the feasible region. However, it nonetheless
illustrates the strong potential for troublesome local minima, especially in high
dimensional practical problems.

minima are less problematic. One advantage of BARM then is 494

that it is parameter free in this respect and yet still retains the 495

correct global minimum, often without additional spurious local 496

minima. 497

D. Convergence 498

Previous results of Section IV are limited to exploring aspects 499

of the underlying BARM cost function. Regarding the BARM 500

algorithm itself, by construction the updates generated by (8), 501

(14), and (15) are guaranteed to reduce or leave unchanged 502

L(Ψ) at each iteration. However, this is not technically suffi- 503

cient to guarantee convergence to a stationary point of the cost 504

function unless the additional conditions of Zangwill’s Global 505

Convergence Theorem are satisfied [20]. However, provided we 506

add a small regularization factor γtr[Ψ−1 ], with γ > 0, then it 507

can be shown that any cluster point of the resulting sequence of 508

iterations {Ψk} must be a stationary point. Moreover, because 509

the sequence is bounded, there will always exist at least one 510

cluster point, and therefore the algorithm is guaranteed to at 511

least converge to a set of parameter values S such that for any 512

Ψ∗ ∈ S, L(Ψ∗) + γtr[(Ψ∗)−1 ] is a stationary point. 513

Finally, we should mention that this extra γ factor is akin to the 514

homotopy continuation regularizer used by the IRLS0 algorithm 515

[6] as discussed in Section II. However, whereas IRLS0 requires 516

a carefully-chosen, decreasing sequence {γk} with γk > 0 both 517

to prove convergence and to avoid local minimum (and without 518

this factor the algorithm performs very poorly in practice), for 519

BARM a small, fixed factor only need be included as a technical 520

necessity for proving formal convergence; in practice it can be 521

fixed to exactly zero. 522

V. SYMMETRIZATION IMPROVEMENTS 523

Despite the promising theoretical attributes of BARM, there 524

remains one important artifact of its probabilistic origins not 525

found in more conventional existing rank minimization algo- 526

rithms. In particular, other algorithms rely upon a symmetric 527

penalty function that is independent of whether we are working 528

with X or X	. All methods that reduce to (3) fall into this 529

category, e.g., nuclear norm minimization, IRNN, or IRLS0. In 530
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contrast, our method relies on defining a distribution with re-531

spect to the columns of X . Consequently the underlying cost532

function is not identical when derived with respect to X or533

X	, a difference which will depend on A. While globally opti-534

mal solutions should nonetheless be the same, the convergence535

trajectory could depend on this distinction leading to different536

local minima in certain circumstances. Although either con-537

struction leads to low-rank solutions, we may nonetheless ex-538

pect improvement if we can somehow symmetrize the algorithm539

formulation.540

To accomplish this, we consider a Gaussian prior on x =541

vec[X] with a covariance formed using a block-wise averaging542

of covariances defined over rows and columns, denoted Ψr and543

Ψc respectively. The overall covariance is then given by the544

Kronecker sum545

Ψ = 1/2 (Ψr ⊗ I + I ⊗ Ψc) . (20)

The estimation process then proceeds in a similar fashion as546

before but with modifications and alternate upper-bounds that547

accommodate for this merger. For reported experimental results548

this symmetric version of BARM is used, with complete up-549

date rules listed in the Appendix and computational complexity550

evaluated in Section VI.E.551

VI. EXPERIMENTAL VALIDATION552

This section compares BARM with existing state-of-the-art553

affine rank minimization algorithms. For BARM, in all noise-554

less cases we simply used λ = 10−10 (effectively zero), and555

hence no tuning parameters are required. Likewise, nuclear556

norm minimization [1], [4] requires no tuning parameters be-557

yond implementation-dependent control parameters frequently558

used to enhance convergence speed (however the global min-559

imum is unaltered given that the problem is convex). For the560

IRLS0 algorithm, we used our own implementation as the al-561

gorithm is straightforward and no code was available for the562

case of general A; we based the required decreasing γk se-563

quence on suggestions from [6]. IRLS0 code is available from564

the original authors for matrix completion; however, the results565

obtained with this code are not better than those obtained with566

our version. For the IRNN algorithm, we did not have access567

to code for general A, nor specific details of how various pa-568

rameters should be set in the general case. Note also that IRNN569

has multiple parameters to tune even in noiseless problems un-570

like BARM. Therefore we report results directly from [5] where571

available. Note that both [5] and [6] show superior results to a572

number of other algorithms; we do not generally compare with573

these others given that they are likely no longer state-of-the-art574

and may clutter the presentation.575

As stated previously, our focus here is on algorithms that do576

not require knowledge of the true rank of the optimal solution,577

and hence we do not include comparisons with [10] or the nor-578

malized hard thresholding algorithm from [21]. Regardless, we579

have nonetheless conducted numerous experiments with these580

algorithms, and even when the correct rank is provided, results581

are inferior to BARM, especially when correlated measurements582

are used. However, we do show limited empirical results with583

Fig. 2. Matrix completion comparisons (avg of 10 trials).

the variational sparse Bayesian algorithm (VSBL) from [11] 584

because of its Bayesian origins, although the underlying param- 585

eterization is decidedly different from BARM. But these results 586

are limited to matrix completion as VSBL presently does not 587

handle general affine constraints. Results from VSBL were ob- 588

tained using publicly available code from the authors. 589

A. Matrix Completion 590

We begin with the matrix completion problem from (2), in 591

part because this allows us to compare our results with the latest 592

algorithms even when code is not available. For this purpose we 593

reproduce the exact same experiment from [5], where a rank r 594

matrix is generated as X0 = TMLTMR , with TML ∈ Rn×r 595

and TMR ∈ Rr×m (n = m = 150) as iid N (0, 1) random ma- 596

trices. 50% of all entries are then hidden uniformly at random. 597

The relative error (REL) given by ‖ X0 − X̂‖F/‖ X0 ‖F is 598

computed for each trial and averaged as r is varied. Likewise, 599

we compute the frequency of success (FoS) score, which mea- 600

sures the percentage of trials where the REL is below 10−3 . 601

Results are shown in Fig. 2 where BARM is the only algorithm 602

capable of reaching the theoretical recovery limit, beyond which 603

p = 0.5 × 1502 = 11250 is surpassed by the number of degrees 604

of freedom in X0 , in this case 2 × 150 × 44 − 442 = 11264. 605

Note that FoS values were reported in [5] over a wide range of 606

non-convex IRNN algorithms. The green curve represents the 607

best performing candidate from this pool as tuned by the original 608

authors; REL values were unavailable. Interestingly, although 609

VSBL is based on a somewhat related probabilistic model to 610

BARM, the underlying parameterization, cost function, and up- 611

date rules are entirely different and do not benefit from strong 612

theoretical underpinnings. Hence performance does not always 613

match recent state-of-the-art algorithms, although from a com- 614

putational standpoint it is quite efficient. 615

Besides BARM, the IRLS0 algorithm also displayed better 616

performance than the other methods. This motivated us to re- 617

produce some of the matrix completion experiments from [6] so 618

as to provide direct head-to-head comparisons with the authors’ 619

original implementation. For this purpose, X0 is conveniently 620

generated in the same way as above; however, values of n,m, 621

r, and the percentage of missing entries are varied while eval- 622

uating reconstructions using FoS. While [6] tests a variety of 623



IEE
E P

ro
of

8 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 00, NO. 00, 2016

TABLE I
MATRIX COMPLETION RESULTS OF BARM WITH IRLS0 ON THE THREE

HARDEST PROBLEMS FROM [6]. PUBLISHED RESULTS IN [6] INCLUDED FOR

COMPARISON

Problem IRLS0 IHT FPCA Opts BARM

FR n(=m) r FoS FoS FoS FoS FoS

0.78 500 20 0.9 0 0 0 1
0.8 40 9 1 0 0.5 0 1
0.87 100 14 0.5 0 0 0 1

combinations of these values to explore varying degrees of624

problem difficulty, here we only reproduce the most challeng-625

ing cases to see if BARM is still able to produce superior626

reconstruction accuracy. In this respect problem difficulty is627

measured by the degrees of freedom ratio (FR) given by FR628

= r(n + m − r)/p as defined in [6]. We also only include ex-629

periments where algorithms are blind to the true rank of X0 .6630

Results are shown in Table I, where we have also displayed631

the published results of three additional algorithms that were632

compared with IRLS0 in [6], namely, IHT [22], FPCA [23]633

and Optspace [24]. From the table we observe that, in the most634

difficult problem considered in [6], IRLS0 achieved only a 0.5635

FoS score (meaning failure 50% of the time) while BARM still636

achieves a perfect 1.0. Note that when FR is high, the problem637

of recovering the underlying matrix is essentially much harder.638

This happens in a manner that more local minima are induced639

(due to increased rank) and/or much larger search space are640

exposed (due to decreased number of observations/constraints).641

In these cases, the equivalency of the global optimal with con-642

vex relaxation usually does not hold, whereas for the existing643

non-convex surrogates, there is no reason to assume any local644

minima are not present. However, since BARM has an implicit645

mechanism of smoothing local minima (though maybe not all646

of them), it works more robustly in these situations.647

B. General A648

Next we consider the more challenging problem involving649

arbitrary affine constraints. The desired low-rank TX0 is gen-650

erated in the same way as above. We then consider two types651

of linear mappings where A is generated as: (i) an iid N (0, 1),652

p × n2 matrix, and (ii)
∑p

i=1 i−1/2uiv
	
i , where ui ∈ Rp and653

vi ∈ Rn2
are iid N (0, 1) vectors. The latter is meant to ex-654

plore less-than-ideal conditions where the linear operator dis-655

plays correlations and may be somewhat ill-conditioned. Fig. 3656

displays aggregate results when X0 is 50× 50 and 100× 100,657

including the underlying REL scores for additional comparison.658

In both cases p = 1000 observations are used, and therefore the659

corresponding measurement matrices A are 1000× 2500 and660

1000× 10000 respectively. We then vary r from 1 up to the661

theoretical limit corresponding to problem size. Again we ob-662

serve that BARM is consistently able to work up to the limit,663

even when the A operator is no longer an ideal Gaussian. In664

6Note that IRLS0 can be modified to account for the true rank if such knowl-
edge were available.

general, we have explored a wide range of empirical conditions 665

too lengthly to report here, and it is only very rarely, and always 666

near the theoretical boundary, where BARM occasionally may 667

not succeed. We explore such failure cases in the next section. 668

C. Failure Case Analysis 669

Thus far we have not shown any cases where BARM actually 670

fails. Of course solving (1) for general A is NP-hard so recovery 671

failures certainly must exist in some circumstances when using 672

a polynomial-time algorithm such as BARM. Although we cer- 673

tainly cannot explore every possible scenario, it behooves us 674

to probe more carefully for conditions under which such errors 675

may occur. One way to accomplish this is to push the problem 676

difficulty even further towards the theoretical limit by reducing 677

the number of measurements p as follows. 678

With the number of observations fixed at p = 1000 and a 679

general measurement matrix A, the previous section examined 680

the recovery of 50 × 50 and 100 × 100 matrices as the rank was 681

varied from 1 to the recovery limit (r = 11 for the 50× 50 case; 682

r = 5 for the 100× 100 case). However, it is still possible to 683

make the problem even more challenging by fixing r at the limit 684

and then reducing p until it exactly equals the degrees of freedom 685

2n2 − r2 . With {n = 50, r = 11} this occurs at p = 979, for 686

{n = 100, r = 5} this occurs at p = 975. 687

We examined the BARM algorithm under these conditions 688

with 10 additional trials using the uncorrelated A for each prob- 689

lem size. Encouragingly, BARM was still 30% successful with 690

{n = 50, r = 11}, and 40% successful with {n = 100, r = 5}. 691

However, it is interesting to further examine the nature of these 692

failure cases. In Fig. 4 we have averaged the singular values of 693

X̂ in all the failure cases. We notice that, although the recovery 694

was technically classified as a failure since the relative error 695

(REL) was above the stated threshold, the estimated matrices 696

are of almost exactly the correct minimal rank. Hence BARM 697

has essentially uncovered an alternative solution with minimal 698

rank that is nonetheless feasible by construction. We therefore 699

speculate that right at the theoretical limit, when A is maxi- 700

mally overcomplete (p × n2 = 979 × 2500 or 975× 10000 for 701

the two problem sizes), there exists multiple feasible matri- 702

ces with singular value spectral cut-off points indistinguishable 703

from the optimal solution. Importantly, when the other algo- 704

rithms we tested failed, the failure is much more dramatic and 705

a clear spectral cut-off at the correct rank is not apparent. 706

This motivates a looser success criteria than FoS to account 707

for the possibility of multiple (nearly) optimal solutions that 708

may not necessarily be close with respect to relative error. For 709

this purpose we define the frequency of rank success (FoRS) as 710

the percentage of trials whereby a feasible solution X̂ is found 711

such that σr [X̂]/σr+1[X̂] > 103 , where σi [·] denotes the i-th 712

singular value of a matrix and r is the rank of the true low-rank 713

X0 . In words, FoRS measures the percentage of trials such that 714

roughly a rank r solution is recovered, regardless of proximity 715

to X0 . 716

Under this new criteria, all of the failure cases with respect to 717

FoS described above, for both problem sizes, become successes; 718

however, none of the other algorithms show improvement under 719
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Fig. 3. Comparisons with general affine constraints (avg of 10 trials). (a) 50× 50, A uncorrelated, (b) 50× 50, A correlated, (c) 100× 100, A uncorrelated,
and (d)100× 100, A correlated.

Fig. 4. Singular value averages of failure cases. In both cases solutions of min-
imal rank are obtained even though X̂ �= X0 . (a) 50× 50 and (b) 100× 100.

TABLE II
FURTHER MATRIX COMPLETION COMPARISONS OF BARM WITH IRLS0 BY

REDUCING THE NUMBER OF MEASUREMENTS IN THE HARDEST PROBLEM

FROM [6]. RESULTS WITH BOTH FOS AND FORS METRICS ARE REPORTED

(AVG OF 10 TRIALS)

Problem IRLSO BARM

FR n(=m) r FoS FoRS FoS FoRS

0.9 100 14 0 0 1 1
0.95 100 14 0 0 0.8 1
0.99 100 14 0 0 0.7 1

this criteria, indicating that their original failures involved actual720

sub-optimal rank solutions. Something similar happens when we721

revisit the matrix completion experiments. For example, based722

on Table I the most difficult case involves FR = 0.87; however,723

by further reducing p, we can push FR towards 1.0 to further724

investigate the break-down point of BARM. Results are shown725

in Table II. While IRLS0 (which is the top performing algorithm726

in [6] and in our experiments besides BARM) fails 100% of the 727

time via both metrics, BARM can achieve an FoS of 0.7 even 728

when FR = 0.99 and an FoRS of 1.0 in all cases. 729

We therefore adopt a more challenging measurement struc- 730

ture for A to better evaluate the limits of BARM performance to 731

reveal potential failures by both FoS and FoRS metrics. Specif- 732

ically, we first applied 2-D discrete cosine transform (DCT) to 733

X0 and then randomly sampled p of the resulting DCT coef- 734

ficients. Because both the DCT and the sampling sub-process 735

are linear operations on the entries of X0 , the whole process is 736

representable via a matrix A, which encodes highly structured 737

information. Fig. 5 depicts the results using problem sizes con- 738

sistent with Fig. 3; note that the FoRS metric has replaced the 739

REL metric for comparison purposes. 740

Two things stand out from the analysis. First, while the other 741

algorithms display almost identical behavior under either metric, 742

BARM failures under the FoS criteria are mostly converted 743

to successes by the FoRS metric by recovering a matrix of 744

near-optimal rank. Secondly, even though certain unequivocal 745

failures emerge near the limits with this challenging DCT-based 746

sampling matrix, BARM outperforms the other algorithms using 747

either metric by a large margin. 748

To summarize, we have demonstrated that BARM is capa- 749

ble of recovering a low-rank matrix right up to the theoretical 750

limit in a variety of scenarios using different types of mea- 751

surement processes. Moreover, even in cases where it fails, it 752

often nonetheless still produces a feasible X̂ with rank nearly 753

identical to the generative low-rank X0 , suggesting that multi- 754

ple optimal solutions may be possible in challenging borderline 755

cases. But when true unequivocal failures do occur, such fail- 756

ures tend to be near the theoretical boundary, and with greater 757

likelihood when the dictionary displays significant structure 758

(or correlations). While certainly we envision that, out of the 759
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Fig. 5. Comparisons with structured affine constraints using both FoS and FoFS evaluation metrics (avg of 10 trials). (a) 50× 50, A sub-sampled DCT,
(b) 100× 100, A sub-sampled DCT.

Fig. 6. Test with noisy data.

infinite multitude of testing situations further significant pock-760

ets of BARM failure can be revealed, we nonetheless feel that761

BARM is quite promising relative to existing algorithms.762

D. Additional Noisy Tests763

We also briefly present results that demonstrate the robustness764

of BARM to noise. For this purpose we reproduce the noisy765

experiment from [5] designed for validating IRNN algorithms.766

The simulated data are generated in the exact same way as was767

used to produce Fig. 2, only now instead of observing elements768

of X0 directly, we observe X0 + 0.1 × E, where elements769

of E are iid N (0, 1). Although in [5] a heuristic strategy is770

introduced and tuned for adaptively setting all parameters (four771

in total), we simply applied BARM with λ = 10−3 (so only a772

single parameter need be adjusted, and actually a wide range773

of λ values produces similar performance anyway). Results are774

shown in Fig. 6 where we compare BARM directly with the775

best result reported in [5] over the range r = 15 to r = 35. The776

nuclear norm solution is also included for reference. Overall, the777

BARM solution is stable and exhibits superior accuracy relative778

to the others.779

E. Computational Complexity780

Finally, regarding computational complexity, for general A781

the BARM updates can be implemented to scale linearly in the782

elements of X and quadratically in the number of observations783

p (the special case of matrix completion is decidedly much784

cheaper because of the special structure that can be exploited).785

In our experiments, for relatively easy problems on the order of786

Fig. 7. Empirical convergence of BARM.

10 iterations are required, while for difficult recovery problems 787

near the theoretical recovery boundary this may increase by a 788

factor of 10 or so. This is somewhat expected though since as we 789

near the theoretical limit, A becomes highly overcomplete, and 790

candidate solutions become much more difficult to differentiate. 791

To show this effect empirically, we compare two separate tri- 792

als from Fig. 3(a), the first when r = 1 (relatively easy), the sec- 793

ond when r = 11 (relatively hard).7 In Fig. 7 we plot the value 794

of REL in both cases versus the iteration number of BARM. 795

VII. APPLICATION EXAMPLES 796

Many real-world problems from disparate fields can be for- 797

mulated as the search for a low-rank matrix under affine con- 798

straints [1], [3], [4], [25]. Here we briefly consider two such 799

examples: low-rank image rectification and collaborative filter- 800

ing for recommender systems. The former implicitly involves 801

a general sampling operator A, while the latter reduces to a 802

standard matrix completion problem. 803

A. Low-Rank Image Rectification 804

In [4], the transform invariant low-rank textures (TILT) al- 805

gorithm is derived for rectifying images containing low-rank 806

7Note that r = 1 is only relatively easy here because the number of obser-
vations is sufficient for the larger r = 11 case; if only the minimal number
of measurements are available then even r = 1 can be challenging for many
algorithms.
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Fig. 8. Image rectification comparisons using a checkboard image. Top: Original image with observed region (red box) and estimated transformation (green
box). Bottom: Rectified image estimates. (a) Nuclear norm (easy), (b) BARM (easy), (c) Nuclear norm (hard), (d) BARM (hard).

textures that have been transformed using an unknown operator807

τ from some group (e.g., a homography). For a given observed808

image Y , the basic idea is to construct a first-order Taylor series809

approximation around the current rectified image estimate X̂810

and solve811

min
X,δ

rank [X] s.t. X = Y +
∑

i

J i

(
X̂

)
δi, (21)

where J i(X̂) is the Jacobian matrix with respect to X of812

the i-th parameter τi describing the transformation, with τ =813

[τ1 , τ2 , . . .]
	. Optimization over the vector of first-order differ-814

ences δ = [δ1 , δ2 , . . .]
	 can be accomplished in closed form by815

projecting both sides of the constraint to the orthogonal comple-816

ment of the span of all J i(X̂). Let PJ c represent this projection817

operator. The feasible region in (21) then becomes818

PJ c (X) = PJ c (Y ) + PJ c

(
∑

i

J i

(
X̂

)
δi

)
= PJ c (Y )

(22)
The resulting problem then reduces exactly to (1) when we819

define A = PJ c and b = vec[PJ c (Y )]. Once X is computed in820

this way, we then update each J i(X̂) and repeat until conver-821

gence.822

While the original TILT algorithm substitutes the nuclear823

norm for rank[X], we embedded the BARM algorithm into824

the posted TILT source code [4] for comparison purposes (note825

that we disabled an additional sparse error term for both algo-826

rithms to simplify comparisons, and it is not necessary anyway827

in many regimes). Figs. 8 and 9 display results on both two828

easy examples, where the number of observations p is large,829

and two more difficult problems where the number observa-830

tions is small. While both algorithms succeed on the easy cases,831

when the observations are constrained by a small image window,832

only BARM is successful in accurately rectifying the images.833

This may be due, at least in part, to the fact that the implicit834

A operator contains significant structure that is not consistent835

with the required nullspace properties required for nuclear norm836

minimization success.837

B. Collaborative Filtering of MovieLens Data 838

Collaborative filtering, a technique used by many recom- 839

mender systems, is a popular representative application of low- 840

rank matrix completion. Typically the rows (or columns) of X0 841

index users, the columns (or rows) denote items, and each entry 842

(X0)ij is the rating/score of user i applied to item j. Given 843

that we can observe some subset of elements of X0 , the task 844

of collaborative filtering is to predict all or some of the miss- 845

ing ratings. In general this would be impossible; however, if we 846

have access to some prior knowledge, e.g., X0 is low-rank, then 847

estimation may be feasible. 848

While our interest here is not in recommender systems or 849

collaborative filtering per se, we nonetheless evaluate BARM 850

using the 1M MovieLens dataset8 as this appears to represent 851

one of the most common evaluation benchmarks. We emphasize 852

at the outset that the strict validity of any low-rank assumptions 853

underlying this data is debatable, and it remains entirely unclear 854

whether the true globally optimal or lowest rank solution consis- 855

tent with the observations, even if computable, would necessar- 856

ily lead to the best prediction of the unknown ratings. In fact, the 857

reported performance of various existing rank-minimization al- 858

gorithms tends to cluster around almost the same value, implying 859

that collaborative filtering may not provide the most discrimina- 860

tive data type with which to compare. In most cases, it appears 861

that tuning parameters and other heuristic modifications play 862

a larger role than the underlying algorithmic distinctions fun- 863

damental to finding optimal low-rank estimates. Nonetheless, 864

we apply BARM for completeness and convention, adopting an 865

additional simple mean-offset estimation term from [25] that is 866

particularly suitable for this problem. 867

In [6], IRLS0 is compared with only two other algorithms on 868

MovieLens data, but the performance is no better. Therefore, 869

we choose to compare directly with [25], which both derives 870

an IRLS-like algorithm and shows comparisons with a much 871

wider variety of alternative algorithms using a strict evalua- 872

tion protocol that is standard in the literature. Specifically, the 873

8http://www.grouplens.org/
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Fig. 9. Image rectification comparisons using a landmark photo. Top: Original image with observed region (red box) and estimated transformation (green box).
Bottom: Rectified image estimates. (a) Nuclear norm (easy), (b) BARM (easy), (c) Nuclear norm (hard), (d) BARM (hard).

1M MovieLens dataset, which contains 1 million ratings in the874

range {1, . . . , 5} for 3900 movies from 6040 unique users, is875

assessed under two test-protocals: weak generalization, which876

measures the ability to predict other items rated by the same877

user, and strong generalization, which measures the ability to878

predict items by novel users. 5 000 users are randomly selected879

for the weak generalization, and likewise 1 000 users are ex-880

tracted for the strong generalization. Each experiment is then881

run three times and the averaged results are reported. The per-882

formance metric is normalized mean absolute error (NMAE)883

given as884

NMAE =

(∑
i,j∈supp(X0 )

|(X0 )i j − X̂ i j |
|supp(X0 )|

)

(rtmax − rtmin)
,

where rtmax and rtmin are the maximum and minimum ratings885

possible.886

We followed the same setup and reported results using BARM887

in Table III along with results from [25] for comparison. This888

includes the additional algorithms URP [26], Attitude [27],889

MMMF [28], IPCF [29], E-MMMF [30], GPLVM [31], NBMC890

[32], and IRLS/GM [25], [6]. From this table we observe that891

for the easier weak generalization problem BARM is a close892

second best, while for the more challenging strong generaliza-893

tion BARM is actually the best. Of course it is also immediately894

apparent that all algorithms fall within a relatively narrow per-895

formance range of approximately five percentage points. Con-896

sequently, we cannot unequivocally conclude that the attributes897

of BARM which make it suitable for optimally minimizing rank898

TABLE III
COLLABORATIVE FILTERING ON 1M MOVIELENS DATASET. RESULTS FROM

[25] ARE IN ITALIC FOR COMPARISON PURPOSES

Weak NMAE Hard NMAE

URP 0.4341 0.4444
Attitude 0.4320 0.4375
MMMF 0.4156 0.4203
IPCF 0.4096 0.4113

E-MMMF 0.4029 0.4071
GPLVM 0.4026 0.3994
NBMC 0.3916 0.3992

IRLS/GM 0.3959 0.3928

BARM 0.3942 0.3898

necessarily translate into a truly significant practical advantage 899

on this collaborative filtering task. But we would argue that the 900

same holds for any matrix completion algorithm. 901

VIII. CONCLUSION 902

This paper explores a conceptually-simple, parameter-free 903

algorithm called BARM for matrix rank minimization under 904

affine constraints that is capable of successful recovery empir- 905

ically observed to approach the theoretical limit over a broad 906

class of experimental settings (including many not shown here) 907

unlike any existing algorithms, and long after any convex guar- 908

antees break down. Our strategy in this effort has been to 909

adopt Bayesian machinery for inspiring a principled cost func- 910

tion; however, ultimate model justification is placed entirely in 911
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theoretical evaluation of desirable global and local minima prop-912

erties, and in the empirical recovery performance that inevitably913

results from these properties. Although in general non-convex914

algorithms are exponentially more challenging to analyze, in915

this regard we have at least attempted to contextualize BARM916

in the same manner as convex optimization-based approaches917

such as nuclear-norm minimization.918

APPENDIX A919

Here we provide brief proofs of Lemmas 1 and 2 as well as920

Theorem 1. We also address the augmented update rules that921

account for the revised, symmetrized cost function discussed in922

Section V.923

A. Proof of Lemmas 1 and 2924

Regarding Lemma 1, this result mirrors related ideas from925

[16] in the context of Bayesian compressive sensing. Hence,926

while a more rigorous presentation is possible, here we de-927

scribe the basic aspects of the adaptation. At any candidate928

minimizer of (10) in the limit λ → 0, define W such that929

AΨA	 = WW	. To be a minimizer, global or local, it must930

be that b ∈ span[W ]. If this were not the case, then L(Ψ,ν)931

would diverge to infinity as λ → 0 because bT Σ−1
b b progresses932

to infinity at a faster rate than log |Σb | can compensate by ap-933

proaching minus infinity. Intuitively, in much the same way934

argminz
1
z + log z = 1, meaning the optimal z must lie in the935

‘span’ of 1 else the overall objective will be driven to infinity.936

Consequently, the only way to minimize the cost in the limit937

as λ → 0 is to consider low-rank solutions within the constraint938

set that b ∈ span[W ], and it is equivalent to requiring that939

bT Σ−1
b b ≤ C for some constant C independent of λ (which940

ultimately corresponds with maintaining A(X) = b in the limit941

as well).942

In this setting, while 0 ≤ bT Σ−1
b b ≤ C is bounded, the sec-943

ond term in L(Ψ,ν) can be unbounded from below when944

rank[Ψ] is sufficiently small. To see this note that945

log |Σb | =
p∑

i=1

log
(
σi

[
AΨA	]

+ λ
)
, (23)

where σi [·] denotes the i-th singular value of a matrix. While946

the maximum rank of AΨA	 is obviously p, if r � rank [Ψ] <947

p/m and spark [A] = p + 1 (maximal spark) as stipulated in the948

lemma statement, then rank
[
AΨA	]

= mr and (23) becomes949

log |Σb | =
mr∑

i=1

log
(
σi

[
AΨA	]

+ λ
)

+ (p − mr) log λ.

(24)
Note that the spark assumption accomplishes two objectives950

in this context. First, it guarantees that a high rank Ψ cannot951

masquerade as a low rank Ψ behind the nullspace of some col-952

lection of columns Ai . Secondly, it ensures that after assuming953

r < p/m, then rank
[
AΨA	]

= mr.954

Consequently, in the limit where λ → 0 (with the limit being955

taken outside of the minimization), (23) effectively scales as956

(p − mr) log λ, and hence the overall cost is minimized when957

Ψ has minimal rank. This in turn ensures that the corresponding 958

X will also have minimal rank, completing the proof sketch for 959

Lemma 1. 960

Finally, Lemma 2 follows directly from the structure of the 961

L(Ψ,ν) cost function via simple reparameterizations. � 962

B. Proof of Theorem 1 963

To begin we assume that bi �= 0, ∀i, where bi denotes the 964

sub-vector of b such that bi = Aix:i . If this were not the case 965

we can always collapse X by the corresponding column (which 966

is indistinguishable from zero) and achieve an equivalent result. 967

Given the assumptions of Theorem 1, the BARM cost function 968

becomes 969

L (Ψ,ν) =
m∑

i=1

b	i
(
νiAiΨA	

i

)−1
bi + log

∣∣νiAiΨA	
i

∣∣ .

(25)
If there exists a feasible rank one solution to b = Avec 970

[X], then there also exists a set of Ψ′
i = νiΨ such that bib

	
i = 971

AiΨ′
iA

	
i for all i. To see this, note that bib

	
i = Aix:ix

	
:i 972

A	
i . Because rank[X] = 1, it also follows that bib

	
i = αiAiX 973

X	A	
i , where αi = ‖ x:ix

	
:i ‖/‖ XX	 ‖. Therefore Ψ′

i = 974

νiXX	 achieves the desired result with νi = αi . 975

Now suppose we have converged to any solution {Ψ̂, ν̂} with 976

rank[Ψ] > 1 and associated Ψ̂ = I ⊗ Ψ̂. Note that since bi �= 977

0, νi > 0 for all i, otherwise a local minimum is not possible 978

(the cost function would be driven to positive infinity). 979

Define Σ̂bi
= ν̂iAiΨ̂A	

i . Additionally we can assume that 980

b	i Σ̂−1
bi

is finite, meaning that bi lies in the span of the singular 981

vectors of Σ̂bi
. (If this were not the case, the cost would be 982

driven to infinity and we could not be at a minimizing solution 983

anyway.) If {Ψ̂, ν̂} is a local minimum, then {λ1 = 1, λ2 = 0} 984

must be a local minimum of the revised cost function 985

L (λ1 , λ2) =
m∑

i=1

b	
i

(
λ1Σ̂bi

+ λ2bib
	
i

)−1
bi

+ log
∣∣∣λ1Σ̂bi

+ λ2bib
	
i

∣∣∣ . (26)

This is because bib
	
i represents a valid set of basis vectors for 986

updating the covariance per the construction above involving 987

Ψ′
i . First consider optimization over λ1 . If λ1 = 1 is a local 988

minimum, then by taking gradients and equating to zero, we 989

require that 990

m∑

i=1

b	i Σ̂−1
bi

bi =
m∑

i=1

rank
[
Σ̂bi

]
. (27)

Likewise, taking the gradient with respect to λ2 we obtain 991

∂L (λ1 , λ2)
∂λ2

∣∣∣∣
λ1 =1,λ2 =0

=
m∑

i=1

b	
i Σ̂−1

bi
bi −

m∑

i=1

(
b	

i Σ̂−1
bi

bi

)2
.

(28)
The nullspace condition (a very mild assumption) ensures 992

that
∑m

i=1 rank[Σ̂bi
] = k for some k > m when rank[Ψ] > 1. 993

To see this, observe that to achieve
∑m

i=1 rank[Σ̂bi
] = m when 994

rank[Ψ] > 1 requires that Ψ = uu	 + WW	 where u is a 995
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vector and W is a matrix (or vector) with columns in null[Ai ],996

∀i. If any such W is not in this nullspace for some i, then given997

that pi > 1, the associated AiΨA	
i will have rank greater than998

one, and the overall rank sum will exceed m.999

Consequently, (28) will always be negative. This is because1000

if
∑m

i=1 zi = k for any set of non-negative variables {zi}, the1001

minimal value of
∑m

i=1 z2
i occurs when zi = k/m, ∀i. In our1002

case, this implies that1003

m∑

i=1

(
b	

i Σ̂−1
bi

bi

)2
≥

m∑

i=1

(k/m)2 > k > m. (29)

Therefore we can add a small contribution of bib
	
i to each1004

Σ̂bi
and reduce the underlying cost function. Hence we cannot1005

have a local minimum, except when Ψ is equal to some Ψ∗1006

with rank[Ψ∗] = 1. Moreover, we may directly conclude that1007

x∗ = Ψ
∗
A	(AΨ

∗
A	)

†
b is feasible and rank[X∗] = 1 with1008

x∗ = vec[X∗].1009

Regarding the last part of the theorem, we consider only1010

f that are concave non-decreasing functions (this is the only1011

reasonable choice for shrinking singular values to zero, and1012

the more general case naturally follows anyway with additional1013

effort, but minimal enlightenment). Without loss of generality1014

we may also assume that f(0) = 0 and f(1) = 1; we can always1015

apply an inconsequential translation and scaling such that these1016

conditions hold.9 Simple counter examples then demonstrate1017

that f(ε) must be greater than some constant C independent of1018

ε for all ε sufficiently small. To see this, note that we can always1019

rescale elements of A such that a solution with rank greater1020

than one is preferred unless this condition holds. However, such1021

an f , which effectively must display infinite gradient at f(0) to1022

guarantee a global solution is always rank one, will then always1023

display local minima for certain A. This can easily be revealed1024

through simple counter-examples. �1025

C. Symmetrization Update Rules1026

These iterative update rules follow from alternative upper1027

bounds tailored to the symmetric version of BARM. When both1028

Ψr and Ψc are fixed, x is updated via the posterior mean cal-1029

culation1030

x̂ = vec
[
X̂

]
=

1
2

(
Ψr + Ψc

)
A	

×
[
λI + A

1
2

(
Ψr + Ψc

)
A	

]−1

b. (30)

where Ψr = Ψr ⊗ I and Ψc = I ⊗ Ψc . Likewise we update1031

∇Ψ−1
r

and ∇Ψ−1
c

using1032

∇Ψ−1
r

=
m∑

i=1

Ψr − ΨrA
	
ri
(
AΨrA

	 + λI
)−1

AriΨr , (31)

∇Ψ−1
c

=
n∑

i=1

Ψc − ΨcA
	
ci
(
AΨcA

	 + λI
)−1

AciΨc , (32)

9The log function is a limiting case, but what follows holds nonetheless.

where Ari ∈ Rp×m is defined such that A = [A	
r1 , . . . ,A

	
rm ]

	
1033

and Aci ∈ Rp×m is defined such that A = [Ac1 , . . . ,Acn ]. Fi- 1034

nally given these values, with X, ∇Ψ−1
r

and ∇Ψ−1
c

fixed, we can 1035

compute the optimal Ψr and Ψc in closed form by optimizing 1036

the relevant Ψr - and Ψc -dependent terms via 1037

Ψopt
r =

1
n

[
X̂

	
X̂ + ∇Ψ−1

r

]
, (33)

Ψopt
c =

1
m

[
X̂X̂

	
+ ∇Ψ−1

c

]
. (34)

In practice the simple initialization Ψr = I and Ψc = I is 1038

sufficient for obtaining good performance. 1039
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Exploring Algorithmic Limits of Matrix Rank
Minimization Under Affine Constraints

1

2
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Abstract—Many applications require recovering a matrix of4
minimal rank within an affine constraint set, with matrix com-5
pletion a notable special case. Because the problem is NP-hard in6
general, it is common to replace the matrix rank with the nuclear7
norm, which acts as a convenient convex surrogate. While elegant8
theoretical conditions elucidate when this replacement is likely to9
be successful, they are highly restrictive and convex algorithms10
fail when the ambient rank is too high or when the constraint11
set is poorly structured. Nonconvex alternatives fare somewhat12
better when carefully tuned; however, convergence to locally opti-13
mal solutions remains a continuing source of failure. Against this14
backdrop, we derive a deceptively simple and parameter-free prob-15
abilistic PCA-like algorithm that is capable, over a wide battery16
of empirical tests, of successful recovery even at the theoretical17
limit where the number of measurements equals the degrees of18
freedom in the unknown low-rank matrix. Somewhat surprisingly,19
this is possible even when the affine constraint set is highly ill-20
conditioned. While proving general recovery guarantees remains21
evasive for nonconvex algorithms, Bayesian-inspired or otherwise,22
we nonetheless show conditions whereby the underlying cost func-23
tion has a unique stationary point located at the global optimum;24
no existing cost function we are aware of satisfies this property.25
The algorithm has also been successfully deployed on a computer26
vision application involving image rectification and a standard col-27
laborative filtering benchmark.28

Index Terms—Rank minimization, affine constraints, matrix29
completion, matrix recovery, empirical Bayes.30

I. INTRODUCTION31

R ECENTLY there has been a surge of interest in finding32

minimum rank matrices subject to some problem-specific33

constraints often characterized as an affine set [1]–[7]. Mathe-34

matically this involves solving35

min
X

rank [X] s.t. b = A (X) , (1)

where X ∈ Rn×m is the unknown matrix, b ∈ Rp represents36

a vector of observations and A : Rn×m → Rp denotes a linear37

mapping. An important special case of (1) commonly applied38
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to collaborative filtering is the matrix completion problem 39

min
X

rank [X] s.t. X ij = (X0)ij , (i, j) ∈ Ω, (2)

where X0 is a low-rank matrix we would like to recover, but 40

we are only able to observe elements from the set Ω [1], [2]. 41

Unfortunately however, both this special case and the general 42

problem (1) are well-known to be NP-hard, and the rank penalty 43

itself is non-smooth. Consequently, a popular alternative is to 44

instead compute 45

min
X

∑

i

f (σi [X]) s.t. b = A (X) , (3)

where σi [X] denotes the i-th singular value of X and f is 46

usually a concave, non-decreasing function (or nearly so). In 47

the special case where f(z) = I[z �= 0] (i.e., an indicator func- 48

tion) we retrieve the matrix rank; however, smoother surrogates 49

such as f(z) = log z or f(z) = zq with q ≤ 1 are generally pre- 50

ferred for optimization purposes. When f(z) = z, (3) reduces 51

to convex nuclear norm minimization. A variety of celebrated 52

theoretical results have quantified specific conditions, heavily 53

dependent on the singular values of matrices in the nullspace 54

of A, where the minimum nuclear norm solution is guaranteed 55

to coincide with that of minimal rank [1], [3], [6]. However, 56

these guarantees typically only apply to a highly restrictive set 57

of rank minimization problems, and in a practical setting non- 58

convex algorithms can succeed in a much broader range of 59

conditions [2], [5], [6]. 60

In Section II we will summarize state-of-the-art non-convex 61

rank minimization algorithms that operate under affine con- 62

straints and point out some of their shortcomings. This will 63

be followed in Section III by the derivation of an alternative 64

approach using Bayesian modeling techniques adapted from 65

probabilistic PCA [8]. Section IV will then describe connections 66

with nuclear norm minimization, convergence issues, and prop- 67

erties of global and local solutions. The latter includes special 68

cases whereby any stationary point of the intrinsic cost func- 69

tion is guaranteed to have optimal rank, illustrating an under- 70

lying smoothing mechanism which leads to success over com- 71

peting methods. We next discuss algorithmic enhancements in 72

Section V that further improve recovery performance in prac- 73

tice. Section VI contains a wide variety of numerical compar- 74

isons that highlight the efficacy of this algorithm, while Section 75

Section VII presents a computer vision application involving 76

image rectification and a standard collaborative filtering bench- 77

mark. Technical proofs and algorithm update rule details are 78

contained in the Appendix. Portions of this work have previ- 79

ously appeared in conference proceedings [9]. 80

1053-587X © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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Before proceeding, we highlight several main contributions81

as follows:82

1) Bayesian inspiration can take uncountably many different83

forms and parameterizations, but the devil is in the details84

and existing methods offer little opportunity for both the-85

oretical inquiry and substantial performance gains solving86

(1). In this regard, we apply carefully-tailored modifica-87

tions to a veteran probabilistic PCA model leading to sys-88

tematic theoretical and empirical insights and advantages.89

Model justification is ultimately based on such meticulous90

technical considerations rather than merely the presumed91

qualitative legitimacy of any underlying prior distribu-92

tions.93

2) Non-convex algorithms have demonstrated some im-94

provement in estimation accuracy over the celebrated con-95

vex nuclear norm; however, this typically requires the in-96

clusion of one or more additional tuning parameters to97

incrementally inject additional objective function curva-98

ture and avoid bad local solutions. In contrast, for solving99

(1) our non-convex Bayesian-inspired algorithm requires100

no such parameters at all, and noisy relaxations necessi-101

tate only a single, standard trade-off parameter balancing102

data-fit and minimal rank.1103

3) Over a wide battery of controlled experiments with104

ground-truth data, our approach outperforms all existing105

algorithms that we are aware of, Bayesian, non-convex, or106

otherwise. This includes direct head-to-head comparisons107

using the exact experimental designs and code prepared108

by original authors. In fact, even whenA is ill-conditioned109

we are consistently able to solve (1) right up to the the-110

oretical limit of any possible algorithm, which has never111

been demonstrated previously.112

II. RELATED WORK113

Here we focus on a few of the latest and most effective rank114

minimization algorithms, all developed within the last few years115

and evaluated favorably against the state-of-the-art.116

A. General Non-Convex Methods117

In the non-convex regime, effective optimization strategies118

attempt to at least locally minimize (3), often exceeding the per-119

formance of the convex nuclear norm. For example, [6] derives120

a family of iterative reweighted least squares (IRLS) algorithms121

applied to f(z) = (z2 + γ)q/2 with q, γ > 0 as tuning parame-122

ters. A related penalty also considered, which coincides with the123

limit as q → 0 (up to an inconsequential scaling and translation),124

is f(z) = log(z2 + γ), which maintains an intimate connection125

with rank given that126

log z = lim
q→0

q−1 (zq − 1) and lim
q→0

zq = I [z �= 0] , (4)

where I is a standard indicator function. Consequently, when127

γ is small,
∑

i log(σi [X]2 + γ) behaves much like a scaled128

1While not our emphasis here, similar to other Bayesian frameworks, even this
trade-off parameter can ultimately be learned from the data if a true, parameter-
free implementation is desired across noise levels.

and translated version of the rank, albeit with nonzero gradients 129

away from zero. 130

The IRLS0 algorithm from [6] represents the best-performing 131

special case of the above, where
∑

i log(σi [X]2 + γ) is min- 132

imized using a homotopy continuation scheme merged with 133

IRLS. Here a fixed γ is replaced with a decreasing sequence 134

{γk}, the rationale being that when γk is large, the cost func- 135

tion is relatively smooth and devoid of local minima. As the 136

iterations k progress, γk is reduced, and the cost behaves more 137

like the matrix rank function. However, because now we are 138

more likely to be within a reasonably good basin of attraction, 139

spurious local minima are more easily avoided. The downside 140

of this procedure is that it requires a pre-defined heuristic for 141

reducing γk , and this schedule may be problem specific. More- 142

over, there is no guarantee that a global solution will ever be 143

found. 144

In a related vein, [5] derives a family of iterative reweighted 145

nuclear norm (IRNN) algorithms that can be applied to virtu- 146

ally any concave non-decreasing function f , even when f is 147

non-smooth, unlike IRLS. For effective performance however 148

the authors suggest a continuation strategy similar to IRLS0. 149

Moreover, additional tuning parameters are required for differ- 150

ent classes of functions f and it remains unclear which choices 151

are optimal. While the reported results are substantially better 152

than when using the convex nuclear norm, in our experiments 153

IRLS0 seems to perform slightly better, possibly because the 154

quadratic least squares inner loop is less aggressive in the initial 155

stages of optimization than weighted nuclear norm minimiza- 156

tion, leading to a better overall trajectory. Regardless, all of these 157

affine rank minimization algorithms fail well before the theoreti- 158

cal recovery limit is reached, when the number of observations p 159

equals the number of degrees of freedom in the low-rank matrix 160

we wish to recover. Specifically, for an n × m, rank r matrix, 161

the number of degrees of freedom is given by r(m + n) − r2 , 162

hence p = r(m + n) − r2 is the best-case boundary. In practice 163

if A is ill-conditioned or degenerate the achievable limit may be 164

more modest. 165

A third approach relies on replacing the convex nuclear norm 166

with a truncated non-convex surrogate [2]. While some com- 167

petitive results for image impainting via matrix completion are 168

shown, in practice the proposed algorithm has many parameters 169

to be tuned via cross-validation. Moreover, recent comparisons 170

contained in [5] show that default settings perform relatively 171

poorly. 172

Finally, a somewhat different class of non-convex algorithms 173

can be derived using a straightforward application of alternating 174

minimization [10]. The basic idea is to assume X = UV T for 175

some low-rank matrices U and V and then solve 176

min
U ,V

‖ b −A
(
UV T

)
‖F (5)

via coordinate decent. The downside of this approach is that it 177

can be sensitive to data correlations and requires that U and 178

V be parameterized with the correct rank. In contrast, our em- 179

phasis here is on algorithms that require no prior knowledge 180

whatsoever regarding the true rank. This is especially important 181

in application extensions that may manage multiple low-rank 182
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matrices such that prior knowledge of all individual ranks is not183

feasible.184

B. Bayesian Methods185

From a probabilistic perspective, previous work has applied186

Bayesian formalisms to rank minimization problems, although187

not specifically within an affine constraint set. For example,188

[11]–[13] derive robust PCA algorithms built upon the lin-189

ear summation of a rank penalty and an element-wise sparsity190

penalty. In particular, [12] applies an MCMC sampling approach191

for posterior inference, but the resulting iterations are not scal-192

able, subjectable to detailed analysis, nor readily adaptable to193

affine constraints. In contrast, [11] applies a similar probabilis-194

tic model but performs inference using a variational mean-field195

approximation. While the special case of matrix completion196

is considered, from an empirical standpoint its estimation ac-197

curacy is not competitive with the state-of-the-art non-convex198

algorithms mentioned above. Finally, without the element-wise199

sparsity component intrinsic to robust PCA (which is not our200

focus here), [13] simply collapses to a regular PCA model with201

a closed-form solution, so the challenges faced in solving (1) do202

not apply. Consequently, general affine constraints really are a203

key differentiating factor.204

From a motivational angle, the basic probabilistic model with205

which we begin our development can be interpreted as a care-206

fully re-parameterized generalization of the probabilistic PCA207

model from [8]. This will ultimately lead to a non-convex algo-208

rithm devoid of the heuristic tuning strategies mentioned above,209

but nonetheless still uniformly superior in terms of estimation210

accuracy. We emphasize that, although we employ a Bayesian211

entry point for our algorithmic strategy, final justification of the212

underlying model will be entirely based on properties of the213

underlying cost function that emerges, rather than any putative214

belief in the actual validity of the assumed prior distributions215

or likelihood function. This is quite unlike the vast majority of216

existing Bayesian approaches.217

C. Analytical Considerations218

Turning to analytical issues, a number of celebrated theoret-219

ical results dictate conditions whereby substitution of the rank220

function with the convex nuclear norm in (1) is nonetheless guar-221

anteed to still produce the minimal rank solution. For example,222

if A is a Gaussian iid measurement ensemble and X0 ∈ Rn×n223

represents the optimal solution to (1) with rank[X0 ] = r, then224

with high probability as the problem dimensions grow large, the225

minimum nuclear norm feasible solution will equal X0 if the226

number of measurements p satisfies p ≥ 3r(2n − r) [14].227

The limitation of this type of result is two-fold. First, in the228

above situation the true minimum rank solution only actually re-229

quires p ≥ r(2n − r) measurements to be recoverable via brute230

force solution of (1), and the remaining difference of a factor231

of three can certainly be considerable in many practical situa-232

tions (e.g., requiring 300 measurements is far more laborious233

than only needing 100 measurements). Secondly though, and234

far more importantly, all existing provable recovery guarantees235

place extremely strong restrictions on the structure of A, e.g.,236

strong restrictions on the singular value decay of matrices in 237

the nullspace of A. Such conditions are unlikely to ever hold in 238

realistic application settings, including the image rectification 239

example we describe in Section VII.A (in fact, these conditions 240

are usually incapable of even being checked). In contrast, the 241

algorithm we propose is empirically observed to only require 242

the theoretically minimal number of measurements even when 243

such nullspace conditions are violated in many cases. While a 244

general theoretical guarantee of this sort is obviously not pos- 245

sible, we do nonetheless provide several supporting theoretical 246

results indicative of why such performance is at least empirically 247

obtainable. 248

III. ALTERNATIVE ALGORITHM DERIVATION 249

In this section we first detail our basic distributional assump- 250

tions followed by development of the associated update rules 251

for inference. 252

A. Basic Model 253

In contrast to the majority of existing algorithms organized 254

around practical solutions to (3), here we adopt an alternative, 255

probabilistic starting point. We first define the Gaussian likeli- 256

hood function 257

p (b|X;A, λ) ∝ exp
[
− 1

2λ
‖ A (X) − b ‖2

2

]
, (6)

noting that in the limit as λ → 0 this will enforce the same 258

constraint set as in (1). Next we define an independent, zero- 259

mean Gaussian prior distribution with covariance νiΨ on each 260

column of X , denoted x:i for all i = 1, . . . ,m. This produces 261

the aggregate prior on X given by 262

p (X;Ψ,ν) =
∏

i

N (x:i ;0, νiΨ) ∝ exp
[
x	Ψ

−1
x
]
, (7)

where Ψ ∈ Rn×n is a positive semi-definite symmetric matrix,2 263

ν = [ν1 , . . . , νm ]	 is a non-negative vector, x = vec[X] 264

(column-wise vectorization), and Ψ = diag[ν] ⊗ Ψ, with ⊗ 265

denoting the Kronecker product. It is important to stress here 266

that we do not necessarily believe that the unknown X actually 267

follows such a Gaussian distribution per se. Rather, we adopt 268

(7) primarily because it will lead to an objective function with 269

desirable properties related to solving (1). 270

Moving forward, given both likelihood and prior are Gaus- 271

sian, the posterior p(X|b;Ψ,ν,A, λ) is also Gaussian, with 272

mean given by an X̂ such that 273

x̂ = vec
[
X̂

]
= ΨA	(

λI + AΨA	)−1
b. (8)

2Technically Ψ must be positive definite for the inverse in (7) to be de-
fined. However, we can accommodate the semi-definite case using the fol-
lowing convention. Without loss of generality assume that Ψ = RR	 for
some matrix R. We then qualify that p(X; Ψ, ν) = 0 if x /∈ span[R],
and p(X; Ψ, ν) ∝ exp[− 1

2 x	(R	)
†
R†x] otherwise. Equivalently, through-

out the paper for convenience (and with slight abuse of notation) we define

x	Ψ
−1

x = ∞ when x /∈ span[R], and x	Ψ
−1

x = x	(R	)
†
R†x other-

wise. This will come in handy, for example, when interpreting the bound in
(12) below. Note also that the final cost function (10) we will ultimately be
minimizing requires no such inverse anyway.
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Here A ∈ Rp×nm is a matrix defining the linear operator A274

such that b = Ax reproduces the feasible region in (1). From275

this expression it is clear that, if Ψ represents a low-rank co-276

variance matrix, then each column of X̂ will be constrained277

to a low-dimensional subspace resulting overall in a low-rank278

estimate as desired. Of course for this simple strategy to be suc-279

cessful we require some way of determining a viable Ψ and the280

scaling vector ν.281

A common Bayesian strategy in this regard is to marginalize282

over X and then maximize the resulting likelihood function283

with respect to Ψ and ν [15], [13], [16]. This involves solving284

max
Ψ∈H + ,ν≥0

∫
p (b|X;A, λ) p (X;Ψ,ν) dX, (9)

where H+ denotes the set of positive semi-definite and symmet-285

ric n × n matrices. After a −2 log transformation and applica-286

tion of a standard convolution-of-Gaussians integration, solving287

(9) is equivalent to minimizing the cost function288

L (Ψ,ν) = b	Σ−1
b b + log |Σb |, (10)

where289

Σb = AΨA	 + λI and Ψ = diag [ν] ⊗ Ψ. (11)

Here Σb is the covariance of b given Ψ and ν.290

B. Update Rules291

Minimizing (10) is a non-convex optimization problem, and292

we employ standard upper bounds for this purpose leading to an293

EM-like algorithm, somewhat related to [8]. In particular, we294

compute separate bounds, parameterized by auxiliary variables,295

for both the first and second terms of L(Ψ,ν). While the gen-296

eral case can easily be handled and may be applicable for more297

challenging problems, here for simplicity and ease of presenta-298

tion we consider minimizing L(Ψ) � L(Ψ,ν = 1), meaning299

all elements of ν are fixed at one (and such is the case for all300

experiments reported herein, although we are currently explor-301

ing situations where this added generality could be especially302

helpful).303

Based on [16], for the first term in (10) we have304

b	Σ−1
b b ≤ 1

λ
‖ b − Ax ‖2

2 + x	Ψ
−1

x (12)

with equality whenever x satisfies (8). For the second term we305

use306

log |Σb | ≡ m log |Ψ| + log |λA	A + Ψ
−1 |

≤ m log |Ψ| + tr
[
Ψ−1∇Ψ−1

]
+ C, (13)

where because log |λA	A + Ψ
−1 | is concave with respect to307

Ψ−1 , we can upper bound it using a first-order approximation308

with a bias term C that is independent of Ψ. Equality is obtained309

when the gradient satisfies310

∇Ψ−1 =
m∑

i=1

Ψ − ΨA	
i

(
AΨA	 + λI

)−1
AiΨ, (14)

where Ai ∈ Rp×n is defined such that A = [A1 , . . . ,Am ].311

Finally given the upper bounds from (12) and (13) with X312

and ∇Ψ−1 fixed, we can compute the optimal Ψ in closed form 313

by optimizing the relevant Ψ-dependent terms via 314

Ψopt = arg minX tr
[
Ψ−1

(
XX	 + ∇Ψ−1

)]
+ m log |Ψ|

=
1
m

[
X̂X̂

	
+ ∇Ψ−1

]
. (15)

By agnostically starting with Ψ = I and then iteratively com- 315

puting (8), (14), and (15), we can then obtain an estimate for Ψ, 316

and more importantly, a corresponding estimate for X given by 317

(8) at convergence. We refer to this basic procedure as BARM 318

for Bayesian Affine Rank Minimization. The next section will 319

describe in detail why it is particularly well-suited for solving 320

problems such as (1). 321

IV. PROPERTIES OF BARM 322

Here we first describe a close but perhaps not intuitively- 323

obvious relationship between the BARM objective function and 324

canonical nuclear norm minimization. We then discuss desirable 325

properties of global and local minima before concluding with a 326

brief examination of convergence issues. 327

A. Connections with Nuclear Norm Minimization 328

On the surface, it may appear that minimizing (10) is com- 329

pletely unrelated to the convex problem 330

min
X

‖ X ‖∗ s.t. b = A (X) (16)

that is most commonly associated with practical rank mini- 331

mization implementations. However, a close connection can be 332

revealed by considering the modified objective function 333

L′ (Ψ) = b	Σ−1
b b + tr

[
Ψ

]
, (17)

which represents nothing more than (10), with ν = 1 and with 334

log |Σb | being replaced by tr[Ψ]. Now suppose we minimize 335

(17) with respect to Ψ ∈ H+ obtaining some Ψ∗. We then go 336

on to compute an estimate of X using (8). Note that if we apply 337

the bound from (12) to the first term in (17), then this estimate 338

for X equivalently solves 339

min
Ψ∈H + ,X

1
λ
‖ b − Ax ‖2

2 + x	Ψ
−1

x + tr
[
Ψ

]
, (18)

with x = vec[X] as before. If we first optimize over Ψ, it is eas- 340

ily demonstrated that the optimal value of Ψ equals (XX	)
1/2

. 341

Plugging this value into (18), simplifying, and then applying the 342

definition of the nuclear norm, we arrive at 343

min
X

1
λ
‖ b − Ax ‖2

2 + 2‖ X ‖∗, (19)

Furthermore, in the limit λ → 0 (applied outside of the 344

minimization), (19) becomes equivalent to (16). For more 345

information regarding the duality relationship between vari- 346

ance/covariance space and coefficient space, at least in the 347

related context of compressive sensing models, please refer 348

to [16]. 349

Consequently, we may conclude that the central distinc- 350

tion between the proposed BARM cost function and nuclear 351

norm minimization is an intrinsic A-dependent penalty function 352
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log |Σb | which is applied in covariance space. In Section IV.B353

we will examine desirable properties of this non-convex sub-354

stitution, highlighting our desire to treat the underlying BARM355

probabilistic model as an independent cost function that may be356

subject to technical analysis independent of its Bayesian origins.357

B. Global/Local Minima Analysis358

As discussed in Section II one nice property of the359 ∑
i log(σi [X]) penalty employed (approximately) by IRLS0360

[6] is that it can be viewed as a smooth version of the matrix361

rank function while still possessing the same set of minimum,362

both global and local, over the affine constraint set, at least if we363

consider the limiting situation of
∑

i log(σi [X]2 + γ) when γ364

becomes small so that we may avoid the distracting singularity365

of log 0. Additionally, it possesses an attractive form of scale366

invariance, meaning that if X∗ is an optimal feasible solution,367

a block-diagonal rescaling of A nevertheless leads to an equiv-368

alent rescaling of the optimum (without the need for solving369

an additional optimization problem using the new A). This is370

very much unlike the nuclear norm or other non-convex surro-371

gates that penalize the singular values of X in a scale-dependent372

manner.373

In contrast, the proposed algorithm is based on a very differ-374

ent Gaussian statistical model with seemingly a more tenuous375

connection with rank minimization. Encouragingly however,376

the proposed cost function enjoys the same global/local minima377

properties as
∑

i log(σi [X]2 + γ) with γ → 0. Before present-378

ing these results, we define spark[A] as the smallest number379

of linearly dependent columns in matrix A [17]. All proofs are380

deferred to the Appendix.381

Lemma 1: Let b = Avec[X], where A ∈ Rp×nm satisfies382

spark[A] = p + 1. Also define r as the smallest rank of any fea-383

sible solution. Then if r < p/m, any global minimizer {Ψ∗,ν∗}384

of (10) in the limit λ → 0 is such that x∗ = Ψ
∗
A	(AΨ

∗
A	)

†
b385

is feasible and rank[X∗] = r with vec[X∗] = x∗.386

Lemma 2: Additionally, let Ã = AD, where D = diag387

[α1Γ, . . . , αmΓ] is a block-diagonal matrix with invertible388

blocks Γ ∈ Rn×n of unit norm scaled with coefficients αi > 0.389

Then iff {Ψ∗,ν∗} is a minimizer (global or local) to (10) in the390

limit λ → 0, then {Γ−1Ψ∗,diag[α]−1ν∗} is a minimizer when391

Ã replaces A. The corresponding estimates of X are likewise392

in one-to-one correspondence.393

Remarks: The assumption r = rank[X∗] < p/m in Lemma394

1 is completely unrestrictive, especially given that a unique,395

minimal-rank solution is only theoretically possible by any al-396

gorithm if p ≥ (n + m)r − r2 , which is much more restrictive397

than p > rm. Hence the bound we require is well above that398

required for uniqueness anyway. Likewise the spark assumption399

will be satisfied for any A with even an infinitesimal (con-400

tinuous) random component. Consequently, we are essentially401

always guaranteed that BARM possesses the same global op-402

timum as the rank function. Regarding Lemma 2, no surrogate403

rank penalty of the form
∑

i f(σi [X]) can achieve this result404

except for f(z) = log z, or inconsequential limiting translations405

and rescalings of the log such as the indicator function I[z �= 0]406

(which is related to the log via arguments in Section II).407

While these results are certainly a useful starting point, the 408

real advantage of adopting the BARM cost function is that lo- 409

cally minimizing solutions are exceedingly rare, largely as a 410

consequence of the marginalization process in (9), and in some 411

cases provably so. A specialized example of this smoothing can 412

be quantified in the following scenario. 413

Suppose A is now block diagonal, with diagonal blocks Ai 414

such that bi = Aix:i producing the aggregate observation vec- 415

tor b = [b	
1 , . . . , b	

m ]
	

. While somewhat restricted, this situa- 416

tion nonetheless includes many important special cases, includ- 417

ing canonical matrix completion and generalized matrix com- 418

pletion where elements of Z = WX0 are observed after some 419

transformation W , instead of X0 directly. 420

Theorem 1: Let b = Avec[X], where A is block diagonal, 421

with blocks Ai ∈ Rpi ×n . Moreover, assume pi > 1 for all i 422

and that ∩inull[Ai ] = ∅. Then if minXrank[X] = 1 in the 423

feasible region, any minimizer {Ψ∗,ν∗} of (10) (global or local) 424

in the limit λ → 0 is such that x∗ = Ψ
∗
A	(AΨ

∗
A	)

†
b is 425

feasible and rank[X∗] = 1 with vec[X∗] = x∗. Furthermore, 426

no cost function in the form of (3) can satisfy the same result. 427

In particular, there can always exist local and/or global minima 428

with rank greater than one. 429

Remarks: This result implies that, under extremely mild con- 430

ditions, which do not even depend on the concentration proper- 431

ties of A, the proposed cost function has no minima that are not 432

global minima, at least in this rank-one case. (The minor techni- 433

cal condition regarding nullspace intersections merely ensures 434

that high-rank components cannot simultaneously “hide” in the 435

nullspace of every measurement matrix Ai ; the actual A opera- 436

tor may still be highly ill-conditioned.) Thus any algorithm with 437

provable convergence to some local minimizer is guaranteed to 438

obtain a globally optimal solution.3 439

Although a global optimal guarantee for finding a rank-one 440

matrix sounds somewhat limited, such a guarantee is not pos- 441

sible with any other penalty function of the standard form 442∑
i f(σi [X]), which is the typical recipe for rank minimization 443

algorithms, convex or not. Moreover, finding rank one matrices 444

subject to affine constraints represents a crucial component of 445

applications such as phase retrieval [18], [19]. 446

Additionally, if a unique rank-one solution exists to (1), then 447

the unique minimizing solution to (10) will produce this X via 448

(8). Crucially, this will occur even when the minimal number 449

of measurements p = n + m − 1 are available, unlike any other 450

algorithm we are aware of that is blind to the true underlying 451

rank.4 Moreover, as evident from the experiments, the proposed 452

algorithm always successfully finds the global optimal in many 453

situations where the underlying matrix has a rank much higher 454

than one. Therefore, although we can only provide theoretical 455

guarantee for the rank-one case, the underlying intuition that 456

local minima are smoothed away arguably carries over to situa- 457

tions where the rank is greater than one. 458

3Note also that with minimal additional effort, it can be shown that no sub-
optimal stationary points of any kind, including saddle points, are possible.

4It is important to emphasize that the difficulty of estimating the optimal low-
rank solution is based on the ratio of the d.o.f. in X to the number of observations
p. Consequently, estimating X even with r small can be challenging when p is
also small, meaning A is highly overcomplete.
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Fig. 1. Plots of different surrogates for matrix rank in a 1D feasible subspace. Here the convex nuclear norm does not retain the correct global minimum. In
contrast, although the non-convex

∑
i
log(σi [X]2 + γ) penalty exhibits the correct minimum when γ is sufficiently small, it also contains spurious minima.

Only BARM smoothes away local minimum while simultaneously retaining the correct global optima.

C. Visualization of BARM Local Minima Smoothing459

To further explore the smoothing effect and complement The-460

orem 1, it helps to visualize rank penalty functions restricted to461

the feasible region. While the BARM algorithm involves mini-462

mizing (10), its implicit penalty function on X can nonetheless463

be numerically obtained across the feasible region in a given464

subspace of interest; for other penalties such as the nuclear465

norm this is of course trivial. Practically it is convenient to ex-466

plore a 1D feasible subspace generated by X∗ + ηV , where467

X∗ is the true minimum rank solution, V ∈ null[A], and η468

is a scalar. We may then plot various penalty function values469

as η is varied, tracing the corresponding 1D feasible subspace.470

We choose V = X1 − X∗, where X1 is a feasible solution471

with minimum nuclear norm; however, random selections from472

null[A] also show similar characteristics.473

Fig. 1 provides a simple example of this process. A is gen-474

erated randomly with all zeros and a single randomly placed475

‘1’ in each row leading to a canonical matrix completion prob-476

lem. X∗ ∈ R5×5 is randomly generated as X∗ = uv	, where477

u and v are iid N (0, 1) vectors, and so X∗ is rank one. Finally,478

p = 10 elements are observed, and therefore A has 10 rows and479

5 × 5 = 25 columns. η is varied from −5 to 5 and the values of480

the nuclear norm,
∑

i log(σi [X]2 + γ), and the implicit BARM481

cost function are displayed.482

From the figure we observe that the minimum of the nuclear483

norm is not produced when the rank is smallest, which occurs484

when η = 0; hence the convex cost function fails for this prob-485

lem. Likewise, the
∑

i log(σi [X]2 + γ) penalty used by IRLS0486

displays an incorrect global minimum when the tuning param-487

eter γ is large. In contrast, when γ is small, while the global488

minimum may now be correct, spurious local ditches have ap-489

peared in the cost function.5 Therefore, any success of the IRLS0490

algorithm depends heavily on a carefully balanced decaying se-491

quence of γ values, with the hope that initial iterations can steer492

the trajectory towards a desirable basin of attraction where local493

5Technically speaking, these are not provably local minima since we are
only considering a 1D subspace of the feasible region. However, it nonetheless
illustrates the strong potential for troublesome local minima, especially in high
dimensional practical problems.

minima are less problematic. One advantage of BARM then is 494

that it is parameter free in this respect and yet still retains the 495

correct global minimum, often without additional spurious local 496

minima. 497

D. Convergence 498

Previous results of Section IV are limited to exploring aspects 499

of the underlying BARM cost function. Regarding the BARM 500

algorithm itself, by construction the updates generated by (8), 501

(14), and (15) are guaranteed to reduce or leave unchanged 502

L(Ψ) at each iteration. However, this is not technically suffi- 503

cient to guarantee convergence to a stationary point of the cost 504

function unless the additional conditions of Zangwill’s Global 505

Convergence Theorem are satisfied [20]. However, provided we 506

add a small regularization factor γtr[Ψ−1 ], with γ > 0, then it 507

can be shown that any cluster point of the resulting sequence of 508

iterations {Ψk} must be a stationary point. Moreover, because 509

the sequence is bounded, there will always exist at least one 510

cluster point, and therefore the algorithm is guaranteed to at 511

least converge to a set of parameter values S such that for any 512

Ψ∗ ∈ S, L(Ψ∗) + γtr[(Ψ∗)−1 ] is a stationary point. 513

Finally, we should mention that this extra γ factor is akin to the 514

homotopy continuation regularizer used by the IRLS0 algorithm 515

[6] as discussed in Section II. However, whereas IRLS0 requires 516

a carefully-chosen, decreasing sequence {γk} with γk > 0 both 517

to prove convergence and to avoid local minimum (and without 518

this factor the algorithm performs very poorly in practice), for 519

BARM a small, fixed factor only need be included as a technical 520

necessity for proving formal convergence; in practice it can be 521

fixed to exactly zero. 522

V. SYMMETRIZATION IMPROVEMENTS 523

Despite the promising theoretical attributes of BARM, there 524

remains one important artifact of its probabilistic origins not 525

found in more conventional existing rank minimization algo- 526

rithms. In particular, other algorithms rely upon a symmetric 527

penalty function that is independent of whether we are working 528

with X or X	. All methods that reduce to (3) fall into this 529

category, e.g., nuclear norm minimization, IRNN, or IRLS0. In 530
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contrast, our method relies on defining a distribution with re-531

spect to the columns of X . Consequently the underlying cost532

function is not identical when derived with respect to X or533

X	, a difference which will depend on A. While globally opti-534

mal solutions should nonetheless be the same, the convergence535

trajectory could depend on this distinction leading to different536

local minima in certain circumstances. Although either con-537

struction leads to low-rank solutions, we may nonetheless ex-538

pect improvement if we can somehow symmetrize the algorithm539

formulation.540

To accomplish this, we consider a Gaussian prior on x =541

vec[X] with a covariance formed using a block-wise averaging542

of covariances defined over rows and columns, denoted Ψr and543

Ψc respectively. The overall covariance is then given by the544

Kronecker sum545

Ψ = 1/2 (Ψr ⊗ I + I ⊗ Ψc) . (20)

The estimation process then proceeds in a similar fashion as546

before but with modifications and alternate upper-bounds that547

accommodate for this merger. For reported experimental results548

this symmetric version of BARM is used, with complete up-549

date rules listed in the Appendix and computational complexity550

evaluated in Section VI.E.551

VI. EXPERIMENTAL VALIDATION552

This section compares BARM with existing state-of-the-art553

affine rank minimization algorithms. For BARM, in all noise-554

less cases we simply used λ = 10−10 (effectively zero), and555

hence no tuning parameters are required. Likewise, nuclear556

norm minimization [1], [4] requires no tuning parameters be-557

yond implementation-dependent control parameters frequently558

used to enhance convergence speed (however the global min-559

imum is unaltered given that the problem is convex). For the560

IRLS0 algorithm, we used our own implementation as the al-561

gorithm is straightforward and no code was available for the562

case of general A; we based the required decreasing γk se-563

quence on suggestions from [6]. IRLS0 code is available from564

the original authors for matrix completion; however, the results565

obtained with this code are not better than those obtained with566

our version. For the IRNN algorithm, we did not have access567

to code for general A, nor specific details of how various pa-568

rameters should be set in the general case. Note also that IRNN569

has multiple parameters to tune even in noiseless problems un-570

like BARM. Therefore we report results directly from [5] where571

available. Note that both [5] and [6] show superior results to a572

number of other algorithms; we do not generally compare with573

these others given that they are likely no longer state-of-the-art574

and may clutter the presentation.575

As stated previously, our focus here is on algorithms that do576

not require knowledge of the true rank of the optimal solution,577

and hence we do not include comparisons with [10] or the nor-578

malized hard thresholding algorithm from [21]. Regardless, we579

have nonetheless conducted numerous experiments with these580

algorithms, and even when the correct rank is provided, results581

are inferior to BARM, especially when correlated measurements582

are used. However, we do show limited empirical results with583

Fig. 2. Matrix completion comparisons (avg of 10 trials).

the variational sparse Bayesian algorithm (VSBL) from [11] 584

because of its Bayesian origins, although the underlying param- 585

eterization is decidedly different from BARM. But these results 586

are limited to matrix completion as VSBL presently does not 587

handle general affine constraints. Results from VSBL were ob- 588

tained using publicly available code from the authors. 589

A. Matrix Completion 590

We begin with the matrix completion problem from (2), in 591

part because this allows us to compare our results with the latest 592

algorithms even when code is not available. For this purpose we 593

reproduce the exact same experiment from [5], where a rank r 594

matrix is generated as X0 = TMLTMR , with TML ∈ Rn×r 595

and TMR ∈ Rr×m (n = m = 150) as iid N (0, 1) random ma- 596

trices. 50% of all entries are then hidden uniformly at random. 597

The relative error (REL) given by ‖ X0 − X̂‖F/‖ X0 ‖F is 598

computed for each trial and averaged as r is varied. Likewise, 599

we compute the frequency of success (FoS) score, which mea- 600

sures the percentage of trials where the REL is below 10−3 . 601

Results are shown in Fig. 2 where BARM is the only algorithm 602

capable of reaching the theoretical recovery limit, beyond which 603

p = 0.5 × 1502 = 11250 is surpassed by the number of degrees 604

of freedom in X0 , in this case 2 × 150 × 44 − 442 = 11264. 605

Note that FoS values were reported in [5] over a wide range of 606

non-convex IRNN algorithms. The green curve represents the 607

best performing candidate from this pool as tuned by the original 608

authors; REL values were unavailable. Interestingly, although 609

VSBL is based on a somewhat related probabilistic model to 610

BARM, the underlying parameterization, cost function, and up- 611

date rules are entirely different and do not benefit from strong 612

theoretical underpinnings. Hence performance does not always 613

match recent state-of-the-art algorithms, although from a com- 614

putational standpoint it is quite efficient. 615

Besides BARM, the IRLS0 algorithm also displayed better 616

performance than the other methods. This motivated us to re- 617

produce some of the matrix completion experiments from [6] so 618

as to provide direct head-to-head comparisons with the authors’ 619

original implementation. For this purpose, X0 is conveniently 620

generated in the same way as above; however, values of n,m, 621

r, and the percentage of missing entries are varied while eval- 622

uating reconstructions using FoS. While [6] tests a variety of 623
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TABLE I
MATRIX COMPLETION RESULTS OF BARM WITH IRLS0 ON THE THREE

HARDEST PROBLEMS FROM [6]. PUBLISHED RESULTS IN [6] INCLUDED FOR

COMPARISON

Problem IRLS0 IHT FPCA Opts BARM

FR n(=m) r FoS FoS FoS FoS FoS

0.78 500 20 0.9 0 0 0 1
0.8 40 9 1 0 0.5 0 1
0.87 100 14 0.5 0 0 0 1

combinations of these values to explore varying degrees of624

problem difficulty, here we only reproduce the most challeng-625

ing cases to see if BARM is still able to produce superior626

reconstruction accuracy. In this respect problem difficulty is627

measured by the degrees of freedom ratio (FR) given by FR628

= r(n + m − r)/p as defined in [6]. We also only include ex-629

periments where algorithms are blind to the true rank of X0 .6630

Results are shown in Table I, where we have also displayed631

the published results of three additional algorithms that were632

compared with IRLS0 in [6], namely, IHT [22], FPCA [23]633

and Optspace [24]. From the table we observe that, in the most634

difficult problem considered in [6], IRLS0 achieved only a 0.5635

FoS score (meaning failure 50% of the time) while BARM still636

achieves a perfect 1.0. Note that when FR is high, the problem637

of recovering the underlying matrix is essentially much harder.638

This happens in a manner that more local minima are induced639

(due to increased rank) and/or much larger search space are640

exposed (due to decreased number of observations/constraints).641

In these cases, the equivalency of the global optimal with con-642

vex relaxation usually does not hold, whereas for the existing643

non-convex surrogates, there is no reason to assume any local644

minima are not present. However, since BARM has an implicit645

mechanism of smoothing local minima (though maybe not all646

of them), it works more robustly in these situations.647

B. General A648

Next we consider the more challenging problem involving649

arbitrary affine constraints. The desired low-rank TX0 is gen-650

erated in the same way as above. We then consider two types651

of linear mappings where A is generated as: (i) an iid N (0, 1),652

p × n2 matrix, and (ii)
∑p

i=1 i−1/2uiv
	
i , where ui ∈ Rp and653

vi ∈ Rn2
are iid N (0, 1) vectors. The latter is meant to ex-654

plore less-than-ideal conditions where the linear operator dis-655

plays correlations and may be somewhat ill-conditioned. Fig. 3656

displays aggregate results when X0 is 50× 50 and 100× 100,657

including the underlying REL scores for additional comparison.658

In both cases p = 1000 observations are used, and therefore the659

corresponding measurement matrices A are 1000× 2500 and660

1000× 10000 respectively. We then vary r from 1 up to the661

theoretical limit corresponding to problem size. Again we ob-662

serve that BARM is consistently able to work up to the limit,663

even when the A operator is no longer an ideal Gaussian. In664

6Note that IRLS0 can be modified to account for the true rank if such knowl-
edge were available.

general, we have explored a wide range of empirical conditions 665

too lengthly to report here, and it is only very rarely, and always 666

near the theoretical boundary, where BARM occasionally may 667

not succeed. We explore such failure cases in the next section. 668

C. Failure Case Analysis 669

Thus far we have not shown any cases where BARM actually 670

fails. Of course solving (1) for general A is NP-hard so recovery 671

failures certainly must exist in some circumstances when using 672

a polynomial-time algorithm such as BARM. Although we cer- 673

tainly cannot explore every possible scenario, it behooves us 674

to probe more carefully for conditions under which such errors 675

may occur. One way to accomplish this is to push the problem 676

difficulty even further towards the theoretical limit by reducing 677

the number of measurements p as follows. 678

With the number of observations fixed at p = 1000 and a 679

general measurement matrix A, the previous section examined 680

the recovery of 50 × 50 and 100 × 100 matrices as the rank was 681

varied from 1 to the recovery limit (r = 11 for the 50× 50 case; 682

r = 5 for the 100× 100 case). However, it is still possible to 683

make the problem even more challenging by fixing r at the limit 684

and then reducing p until it exactly equals the degrees of freedom 685

2n2 − r2 . With {n = 50, r = 11} this occurs at p = 979, for 686

{n = 100, r = 5} this occurs at p = 975. 687

We examined the BARM algorithm under these conditions 688

with 10 additional trials using the uncorrelated A for each prob- 689

lem size. Encouragingly, BARM was still 30% successful with 690

{n = 50, r = 11}, and 40% successful with {n = 100, r = 5}. 691

However, it is interesting to further examine the nature of these 692

failure cases. In Fig. 4 we have averaged the singular values of 693

X̂ in all the failure cases. We notice that, although the recovery 694

was technically classified as a failure since the relative error 695

(REL) was above the stated threshold, the estimated matrices 696

are of almost exactly the correct minimal rank. Hence BARM 697

has essentially uncovered an alternative solution with minimal 698

rank that is nonetheless feasible by construction. We therefore 699

speculate that right at the theoretical limit, when A is maxi- 700

mally overcomplete (p × n2 = 979 × 2500 or 975× 10000 for 701

the two problem sizes), there exists multiple feasible matri- 702

ces with singular value spectral cut-off points indistinguishable 703

from the optimal solution. Importantly, when the other algo- 704

rithms we tested failed, the failure is much more dramatic and 705

a clear spectral cut-off at the correct rank is not apparent. 706

This motivates a looser success criteria than FoS to account 707

for the possibility of multiple (nearly) optimal solutions that 708

may not necessarily be close with respect to relative error. For 709

this purpose we define the frequency of rank success (FoRS) as 710

the percentage of trials whereby a feasible solution X̂ is found 711

such that σr [X̂]/σr+1[X̂] > 103 , where σi [·] denotes the i-th 712

singular value of a matrix and r is the rank of the true low-rank 713

X0 . In words, FoRS measures the percentage of trials such that 714

roughly a rank r solution is recovered, regardless of proximity 715

to X0 . 716

Under this new criteria, all of the failure cases with respect to 717

FoS described above, for both problem sizes, become successes; 718

however, none of the other algorithms show improvement under 719
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Fig. 3. Comparisons with general affine constraints (avg of 10 trials). (a) 50× 50, A uncorrelated, (b) 50× 50, A correlated, (c) 100× 100, A uncorrelated,
and (d)100× 100, A correlated.

Fig. 4. Singular value averages of failure cases. In both cases solutions of min-
imal rank are obtained even though X̂ �= X0 . (a) 50× 50 and (b) 100× 100.

TABLE II
FURTHER MATRIX COMPLETION COMPARISONS OF BARM WITH IRLS0 BY

REDUCING THE NUMBER OF MEASUREMENTS IN THE HARDEST PROBLEM

FROM [6]. RESULTS WITH BOTH FOS AND FORS METRICS ARE REPORTED

(AVG OF 10 TRIALS)

Problem IRLSO BARM

FR n(=m) r FoS FoRS FoS FoRS

0.9 100 14 0 0 1 1
0.95 100 14 0 0 0.8 1
0.99 100 14 0 0 0.7 1

this criteria, indicating that their original failures involved actual720

sub-optimal rank solutions. Something similar happens when we721

revisit the matrix completion experiments. For example, based722

on Table I the most difficult case involves FR = 0.87; however,723

by further reducing p, we can push FR towards 1.0 to further724

investigate the break-down point of BARM. Results are shown725

in Table II. While IRLS0 (which is the top performing algorithm726

in [6] and in our experiments besides BARM) fails 100% of the 727

time via both metrics, BARM can achieve an FoS of 0.7 even 728

when FR = 0.99 and an FoRS of 1.0 in all cases. 729

We therefore adopt a more challenging measurement struc- 730

ture for A to better evaluate the limits of BARM performance to 731

reveal potential failures by both FoS and FoRS metrics. Specif- 732

ically, we first applied 2-D discrete cosine transform (DCT) to 733

X0 and then randomly sampled p of the resulting DCT coef- 734

ficients. Because both the DCT and the sampling sub-process 735

are linear operations on the entries of X0 , the whole process is 736

representable via a matrix A, which encodes highly structured 737

information. Fig. 5 depicts the results using problem sizes con- 738

sistent with Fig. 3; note that the FoRS metric has replaced the 739

REL metric for comparison purposes. 740

Two things stand out from the analysis. First, while the other 741

algorithms display almost identical behavior under either metric, 742

BARM failures under the FoS criteria are mostly converted 743

to successes by the FoRS metric by recovering a matrix of 744

near-optimal rank. Secondly, even though certain unequivocal 745

failures emerge near the limits with this challenging DCT-based 746

sampling matrix, BARM outperforms the other algorithms using 747

either metric by a large margin. 748

To summarize, we have demonstrated that BARM is capa- 749

ble of recovering a low-rank matrix right up to the theoretical 750

limit in a variety of scenarios using different types of mea- 751

surement processes. Moreover, even in cases where it fails, it 752

often nonetheless still produces a feasible X̂ with rank nearly 753

identical to the generative low-rank X0 , suggesting that multi- 754

ple optimal solutions may be possible in challenging borderline 755

cases. But when true unequivocal failures do occur, such fail- 756

ures tend to be near the theoretical boundary, and with greater 757

likelihood when the dictionary displays significant structure 758

(or correlations). While certainly we envision that, out of the 759



IEE
E P

ro
of

10 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 00, NO. 00, 2016

Fig. 5. Comparisons with structured affine constraints using both FoS and FoFS evaluation metrics (avg of 10 trials). (a) 50× 50, A sub-sampled DCT,
(b) 100× 100, A sub-sampled DCT.

Fig. 6. Test with noisy data.

infinite multitude of testing situations further significant pock-760

ets of BARM failure can be revealed, we nonetheless feel that761

BARM is quite promising relative to existing algorithms.762

D. Additional Noisy Tests763

We also briefly present results that demonstrate the robustness764

of BARM to noise. For this purpose we reproduce the noisy765

experiment from [5] designed for validating IRNN algorithms.766

The simulated data are generated in the exact same way as was767

used to produce Fig. 2, only now instead of observing elements768

of X0 directly, we observe X0 + 0.1 × E, where elements769

of E are iid N (0, 1). Although in [5] a heuristic strategy is770

introduced and tuned for adaptively setting all parameters (four771

in total), we simply applied BARM with λ = 10−3 (so only a772

single parameter need be adjusted, and actually a wide range773

of λ values produces similar performance anyway). Results are774

shown in Fig. 6 where we compare BARM directly with the775

best result reported in [5] over the range r = 15 to r = 35. The776

nuclear norm solution is also included for reference. Overall, the777

BARM solution is stable and exhibits superior accuracy relative778

to the others.779

E. Computational Complexity780

Finally, regarding computational complexity, for general A781

the BARM updates can be implemented to scale linearly in the782

elements of X and quadratically in the number of observations783

p (the special case of matrix completion is decidedly much784

cheaper because of the special structure that can be exploited).785

In our experiments, for relatively easy problems on the order of786

Fig. 7. Empirical convergence of BARM.

10 iterations are required, while for difficult recovery problems 787

near the theoretical recovery boundary this may increase by a 788

factor of 10 or so. This is somewhat expected though since as we 789

near the theoretical limit, A becomes highly overcomplete, and 790

candidate solutions become much more difficult to differentiate. 791

To show this effect empirically, we compare two separate tri- 792

als from Fig. 3(a), the first when r = 1 (relatively easy), the sec- 793

ond when r = 11 (relatively hard).7 In Fig. 7 we plot the value 794

of REL in both cases versus the iteration number of BARM. 795

VII. APPLICATION EXAMPLES 796

Many real-world problems from disparate fields can be for- 797

mulated as the search for a low-rank matrix under affine con- 798

straints [1], [3], [4], [25]. Here we briefly consider two such 799

examples: low-rank image rectification and collaborative filter- 800

ing for recommender systems. The former implicitly involves 801

a general sampling operator A, while the latter reduces to a 802

standard matrix completion problem. 803

A. Low-Rank Image Rectification 804

In [4], the transform invariant low-rank textures (TILT) al- 805

gorithm is derived for rectifying images containing low-rank 806

7Note that r = 1 is only relatively easy here because the number of obser-
vations is sufficient for the larger r = 11 case; if only the minimal number
of measurements are available then even r = 1 can be challenging for many
algorithms.
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Fig. 8. Image rectification comparisons using a checkboard image. Top: Original image with observed region (red box) and estimated transformation (green
box). Bottom: Rectified image estimates. (a) Nuclear norm (easy), (b) BARM (easy), (c) Nuclear norm (hard), (d) BARM (hard).

textures that have been transformed using an unknown operator807

τ from some group (e.g., a homography). For a given observed808

image Y , the basic idea is to construct a first-order Taylor series809

approximation around the current rectified image estimate X̂810

and solve811

min
X,δ

rank [X] s.t. X = Y +
∑

i

J i

(
X̂

)
δi, (21)

where J i(X̂) is the Jacobian matrix with respect to X of812

the i-th parameter τi describing the transformation, with τ =813

[τ1 , τ2 , . . .]
	. Optimization over the vector of first-order differ-814

ences δ = [δ1 , δ2 , . . .]
	 can be accomplished in closed form by815

projecting both sides of the constraint to the orthogonal comple-816

ment of the span of all J i(X̂). Let PJ c represent this projection817

operator. The feasible region in (21) then becomes818

PJ c (X) = PJ c (Y ) + PJ c

(
∑

i

J i

(
X̂

)
δi

)
= PJ c (Y )

(22)
The resulting problem then reduces exactly to (1) when we819

define A = PJ c and b = vec[PJ c (Y )]. Once X is computed in820

this way, we then update each J i(X̂) and repeat until conver-821

gence.822

While the original TILT algorithm substitutes the nuclear823

norm for rank[X], we embedded the BARM algorithm into824

the posted TILT source code [4] for comparison purposes (note825

that we disabled an additional sparse error term for both algo-826

rithms to simplify comparisons, and it is not necessary anyway827

in many regimes). Figs. 8 and 9 display results on both two828

easy examples, where the number of observations p is large,829

and two more difficult problems where the number observa-830

tions is small. While both algorithms succeed on the easy cases,831

when the observations are constrained by a small image window,832

only BARM is successful in accurately rectifying the images.833

This may be due, at least in part, to the fact that the implicit834

A operator contains significant structure that is not consistent835

with the required nullspace properties required for nuclear norm836

minimization success.837

B. Collaborative Filtering of MovieLens Data 838

Collaborative filtering, a technique used by many recom- 839

mender systems, is a popular representative application of low- 840

rank matrix completion. Typically the rows (or columns) of X0 841

index users, the columns (or rows) denote items, and each entry 842

(X0)ij is the rating/score of user i applied to item j. Given 843

that we can observe some subset of elements of X0 , the task 844

of collaborative filtering is to predict all or some of the miss- 845

ing ratings. In general this would be impossible; however, if we 846

have access to some prior knowledge, e.g., X0 is low-rank, then 847

estimation may be feasible. 848

While our interest here is not in recommender systems or 849

collaborative filtering per se, we nonetheless evaluate BARM 850

using the 1M MovieLens dataset8 as this appears to represent 851

one of the most common evaluation benchmarks. We emphasize 852

at the outset that the strict validity of any low-rank assumptions 853

underlying this data is debatable, and it remains entirely unclear 854

whether the true globally optimal or lowest rank solution consis- 855

tent with the observations, even if computable, would necessar- 856

ily lead to the best prediction of the unknown ratings. In fact, the 857

reported performance of various existing rank-minimization al- 858

gorithms tends to cluster around almost the same value, implying 859

that collaborative filtering may not provide the most discrimina- 860

tive data type with which to compare. In most cases, it appears 861

that tuning parameters and other heuristic modifications play 862

a larger role than the underlying algorithmic distinctions fun- 863

damental to finding optimal low-rank estimates. Nonetheless, 864

we apply BARM for completeness and convention, adopting an 865

additional simple mean-offset estimation term from [25] that is 866

particularly suitable for this problem. 867

In [6], IRLS0 is compared with only two other algorithms on 868

MovieLens data, but the performance is no better. Therefore, 869

we choose to compare directly with [25], which both derives 870

an IRLS-like algorithm and shows comparisons with a much 871

wider variety of alternative algorithms using a strict evalua- 872

tion protocol that is standard in the literature. Specifically, the 873

8http://www.grouplens.org/
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Fig. 9. Image rectification comparisons using a landmark photo. Top: Original image with observed region (red box) and estimated transformation (green box).
Bottom: Rectified image estimates. (a) Nuclear norm (easy), (b) BARM (easy), (c) Nuclear norm (hard), (d) BARM (hard).

1M MovieLens dataset, which contains 1 million ratings in the874

range {1, . . . , 5} for 3900 movies from 6040 unique users, is875

assessed under two test-protocals: weak generalization, which876

measures the ability to predict other items rated by the same877

user, and strong generalization, which measures the ability to878

predict items by novel users. 5 000 users are randomly selected879

for the weak generalization, and likewise 1 000 users are ex-880

tracted for the strong generalization. Each experiment is then881

run three times and the averaged results are reported. The per-882

formance metric is normalized mean absolute error (NMAE)883

given as884

NMAE =

(∑
i,j∈supp(X0 )

|(X0 )i j − X̂ i j |
|supp(X0 )|

)

(rtmax − rtmin)
,

where rtmax and rtmin are the maximum and minimum ratings885

possible.886

We followed the same setup and reported results using BARM887

in Table III along with results from [25] for comparison. This888

includes the additional algorithms URP [26], Attitude [27],889

MMMF [28], IPCF [29], E-MMMF [30], GPLVM [31], NBMC890

[32], and IRLS/GM [25], [6]. From this table we observe that891

for the easier weak generalization problem BARM is a close892

second best, while for the more challenging strong generaliza-893

tion BARM is actually the best. Of course it is also immediately894

apparent that all algorithms fall within a relatively narrow per-895

formance range of approximately five percentage points. Con-896

sequently, we cannot unequivocally conclude that the attributes897

of BARM which make it suitable for optimally minimizing rank898

TABLE III
COLLABORATIVE FILTERING ON 1M MOVIELENS DATASET. RESULTS FROM

[25] ARE IN ITALIC FOR COMPARISON PURPOSES

Weak NMAE Hard NMAE

URP 0.4341 0.4444
Attitude 0.4320 0.4375
MMMF 0.4156 0.4203
IPCF 0.4096 0.4113

E-MMMF 0.4029 0.4071
GPLVM 0.4026 0.3994
NBMC 0.3916 0.3992

IRLS/GM 0.3959 0.3928

BARM 0.3942 0.3898

necessarily translate into a truly significant practical advantage 899

on this collaborative filtering task. But we would argue that the 900

same holds for any matrix completion algorithm. 901

VIII. CONCLUSION 902

This paper explores a conceptually-simple, parameter-free 903

algorithm called BARM for matrix rank minimization under 904

affine constraints that is capable of successful recovery empir- 905

ically observed to approach the theoretical limit over a broad 906

class of experimental settings (including many not shown here) 907

unlike any existing algorithms, and long after any convex guar- 908

antees break down. Our strategy in this effort has been to 909

adopt Bayesian machinery for inspiring a principled cost func- 910

tion; however, ultimate model justification is placed entirely in 911
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theoretical evaluation of desirable global and local minima prop-912

erties, and in the empirical recovery performance that inevitably913

results from these properties. Although in general non-convex914

algorithms are exponentially more challenging to analyze, in915

this regard we have at least attempted to contextualize BARM916

in the same manner as convex optimization-based approaches917

such as nuclear-norm minimization.918

APPENDIX A919

Here we provide brief proofs of Lemmas 1 and 2 as well as920

Theorem 1. We also address the augmented update rules that921

account for the revised, symmetrized cost function discussed in922

Section V.923

A. Proof of Lemmas 1 and 2924

Regarding Lemma 1, this result mirrors related ideas from925

[16] in the context of Bayesian compressive sensing. Hence,926

while a more rigorous presentation is possible, here we de-927

scribe the basic aspects of the adaptation. At any candidate928

minimizer of (10) in the limit λ → 0, define W such that929

AΨA	 = WW	. To be a minimizer, global or local, it must930

be that b ∈ span[W ]. If this were not the case, then L(Ψ,ν)931

would diverge to infinity as λ → 0 because bT Σ−1
b b progresses932

to infinity at a faster rate than log |Σb | can compensate by ap-933

proaching minus infinity. Intuitively, in much the same way934

argminz
1
z + log z = 1, meaning the optimal z must lie in the935

‘span’ of 1 else the overall objective will be driven to infinity.936

Consequently, the only way to minimize the cost in the limit937

as λ → 0 is to consider low-rank solutions within the constraint938

set that b ∈ span[W ], and it is equivalent to requiring that939

bT Σ−1
b b ≤ C for some constant C independent of λ (which940

ultimately corresponds with maintaining A(X) = b in the limit941

as well).942

In this setting, while 0 ≤ bT Σ−1
b b ≤ C is bounded, the sec-943

ond term in L(Ψ,ν) can be unbounded from below when944

rank[Ψ] is sufficiently small. To see this note that945

log |Σb | =
p∑

i=1

log
(
σi

[
AΨA	]

+ λ
)
, (23)

where σi [·] denotes the i-th singular value of a matrix. While946

the maximum rank of AΨA	 is obviously p, if r � rank [Ψ] <947

p/m and spark [A] = p + 1 (maximal spark) as stipulated in the948

lemma statement, then rank
[
AΨA	]

= mr and (23) becomes949

log |Σb | =
mr∑

i=1

log
(
σi

[
AΨA	]

+ λ
)

+ (p − mr) log λ.

(24)
Note that the spark assumption accomplishes two objectives950

in this context. First, it guarantees that a high rank Ψ cannot951

masquerade as a low rank Ψ behind the nullspace of some col-952

lection of columns Ai . Secondly, it ensures that after assuming953

r < p/m, then rank
[
AΨA	]

= mr.954

Consequently, in the limit where λ → 0 (with the limit being955

taken outside of the minimization), (23) effectively scales as956

(p − mr) log λ, and hence the overall cost is minimized when957

Ψ has minimal rank. This in turn ensures that the corresponding 958

X will also have minimal rank, completing the proof sketch for 959

Lemma 1. 960

Finally, Lemma 2 follows directly from the structure of the 961

L(Ψ,ν) cost function via simple reparameterizations. � 962

B. Proof of Theorem 1 963

To begin we assume that bi �= 0, ∀i, where bi denotes the 964

sub-vector of b such that bi = Aix:i . If this were not the case 965

we can always collapse X by the corresponding column (which 966

is indistinguishable from zero) and achieve an equivalent result. 967

Given the assumptions of Theorem 1, the BARM cost function 968

becomes 969

L (Ψ,ν) =
m∑

i=1

b	i
(
νiAiΨA	

i

)−1
bi + log

∣∣νiAiΨA	
i

∣∣ .

(25)
If there exists a feasible rank one solution to b = Avec 970

[X], then there also exists a set of Ψ′
i = νiΨ such that bib

	
i = 971

AiΨ′
iA

	
i for all i. To see this, note that bib

	
i = Aix:ix

	
:i 972

A	
i . Because rank[X] = 1, it also follows that bib

	
i = αiAiX 973

X	A	
i , where αi = ‖ x:ix

	
:i ‖/‖ XX	 ‖. Therefore Ψ′

i = 974

νiXX	 achieves the desired result with νi = αi . 975

Now suppose we have converged to any solution {Ψ̂, ν̂} with 976

rank[Ψ] > 1 and associated Ψ̂ = I ⊗ Ψ̂. Note that since bi �= 977

0, νi > 0 for all i, otherwise a local minimum is not possible 978

(the cost function would be driven to positive infinity). 979

Define Σ̂bi
= ν̂iAiΨ̂A	

i . Additionally we can assume that 980

b	i Σ̂−1
bi

is finite, meaning that bi lies in the span of the singular 981

vectors of Σ̂bi
. (If this were not the case, the cost would be 982

driven to infinity and we could not be at a minimizing solution 983

anyway.) If {Ψ̂, ν̂} is a local minimum, then {λ1 = 1, λ2 = 0} 984

must be a local minimum of the revised cost function 985

L (λ1 , λ2) =
m∑

i=1

b	
i

(
λ1Σ̂bi

+ λ2bib
	
i

)−1
bi

+ log
∣∣∣λ1Σ̂bi

+ λ2bib
	
i

∣∣∣ . (26)

This is because bib
	
i represents a valid set of basis vectors for 986

updating the covariance per the construction above involving 987

Ψ′
i . First consider optimization over λ1 . If λ1 = 1 is a local 988

minimum, then by taking gradients and equating to zero, we 989

require that 990

m∑

i=1

b	i Σ̂−1
bi

bi =
m∑

i=1

rank
[
Σ̂bi

]
. (27)

Likewise, taking the gradient with respect to λ2 we obtain 991

∂L (λ1 , λ2)
∂λ2

∣∣∣∣
λ1 =1,λ2 =0

=
m∑

i=1

b	
i Σ̂−1

bi
bi −

m∑

i=1

(
b	

i Σ̂−1
bi

bi

)2
.

(28)
The nullspace condition (a very mild assumption) ensures 992

that
∑m

i=1 rank[Σ̂bi
] = k for some k > m when rank[Ψ] > 1. 993

To see this, observe that to achieve
∑m

i=1 rank[Σ̂bi
] = m when 994

rank[Ψ] > 1 requires that Ψ = uu	 + WW	 where u is a 995
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vector and W is a matrix (or vector) with columns in null[Ai ],996

∀i. If any such W is not in this nullspace for some i, then given997

that pi > 1, the associated AiΨA	
i will have rank greater than998

one, and the overall rank sum will exceed m.999

Consequently, (28) will always be negative. This is because1000

if
∑m

i=1 zi = k for any set of non-negative variables {zi}, the1001

minimal value of
∑m

i=1 z2
i occurs when zi = k/m, ∀i. In our1002

case, this implies that1003

m∑

i=1

(
b	

i Σ̂−1
bi

bi

)2
≥

m∑

i=1

(k/m)2 > k > m. (29)

Therefore we can add a small contribution of bib
	
i to each1004

Σ̂bi
and reduce the underlying cost function. Hence we cannot1005

have a local minimum, except when Ψ is equal to some Ψ∗1006

with rank[Ψ∗] = 1. Moreover, we may directly conclude that1007

x∗ = Ψ
∗
A	(AΨ

∗
A	)

†
b is feasible and rank[X∗] = 1 with1008

x∗ = vec[X∗].1009

Regarding the last part of the theorem, we consider only1010

f that are concave non-decreasing functions (this is the only1011

reasonable choice for shrinking singular values to zero, and1012

the more general case naturally follows anyway with additional1013

effort, but minimal enlightenment). Without loss of generality1014

we may also assume that f(0) = 0 and f(1) = 1; we can always1015

apply an inconsequential translation and scaling such that these1016

conditions hold.9 Simple counter examples then demonstrate1017

that f(ε) must be greater than some constant C independent of1018

ε for all ε sufficiently small. To see this, note that we can always1019

rescale elements of A such that a solution with rank greater1020

than one is preferred unless this condition holds. However, such1021

an f , which effectively must display infinite gradient at f(0) to1022

guarantee a global solution is always rank one, will then always1023

display local minima for certain A. This can easily be revealed1024

through simple counter-examples. �1025

C. Symmetrization Update Rules1026

These iterative update rules follow from alternative upper1027

bounds tailored to the symmetric version of BARM. When both1028

Ψr and Ψc are fixed, x is updated via the posterior mean cal-1029

culation1030

x̂ = vec
[
X̂

]
=

1
2

(
Ψr + Ψc

)
A	

×
[
λI + A

1
2

(
Ψr + Ψc

)
A	

]−1

b. (30)

where Ψr = Ψr ⊗ I and Ψc = I ⊗ Ψc . Likewise we update1031

∇Ψ−1
r

and ∇Ψ−1
c

using1032

∇Ψ−1
r

=
m∑

i=1

Ψr − ΨrA
	
ri
(
AΨrA

	 + λI
)−1

AriΨr , (31)

∇Ψ−1
c

=
n∑

i=1

Ψc − ΨcA
	
ci
(
AΨcA

	 + λI
)−1

AciΨc , (32)

9The log function is a limiting case, but what follows holds nonetheless.

where Ari ∈ Rp×m is defined such that A = [A	
r1 , . . . ,A

	
rm ]

	
1033

and Aci ∈ Rp×m is defined such that A = [Ac1 , . . . ,Acn ]. Fi- 1034

nally given these values, with X, ∇Ψ−1
r

and ∇Ψ−1
c

fixed, we can 1035

compute the optimal Ψr and Ψc in closed form by optimizing 1036

the relevant Ψr - and Ψc -dependent terms via 1037

Ψopt
r =

1
n

[
X̂

	
X̂ + ∇Ψ−1

r

]
, (33)

Ψopt
c =

1
m

[
X̂X̂

	
+ ∇Ψ−1

c

]
. (34)

In practice the simple initialization Ψr = I and Ψc = I is 1038

sufficient for obtaining good performance. 1039
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