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Spring constant and damping constant tuning of nanomechanical
resonators using a single-electron transistor
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By fabricating a single-electron transistor onto a mechanical system in a high magnetic field, it is
shown that one can manipulate both the mechanical spring constant and damping constant by
adjusting a potential of a nearby gate electrode. The spring constant effect is shown to be usable to
control the resonant frequency of silicon-based nanomechanical resonators, while an additional
damping constant effect is relevant for the resonators built upon carbon nanotube or similar
molecular-sized materials. This could prove to be a very convenient scheme to actively control the
response of nanomechanical systems for a variety of applications including radio-frequency signal
processing, ultrasensitive force detection, and fundamental physics exploration20020
American Institute of Physics[DOI: 10.1063/1.1449533

Nanomechanical resonators are routinely fabricated witlthrough the SET. The inset in Fig. 2 shows the calcuf&ted
frequencies above 500 MBand quality factorsQ, as large  dependence using the “orthodox” thedfyof |5 on Vg,
as 250000 and typically ~10 000" These resonators are when Vpg=e/2Cy, which is a typical bias potential for
currently being applied for a variety of uses: as the front-endnaximum SET responsivity.
detector of weak forces® for fundamental physics When the resonator moves, the change in capacitance,
application$” and for radio-frequency signal processfhg. dCg(x)= (#Cs/dx) ox,** will lead to a change inlpg:
However, a major difficulty and limitation with this system is lps=(dlps/dx) ox. Figure 2 shows the calculat®d
that the uncertainties and irreproducibility in nanofabricationdl ps/dx for a particular situation. It is found that ps/dx is
prohibit one from producing devices of a desired resonantnaximized forVpg~ e/Cy, and only weakly decreases as
frequency or of a desired quality factor. It is shown here thaone decrease¥ps. This change in current will be trans-
by fabricating a single-electron transist@ET) on a doubly ~duced into a force on the resonator by the magnetic fi/d,
clamped nanomechanical resonator in a magnetic field, on@rough the Lorentz force:
can engineer the spring and damping constant. By control-

ling these parameters, one can actively tune the resonant fre- dlps

quency or the quality factor by simply adjusting a gate volt- Blpsl=dF =Bldlps=Bl— = x=k. X, (1)
age. This proposed technique, although more complex to

fabricate, might be a more usable technique in practice aghere | is the length of the resonator and,
compared to other demonstrated technidiié®. =Bl (4l ps/9x), the Lorentz spring constant.

Figure 1 shows the basic situation: a metallized doubly  The magnitude of this spring constant will be limited by
clamped, nanomechanical resonateith mechanical spring  the size of the potential one can apply between the nanome-
constank, and damping constarfly) with tunnel junctions  chanical resonator and the gate; for large enough gate volt-
at either end of the resonator, is immersed in a magnetic fieldge the nanomechanical resonator will “snap-in” toward the
perpendicular to the plane of the device. These junctionsgate. It is assumed that this voltayg,.y is limited by the
with capacitanceC; and tunnel resistanc®;, form a SET  displacement necessary to move the resonator to the gate by
structure. Nearby, on the substrate, a gate electrode is located
at an equilibrium distancg, and capacitanc€s(x) to the ,/ /

SET island on the resonator. Once the temperature is lowered ’
such thatkgT<E-=e?%/2Cy, then single electron charging
effects will strongly dominate the transport through the
junctions! and the usual SET behavior is expecteds the
electron charge an@y=2C;+ Cg is the total island capaci-
tance)

The current through the SET,pg, shows periodic
modulation in the parameter(x) = Cg(X)Vg/e, which is a
measure of the number of excess electrons on the island as a y 1\
result of the gate potential/;. Thus, by modifying either t w

VG or CG(X)' one can strongly mOd'fy the conductance FIG. 1. Configuration: a single electron transistor formed by two tunnel

junctions of capacitanc€; and resistanc&; fabricated onto a nanome-
chanical resonator, placed near a stationary gate, and immersed in a large
¥Electronic mail: schwab@Ips.umd.edu magnetic field B, oriented perpendicular to the plane of the device.
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FIG. 2. The calculatedl ps/dx andk, vs Vg for resonator Si-10, assuming FIG. 3. The calculated values @f p5/3Vps andQ ™! vs V. The param-
C,=100aF, Cz=60aF, R;=25k(), Vps=el2Csy, Xo,=100nm, Vg eters from Si-10 in Table | are used to calculgte?.

=0.23-0.2335 V, and =50 mK. Shown in the inset is the calculated cur-

rent through the SET,5, as a function of gate voltag¥/ .

Si-10. One can see that the effect @p can range from no
xo/3° Table | shows the maximum values of the bias voltagefTT€Ct; 10 @ maximum damping depending on the exact bias
and the maximum Lorentz spring constant for various real€onditions of SET. Table | also shows the maximum effect of
izable nanomechanical resonators. Q, for various nanomechanical resonatbfs.

This effect can be used to rapidly adjust the resonant From Table I and Eq(3), it is clear that this damping

frequency by making a small change in the gate potential‘?O”Sta”t effect is particularly important for the very low
The fractional tunability is given by mass nanomechanical systems, such as carbon nanotube-base

nanomechanical resonators. In addition, thig-$poiling”
Aw \/ ke \/ ke effect should be rather simple to implement since it does not
0o 1+ kv 1= Ky 2) depend on the application of a large static electric potential
) N ) between the mechanical resonator and the nearby gate which
For all but the highest frequency silicon resonator in theig essential for a large spring constant effect.
table, Si-715, one can easily achieve frequency shifts that are  gacause of the incoherent nature of the tunneling pro-
gre.ater than the natura! linewidth of the resonance, which fogacq and the large change in island potential for each tunnel-
typlciai nasni)yechamcal resonators,A wo/wo = 1/Q ing electrong/Cy , the nanomechanical resonator will expe-
~10 _1(_T, ' . rience a white-noise force noise driving by these SET island
In a_ddmon to th_e, restoring force caused by thg(x), otential fluctuation$® This fundamental noise is the origin
there will be an additional damping force caused by the EMF ¢ 1o backaction noise in a SET amplifiéand will drive
developed across the SET island as a result of the metallig,e resonatof.For Si-10, this force will drive the resonator
SET island moving through the magnetic fieldVos 5 an amplitude of~12 pm,,e, which is equivalent to the

=—d®/dt=Blv, wherev is the resonator velocity. This thermomechanical temperature Bf = ky,x2 Jkg ~4K

. . _ rm b
EMF will lead to a (_:hange_ mél ps=9lps/IVpsBlv. The ability to tune the resonant frequency and the qual-
Through the magnetic f|e!d, t,h's will produce a force on theity factor using an integrated SET-nanomechanical resonator
mechanical resonator which is always opposed to thg VeloGs not limited to the milli-kelvin temperature regime.
ity and leads to dissipationsF = (dlps/dVps) (BI)v  Nanotube-based nanomechanical resonators could be par-

=pBLv, where B is an additional damping constant and gciarly interesting, as a SEToperating at temperaturé

leads to a limitation of the quality factoQ: ~10 K) is naturally formed when one places metallic leads
1 1 1 1 A ps onto nanotube bundlé8 Nanotube resonators have very low
5= ta = —=|But (B|)2} (3)  spring constants due to their molecular size and in this sys-
Q Qu QL wgm Vps

tem, it should be possible to engineer the situation whkere
Figure 3 shows both the calculated valueglgfs/dVpsand  dominates oveky, . In addition, using silicon-on-insulator
the effect onQ, as a function of gate voltage for resonator and a well-controlled oxidation process, researchers at NTT

TABLE |. Various nanomechanical resonators composed of sili§n single wall nanotube€SWNTS, nanotube bundle@B-SWNT9, with lengthl, width

w, thicknesd, massm, resonant frequency,, mechanical spring constaky; , maximum bias voltag¥ .., Lorentz spring consta , range of frequency
tuningAwy/wg, and least upper bound on quality fac@r . Parameters picked according to what is achievable in practice using electron beam lithography.
For the nanotube resonators, it is assumed that the densitg 190 kg/ni, Young’s modulus 1000 GP&s= 10 aF,C,=10 aF.

Material I(m) X w(nm)Xt(nm) m (kg) wpl27m (MHZz) Ky (Nt/m) Viax (V) k. (Nt/m) Awlwg Q.

Si-1 30x200% 104 1.41071° 1 0.090 0.58 0.027 0.30 5410°
Si-10 7X 50X 56 45<10° Y 10 0.28 3.6 0.013 0.05 5210*
Si-100 1.3 20X 20 1.2x10° %8 100 0.79 17 0.0014 0.002 3QA0°
Si-715 0.5¢ 10X 20 2.3x1071° 715 6.9 10 8.X107° 8.2x10°® 2.4x10°

B-SWNT 3.0<5%x5 8.5x10° % 17 1.4x10°3 0.81 <1074 0.52 737
SWNT 3.0¢1.2x1.2 471072 4.0 461078 0.044 2.%10°° 52
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