

School of Engineering

Discrete Structures CS 2212 (Fall 2020)

© 2020 Vanderbilt University (Waseem Abbas)

Reminder and Recap ...

Reminders:

- **ZyBook Assig. 2A** due **Sep 13** (11:59 PM)
- Exam 1 on Sep 17 (Thursday)
- HW 1 due Sep 22 (Tuesday)

Exam 1:

- Exam 1 will be at Brightspace.
- Exam 1 will be during class time.
- Practice quiz on Brightspace. (I will upload solutions also)
- Formula sheet is available at Brightspace (Course Resources Folder)
- Office Hours on Tuesday for the sake of exam. (next week only)

Chapter 2

- We have developed necessary machinery and toolset to start proving theorems involving numbers.
- We will see some more proof techniques now.

Proving a Theorem

Fact/given

Important Considerations while Proving

• What do we know?

. . .

- What else do we need to know?
- How can we "combine" known facts to get new information.
- Which (mathematical) tools should we apply, and when should we apply them?

No fixed approach/method

Its a "creative art" and a skill

Proof Techniques

- We will see various "approaches" and "techniques" to proving theorems.
- We will try to prove statements involving numbers and more.
- Chapter 1 (Logic) has set up the foundation to move forward.
 - Proofs by exhaustion
 - Direct proofs
 - Proofs by contrapositive
 - Proofs by contradiction
 - Proofs by cases

Some Definitions

Natural numbers	N	0, 1, 2,
Integers	Z	, -2, -1, 0, 1, 2,
Positive integers	Z ⁺	1, 2, 3,
Rational numbers	Q	$rac{n}{m}$ with $n \in \mathbf{Z}$ and $m \in \mathbf{Z}^+$
Irrational numbers		real number that cannot be written as a simple fraction
Even integers		Integers that have the form 2 <i>k</i> for some integer <i>k</i>
Odd integers		Integers that have the form $2k+1$ for some integer k

Some Definitions

Divisibility:	
Symbol:	$m \mid n$
Reads:	<i>m</i> divides <i>n</i>
Definition:	if $m \neq 0$ and $n = km$ for some integer k
Example:	3 6

Important properties of divisibility:

- If d a and a b then d b
- If $d \mid a$ and $a \mid b$ then $d \mid (xa + yb)$ for any integers x, y

Some Definitions

Prime number An integer n is prime if and only if n > 1, and for every positive integer m, if $m \mid n$, then m = 1 or m = n.

Composite number An integer n is composite if and only if n > 1, and there is an integer 1 < m < n such that $m \mid n$.

Parity The number is odd or even.

Same Parity If two numbers are both even or both odd.Opposite Parity If one number is odd and the other is even.

Proofs - Exhaustive Checking

- **What:** This technique works by checking every possibility in the testing domain.
- When to use:
 - Works well if you only have to perform a small number of tests (e.g., x is an integer such that $3 \le x \le 6$).
 - Does not work well with a large domain (e.g., All politicians are liars).
- **Difficulty:** Easy to use but it will get cumbersome as the domain to test gets larger (kind of like truth tables).

Proofs - Exhaustive Checking

Example: Prove that the numbers in the set **{288, 198, 387**} are divisible by **9**.

- **Proof by exhaustive checking:**
- 1. By definition $m \mid n$ if $m \neq 0$ and n = km for some integer k.
- 2. Let *n* be values in the set $\{288, 198, 387\}$ and let *m* = 9.
- 3. For n = 288 and m = 9 we have k = 32.
- 4. Therefore 288 is divisible by 9.
- 5. For n = 198 and m = 9 we have k = 22.
- 6. Therefore 198 is divisible by 9.
- 7. For n = 387 and m = 9 we have k = 43.
- 8. Therefore 387 is divisible by 9.
- 9. We can conclude that 288, 198 and 387 are all divisible by 9.

10. QED

Proofs

While writing proofs, keep the following in mind:

- Clarity
- Precision
- Conciseness

Tips:

- Don't skip or assume steps.
- Justify every step.
- Clearly articulate your reasoning.
- Avoid circular reasoning
- (See Section 2.3 of the book)

Proofs

Circular Reasoning

Using the fact to be proven in the proof itself.

If an integer n is odd then n^2 is odd

Proof:

- If n is an odd integer, then n = 2k+1 for some integer k.
- Let $n^2 = 2j + 1$ for some integer *j*.
- Since n^2 is equal to two times an integer plus 1, then n^2 is odd.

Many statements we need to prove are **conditionals** (i.e., if X is even, then X^2 is even).

We have seen the flavor of this approach in the first chapter.

The process is as follows:

- 1. Assume the antecedent is true.
- **2. Find statement(s) that follow** from this assumption and/or known facts.
- 3. Continue until the **consequent** is reached.
- 4. As long as the consequent is also **true**, we have sufficiently proved what we wanted.

Prove: If *x* is an odd integer, then x^2 is also an odd integer. (Before start writing the proof, lets think about our plan of action.)

Prove: If x is an odd integer, then x^2 is also an odd integer.

(Before start writing the proof, lets think about our plan of action.)

```
Assume x is an odd integer.
Since x is odd, x = 2k + 1 for some integer k.
```

Prove: If x is an odd integer, then x^2 is also an odd integer.

(Before start writing the proof, lets think about our plan of action.)

Assume x is an odd integer.	
Since x is odd, $x = 2k + 1$ for some integer k.	
Then, $x^2 = (2k + 1)^2 = 4k^2 + 4k + 1$	

Prove: If x is an odd integer, then x^2 is also an odd integer.

(Before start writing the proof, lets think about our plan of action.)

Assume <i>x</i> is an odd integer.
Since x is odd, $x = 2k + 1$ for some integer k.
Then, $x^2 = (2k + 1)^2 = 4k^2 + 4k + 1$
$= 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$

Prove: If x is an odd integer, then x^2 is also an odd integer.

(Before start writing the proof, lets think about our plan of action.)

Assume *x* is an odd integer. Since x is odd, x = 2k + 1 for some integer k. Then, $x^2 = (2k + 1)^2 = 4k^2 + 4k + 1$ $= 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$ Since k is integer, $(2k^2 + 2k)$ is also an integer. Lets say $m = 2k^2 + 2k$

Prove: If x is an odd integer, then x^2 is also an odd integer.

(Before start writing the proof, lets think about our plan of action.)

Assume x is an odd integer. Since x is odd, x = 2k + 1 for some integer k. Then, $x^2 = (2k + 1)^2 = 4k^2 + 4k + 1$ $= 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$ Since k is integer, $(2k^2 + 2k)$ is also an integer. Lets say $m = 2k^2 + 2k$ Thus, $x^2 = 2m + 1$, for an integer m.

Prove: If x is an odd integer, then x^2 is also an odd integer.

(Before start writing the proof, lets think about our plan of action.)

Assume *x* is an odd integer.

Since x is odd, x = 2k + 1 for some integer k.

Then, $x^2 = (2k + 1)^2 = 4k^2 + 4k + 1$

 $= 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$

Since k is integer, $(2k^2 + 2k)$ is also an integer. Lets say $m = 2k^2 + 2k$

Thus, $x^2 = 2m + 1$, for an integer *m*.

Thus, x^2 must be an odd integer by definition.

Prove: If x is an odd integer, then x^2 is also an odd integer.

(Before start writing the proof, lets think about our plan of action.)

Assume *x* is an odd integer. Since x is odd, x = 2k + 1 for some integer k. Then, $x^2 = (2k + 1)^2 = 4k^2 + 4k + 1$ $= 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$ Since k is integer, $(2k^2 + 2k)$ is also an integer. Lets say $m = 2k^2 + 2k$ Thus, $x^2 = 2m + 1$, for an integer *m*. Thus, x^2 must be an odd integer by definition. QED.

Prove: For any positive real numbers, *x* and *y*, $x + y \ge \sqrt{xy}$

Prove:

If n and m are both perfect square integers, then nm is also a perfect square integer.

Proof by contrapositive

A proof by contrapositive proves a conditional theorem of the form $P \rightarrow Q$ by showing that the contrapositive $\neg Q \rightarrow \neg P$ is true.

Prove: If x^2 is an even integer, then x is an even integer.

- P: x^2 is an even integer
- Q: x is an even integer

Prove: If x^2 is an even integer, then x is an even integer.

- P: x^2 is an even integer
- Q: x is an even integer

Our approach:

We need to show $P \rightarrow Q$.

But, we know if $P \rightarrow Q$, then $\neg Q \rightarrow \neg P$.

So, lets try proving $\neg Q \rightarrow \neg P$. (may be its easy).

Prove: If x^2 is an even integer, then x is an even integer.

- P: x^2 is an even integer
- Q: x is an even integer

Our approach:

We need to show $P \rightarrow Q$.

But, we know if $P \rightarrow Q$, then $\neg Q \rightarrow \neg P$.

So, lets try proving $\neg Q \rightarrow \neg P$. (may be its easy).

Prove: If x is an odd integer, then x^2 is an odd integer.

Prove: If x is an odd integer, then x^2 is an odd integer.

So, we can just **copy** our old proof.

Prove: If x is an odd integer, then x^2 is an odd integer.

So, we can just **copy** our old proof.

Assume x is an odd integer.

Since x is odd, x = 2k + 1 for some integer k.

Then, $x^2 = (2k + 1)^2 = 4k^2 + 4k + 1$

 $= 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$

Since k is integer, $(2k^2 + 2k)$ is also an integer. Lets say $m = 2k^2 + 2k$

Thus, $x^2 = 2m + 1$, for an integer *m*.

Thus, x^2 must be an odd integer by definition.

QED.

Prove:	If 3x+2 is odd, then x is odd	
	P: 3x+2 is odd	
	Q: x is odd	
We need to show	$v: \qquad P \to Q$	

Prove: If $3x+2$ is odd, then x is odd			
	P: 3x+2 is odd		
Q: x is odd			
We need to show:	$P \rightarrow Q$		
Lets try a direct ap	Lets try a direct approach first.		
1. 3x+2 is odd.	Premise		
2. $3x+2 = 2k+1$	By the definition of odd numbers		
3. ????	???		

Prove: If $3x+2$ is odd, then x is odd		
	P: 3x+2 is odd	
	Q: x is odd	
We need to show:	$P \rightarrow Q$	
Lets try a direct approach first.		
1. 3x+2 is odd.	Premise	
2. $3x+2 = 2k+1$	By the definition of odd numbers	
3. ????	???	

There does not seem to be a direct way to conclude from here that n is odd. Lets try our new approach using contraposition

Prove:	If x is an even, then 3x+2 is even.
	(We are showing: $\neg Q \rightarrow \neg P$)

- - -

]	Prove:	If x is an even, then 3x+2 is even.		- - - - - - - - - - - - - - - - - - -
		(We are showing: $\neg Q \rightarrow \neg P$)		
1.	x is even		Given	
2.	x = 2k for s	some k	By the definition of even numbers	
3.	Thus, 3x+2	2 = 3(2k) + 2	Replacing x in (3x+2)	

I	Prove:	If x is an even, then 3	x+2 is even.
		(We are showing: $\neg Q \rightarrow \neg P$)	
1.	x is even		Given
2.	x = 2k for s	some k	By the definition of even numbers
3.	Thus, 3x+2	2 = 3(2k) + 2	Replacing x in (3x+2)
4.	3(2k) + 2 =	2(3k)+2	Simplifying line 3

	Prove: If x is an even, then $3x+2$ is even.		x+2 is even.
	(We are showing: $\neg Q \rightarrow \neg P$)		$\rightarrow \neg P$)
1.	x is even		Given
2.	x = 2k for	some k	By the definition of even numbers
3.	Thus, 3x+2	2 = 3(2k) + 2	Replacing x in (3x+2)
4.	3(2k) + 2 =	= 2(3k)+2	Simplifying line 3
5.	2(3k)+2 =	2(3k+1) is even	By the definition of even numbers

Prove: If x is an even, then $3x+2$ is even.		x+2 is even.	
	(We are showing: $\neg Q \rightarrow \neg P$)		
1.	x is even		Given
2.	x = 2k for s	ome k	By the definition of even numbers
3.	Thus, 3x+2	= 3(2k) + 2	Replacing x in (3x+2)
4.	3(2k) + 2 =	2(3k)+2	Simplifying line 3
5.	2(3k)+2 = 2	2(3k+1) is even	By the definition of even numbers
6.	Thus, 3x+2	is an even	From line 5

F	Prove:	If x is an even, then $3x$ (We are showing: $\neg Q$	x+2 is even. $\rightarrow \neg P$)
1.	x is even		Given
2.	x = 2k for	some k	By the definition of even numbers
3.	Thus, 3x+	2 = 3(2k) + 2	Replacing x in (3x+2)
4.	3(2k) + 2 =	= 2(3k)+2	Simplifying line 3
5.	2(3k)+2 =	2(3k+1) is even	By the definition of even numbers
6.	Thus, 3x+	2 is an even	From line 5
7.	QED.		

Now, using contrapositive, we have shown that

If 3x+2 is odd, then x is odd

Prove:

For $x \in Z$, if 7x+9 is even, then x is odd.

Lets try to prove it directly first.

Next, lets prove it using contraposition.

General Approach:

- 1.Suppose the statement to be proved is false, that is, suppose that the negation of the statement is true.
- 2.Show that this supposition leads logically to a contradiction.
- 3.Conclude that the statement to be proved is true.

Why this approach works?

- We showed that $P \land \neg Q$ is always false (as it leads to a contradiction).
- Since P is given and is true, so $\neg Q$ must be false.
- That means Q is true, which is the desired statement.

General Approach:

We need to show $P \rightarrow Q$. Assume $\neg Q$. Then, we show that $(P \land \neg Q) \rightarrow (r \land \neg r)$ for some proposition r.

- Do you see any similarity / difference with the proof by contraposition?
- Which one is more general?
- Proof by contradiction is a very useful approach.

Prove: There is no integer that is both even and odd.

Prove: There is no integer that is both even and odd.

(Assuming negation of the given statement) Assume there is at least one integer n that is both even and odd.

Prove: There is no integer that is both even and odd.

(Assuming negation of the given statement) Assume there is at least one integer n that is both even and odd.

(Now try to deduce a contradiction) Thus, n = 2a for some integer a (by the definition of even integer)

Prove: There is no integer that is both even and odd.

(Assuming negation of the given statement) Assume there is at least one integer n that is both even and odd.

(Now try to deduce a contradiction) Thus, n = 2a for some integer a (by the definition of even integer)

Similarly, n = 2b + 1 for some integer b (by the definition of odd)

Prove: There is no integer that is both even and odd.

(Assuming negation of the given statement)
Assume there is at least one integer n that is both even and odd.
(Now try to deduce a contradiction)
Thus, n = 2a for some integer a (by the definition of even integer)
Similarly, n = 2b + 1 for some integer b (by the definition of odd)
Consequently, 2a = 2b + 1

Prove: There is no integer that is both even and odd.

(Assuming negation of the given statement)				
Assume there is at least one integer n that is both even and odd.				
(Now try to deduce a contradiction)				
Thus, n = 2a for some integer a (by the definition of even integer)				
Similarly, n = 2b + 1 for some integer b (by the definition of odd)				
Consequently,	2a = 2b + 1			
And so,	2a - 2b = 1			
	2(a - b) = 1			
	a - b = 1/2			

Prove: There is no integer that is both even and odd.

(Assuming negation of the given statement) Assume there is at least one integer n that is both even and odd. (Now try to deduce a contradiction) Thus, n = 2a for some integer a (by the definition of even integer) Similarly, n = 2b + 1 for some integer b (by the definition of odd) Consequently, 2a = 2b + 12a - 2b = 1And so, 2(a - b) = 1a - b = 1/2Since, a and b are integers, their difference must be integer. But, here (a – b) is not an integer, which is a contradiction. Hence, the given statement is true.

Prove: The sum of any rational number and any irrational number is irrational.

Prove: The sum of any rational number and any irrational number is irrational.

(Assuming negation of the given statement) Assume there is rational number *r* and an irrational number *i* such that their sum is rational.

Prove: The sum of any rational number and any irrational number is irrational.

(Assuming negation of the given statement) Assume there is rational number *r* and an irrational number *i* such that their sum is rational.

(Now try to deduce a contradiction)

 $r = \frac{a}{b}$, for some a and b (by the definition of rational numbers)

Prove: The sum of any rational number and any irrational number is irrational.

(Assuming negation of the given statement) Assume there is rational number *r* and an irrational number *i* such that their sum is rational.

(Now try to deduce a contradiction)

 $r = \frac{a}{b}$, for some a and b (by the definition of rational numbers)

And, $r + i = \frac{c}{d}$, for some *c* and *d* (by our assumption)

Prove: The sum of any rational number and any irrational number is irrational.

(Assuming negation of the given statement)
Assume there is rational number r and an irrational number i such that their sum is
rational.(Now try to deduce a contradiction)
 $r = \frac{a}{b}$, for some a and b (by the definition of rational numbers)And, $r + i = \frac{c}{d}$, for some c and d (by our assumption)So, $\frac{a}{b} + i = \frac{c}{d}$

Prove: The sum of any rational number and any irrational number is irrational.

(Assuming negation of the given statement) Assume there is rational number *r* and an irrational number *i* such that their sum is rational. (Now try to deduce a contradiction) $r = \frac{a}{b}$, for some *a* and *b* (by the definition of rational numbers) And, $r + i = \frac{c}{d}$, for some *c* and *d* (by our assumption) So, $\frac{a}{b} + i = \frac{c}{d}$ $i = \frac{c}{d} - \frac{a}{b} = \frac{bc - ad}{bd}$

Prove: The sum of any rational number and any irrational number is irrational.

(Assuming negation of the given statement) Assume there is rational number *r* and an irrational number *i* such that their sum is rational. (Now try to deduce a contradiction) $r = \frac{a}{b}$, for some a and b (by the definition of rational numbers) And, $r + i = \frac{c}{d}$, for some *c* and *d* (by our assumption) So, $\frac{a}{b} + i = \frac{c}{d}$ $i = \frac{c}{1} - \frac{a}{1} = \frac{bc-ad}{c}$ Since a, b, c, d are integers, (bc - ad) is an integer and bd is also an integer.

Moreover, $bd \neq 0$ (by the zero product property).

Prove: The sum of any rational number and any irrational number is irrational.

(Assuming negation of the given statement) Assume there is rational number *r* and an irrational number *i* such that their sum is rational. (Now try to deduce a contradiction) $r = \frac{a}{b}$, for some a and b (by the definition of rational numbers) And, $r + i = \frac{c}{d}$, for some *c* and *d* (by our assumption) So, $\frac{a}{b} + i = \frac{c}{d}$ $i = \frac{c}{1} - \frac{a}{1} = \frac{bc-ad}{c}$ Since a, b, c, d are integers, (bc - ad) is an integer and bd is also an integer.

Moreover, $bd \neq 0$ (by the zero product property).

This means that *i* is a rational number, which is a contradiction.

Prove: The sum of any rational number and any irrational number is irrational.

(Assuming negation of the given statement) Assume there is rational number *r* and an irrational number *i* such that their sum is rational. (Now try to deduce a contradiction) $r = \frac{a}{b}$, for some a and b (by the definition of rational numbers) And, $r + i = \frac{c}{d}$, for some *c* and *d* (by our assumption) So, $\frac{a}{b} + i = \frac{c}{d}$ $i = \frac{c}{d} - \frac{a}{b} = \frac{bc-ad}{b}$ Since a, b, c, d are integers, (bc - ad) is an integer and bd is also an integer. Moreover, $bd \neq 0$ (by the zero product property). This means that *i* is a rational number, which is a contradiction.

Thus, the given statement is true.

Prove:

There is no greatest integer.