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Abstract—Standard subdivision techniques, like backwards
induction, are successful in perfect-information games; however,
in imperfect-information games they have no theoretical justifi-
cation. Despite this lack of theory, the strongest agents for large
imperfect-information games have employed “endgame solving”
and have recently beaten human professional players in poker
using this approach. We present an agent that uses a modification,
which can be viewed as a generalization of endgame solving,
called midgame solving. While endgame solving solves the final
portion of a game, assuming strategies prior to the endgame
as inputs using Bayes’ rule, our approach solves an arbitrary
portion of the game, which could be an intermediate portion with
further play remaining subsequently. One of the main challenges
is determining the payoffs to use for the midgame, while terminal
payoffs are used for endgames. We also present a novel approach
for interpreting opponents’ off-tree actions that is more robust
than prior approaches. We describe an agent for no-limit Texas
hold ’em utilizing our approaches and preliminary experiments
against an agent from the Annual Computer Poker Competition
that uses popular state-of-the-art techniques such as CFR+.

I. INTRODUCTION

In theory two-player zero-sum extensive-form games can be
solved (for Nash equilibrium) in polynomial time (e.g., [1]).
However, standard linear programming techniques only scale
to games with around 108 states (the algorithms run out of
memory for larger games). More recently algorithms have
been developed for approximating equilibrium strategies (they
converge to equilibrium in the limit) that scale to 1015

states [2]. However, even this is a far cry from the size of many
interesting games; for example, the version of two-player no-
limit Texas hold ’em played in the AAAI Annual Computer
Poker Competition has approximately 10165 states [3].

Consequently there has been a need for approaches that
somehow enable us to approximate full-game solutions despite
the fact that we can only solve significantly smaller games.
Two main paradigms have been developed for accomplishing
this. The first one, called the abstraction paradigm, approx-
imates the original game by a smaller game that hopefully
retains much of the strategic structure of the initial game.
Then the abstract game is solved by an equilibrium-finding
algorithm [4], [5], [6], which is then mapped back to a strategy
profile in the full game. The first abstractions for two-player
Texas hold ’em were manually generated [7], [8], while current
abstractions are computed automatically [9], [10], [11]. The
abstraction paradigm is depicted in Figure 1.
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Fig. 1. Abstraction paradigm for solving large games.

Recently a new paradigm has been developed which in-
volves first approximating full solutions in an abstraction
offline, then solving the relevant portion of the game that we
have reached in real time to a greater degree of accuracy than
in the offline computation. This paradigm, called endgame
solving, is depicted in Figure 2. For example, we can consider
endgames in poker where several rounds of betting have
taken place and several public cards have already been dealt.
We can assume players have a joint distribution of private
information from nodes prior to the endgame (i.e., the trunk)
that are induced from precomputed base trunk strategies using
Bayes’ rule. Given this distribution as input, we can then solve
individual endgames in real time more accurately.1

Definition 1. E is an endgame of game G if the following
properties hold:

1) The set of E’s nodes is a subset of the set of G’s nodes.
2) If s′ is a child of s in G and s is a node in E, then s′

is also a node in E.
3) If s is in the same information set as s′ in G and s is

a node in E, then s′ is also a node in E.

Unfortunately, this approach has fundamental flaws. It turns
out that even if we computed an exact equilibrium in the

1We can view the endgames as new games where nature makes an initial
move by assigning private information according to the joint distribution
induced by the trunk strategies.



Fig. 2. Endgame solving discards the strategies that were precomputed for the
endgames, then (re-)solves the relevant endgame that we have actually reached
in real time to a greater degree of accuracy than in the offline computation.

Fig. 3. Midgame solving discards the strategies that were precomputed for the
midgames, then (re-)solves the relevant midgame that we have actually reached
in real time to a greater degree of accuracy than in the offline computation,
assuming a given payoff mapping for midgame terminal nodes.

trunk (which is an unrealistically optimistic assumption in
large games) and in the endgame, the combined strategies for
the trunk and endgame may fail to be an equilibrium in the full
game. One obvious reason for this is that the game may contain
many equilibria, and we might choose one for the trunk that
does not match up correctly with the one for the endgame; or
we may compute different equilibria in different endgames that
do not balance appropriately. However, Proposition 1 shows
that it is possible for this procedure to output a non-equilibrium
strategy profile in the full game even if the full game has
a unique equilibrium and a single endgame [12]. The proof
follows by considering a sequential version of rock-paper-
scissors where player 1 acts first, then player 2 acts in a single
endgame where has not observed the move made by player 1.

Proposition 1. There exist games—even with a unique equi-
librium and a single endgame—for which endgame solving
can produce a non-equilibrium strategy profile.

Some early research used endgame solving for limit Texas
hold ’em agents out of necessity due to limited scalability of
existing approaches [9], [13]. But for the next several years
it was abandoned in favor of offline approaches that solve
abstracted versions of the entire game due to the shortcomings
described above. However, despite the adequacy of these
holistic approaches, endgame solving was reinvestigated and
applied to no-limit Texas hold ’em in 2013 due to the potential
benefits of focused computation on the portion of the game
tree that has been reached [14], [12]. This approach was used
by the agent Claudico that competed in the inaugural Brains
vs. AI competition against the strongest human two-player no-
limit Texas hold ’em specialists in the world [15]. In fact, the
best human player in the world, Doug Polk, has relayed to
me in personal communication that the final round strategy of
Claudico computed by the endgame solver was the strongest
component. Fueled by this promise, there has been a flurry of
subsequent research further exploring this new paradigm [16],
[17], culminating in two agents DeepStack and Libratus that
were recently able to successfully defeat human professional
players [18], [19]. These agents both apply endgame solving
in very different ways: Libratus used a supercomputer to solve
both the turn and river rounds in real time while DeepStack
viewed all rounds as independent endgames with leaf payoff
values estimated using deep learning [20].

In this paper we introduce a new paradigm, which can
be viewed as a generalization of endgame solving, called
midgame solving. In midgame solving, an intermediate portion
of the game tree that we have reached is solved in real time.
This paradigm is depicted in Figure 3. We define a midgame
in Definition 2. Note that endgame is a special case where the
midgame happens to be at the end of the game. An important
challenge for midgame solving that does not arise for endgame
solving is selecting the payoffs. For endgame solving we are
already at the end of the game so we can use the full-game
terminal payoffs, but for midgame solving we need a mapping
that approximates payoffs at each midgame terminal node.

Definition 2. M is a midgame of game G if the following
properties hold:

1) The set of M ’s nodes is a subset of the set of G’s nodes.
2) If s is in the same information set as s′ in G and s is

a node in M, then s′ is also a node in M.
3) If s and s′ are nodes in M and there is a path from s

to s′, then all nodes along that path are also in M .

Clearly midgame solving will suffer the same theoretical
flaws as endgame solving, as highlighted by Proposition 1.
However, it could also similarly experience significant ben-
efits. Note that this approach was initially proposed in the
author’s thesis proposal [21]. The recent decomposed re-
solving approach used by the DeepStack agent can be viewed
as one instantiation of midgame solving [19], although that
approach was offline while we propose to solve the relevant
midgame that we have reached in real time. DeepStack used
a complex deep learning technique to compute the midgame
payoffs. This training required approximately 175 core years,
or several hundred computers for several months. Another
recent approach called nested endgame solving was used by
agent Libratus [18]. For this approach one larger endgame is
solved in real time, followed by a smaller one; this differs
from our approach and can just use terminal payoffs for all
endgames. Furthermore it required around 25 million core
hours on a supercomputer and took around 20 seconds per
endgame. By contrast we have created an agent based on
our approach that runs in seconds on one machine. It uses a
new value mapping function we have developed for evaluating
midgame terminal nodes in the poker instantiation.



II. GENERAL MIDGAME-SOLVING ALGORITHM

Our general midgame solving algorithm is depicted in
Figure 1. The algorithm assumes we have precomputed a trunk
strategy for the portion of the game prior to the midgames,
which can be computed using any approach. We follow the
trunk strategy in real time until we arrive at a midgame mi,
which we then solve using some algorithm ai with payoff
mapping vi. The midgame is defined by using Bayes’ rule for
the input distributions of private information for both players
entering the midgame assuming they had followed the trunk
strategy. The solution to mi is then played until we reach a
new midgame mj , and so on. Eventually we will compute a
strategy at a terminal midgame (i.e., an endgame), after which
point the game will conclude. Note that for the concluding
midgames a payoff mapping function is not needed. Note that
this approach is very general, and could allow for a wide
variety of subdivisions of the game into a trunk and midgames,
different payoff functions for different midgames, and different
equilibrium-solving algorithms for different midgames. For
the poker application, we will assume the trunk strategy for
the first round (called preflop), and solve for new midgame
strategies each time we enter one of the new postflop rounds
(the flop, turn, and river). Thus, during a single path of play
we will be solving at most three midgames. In comparison,
the agent Claudico solved for just the river endgame in real
time, and the agent Libratus applied nested endgame solving
to solve for endgames in both the turn and river, sometimes
solving for multiple endgames starting within a single round
depending on the actions taken by the opponent.

Algorithm 1 Algorithm for midgame solving
Inputs: Game G, trunk strategy t, set of midgames {mi} for
1 ≤ i ≤ K, midgame mapping m assigning each node n to
a midgame mi, payoff mapping vi(j) which maps the j’th
terminal node of midgame mi to a vector of real payoffs one
per player, algorithms {ai} for 1 ≤ i ≤ K for computing
Nash equilibrium in midgame i given payoff mapping vi.

Follow relevant component of t for the trunk strategy until
a leaf node or a node from some midgame mk1 is reached.
if a leaf node has been reached then

return
end if
i← 1
while true do

Compute the solution s∗i to game defined by midgame
m′i = mki and vki using algorithm aki.

Play according to s∗i until we reach either a leaf node
or a node from some midgame mk,i+1 that is not m′i.

if a leaf node has been reached then
return

end if
i← i+ 1

end while

III. INTERPOLATED ACTION TRANSLATION FOR ROBUST
MIDGAME INPUT DISTRIBUTION CONSTRUCTION

In order to apply the midgame-solving algorithm, we need a
technique to construct the input hand distributions entering the
midgame by applying Bayes’ rule on the trunk strategy. Often
this is relatively straightforward. If we have a base strategy
for the trunk, we can assume both ourselves and the opponent
followed the base strategy, and use the induced distributions.
It turns out that the naı̈ve approach for doing this requires
O(n2) strategy table lookups making the computation too slow;
however, an improved approach is able to do this with just
O(n) strategy table lookups [12]; pseudocode for this approach
from that paper is given in Algorithm 2. For more details of
the specific indexing schemes used see that paper. Note that
this approach was for endgame solving, but the same approach
is applicable to constructing midgame input distributions.

Algorithm 2 Algorithm for computing hand distributions
Inputs: Public board B; number of private hands H; betting history
of current hand h; array of index conflicts IC[][]; base strategy s∗

D1, D2 ← array of dimension H of zeroes
for p1 = 0 to 50, p1 not already on B do

for p2 = p1 + 1 to 51, p2 not already on B do
I ← IndexFull(B, p1, p2)
IndexMap[I] ← IndexHoles(p1, p2)
P1 ← probability P1 would play according to h
with p1, p2 in s∗

P2 ← probability P2 would play according to h
with p1, p2 in s∗

D1[I] += P1, D2[I] += P2

end for
end for
Normalize D1 and D2 so all entries sum to 1
for i = 0 to H do

for j = 0 to H do
if !IC[IndexMap[i]][IndexMap[j]] then

D[i][j]← D1[i] ·D2[j]
else

D[i][j]← 0
end if

end for
end for
Normalize D so all entries sum to 1 return D

A key step is when the strategy probabilities P1, P2 are com-
puted. This is straightforward when the opponent’s actions are
within the action abstraction we have used. However, it is more
complex when the opponent has made an off-tree bet size. The
standard approach is to apply an action translation mapping to
map the opponent’s action to one of the neighboring actions in
the abstraction (Figure 4). The most successful recent mapping
is the pseudoHarmonic mapping [22], which was derived from
analytical solutions of simplified poker games. Assuming A,B
are the two closest sizes to bet x and A < x < B, then this
will map x to A with probability fA,B(x) =

(B−x)(1+A)
(B−A)(1+x) .

Assume we are constructing the hand distributions for the
flop midgame. For our play during preflop, each time the
opponent takes an off-tree action, we apply the translation
mapping we have chosen to interpret his action as an abstract



Fig. 4. Action translation paradigm for large games. Off-tree action
x is mapped probabilistically to closest actions in abstraction A, B.

action, and play as if the opponent had taken that abstract
action. The standard endgame-solving approach from Algo-
rithm 2 will then also assume the opponent has taken the
same deterministic abstract action for the construction of Pi.
However, during the course of our testing we uncovered a
shortcoming of this approach. Using initial blinds of small
blind (SB) = 50, big blind (BB) = 100, the opponent raised
to 800 (an unusually large size—more common would be 200
or 300). The two neighboring actions in our abstraction in the
situation are A = 400, B = 1000; however, it turns out that
the trunk strategy did not actually raise to 1000 with any hands
at all, though he raised to 400 with many hands. Therefore,
had our translation mapping interpreted his bet as 1000, we
would have assigned the opponent probability zero for all
hands, leading the midgame to be poorly defined and solution
would be meaningless (and this would propagate down to the
midgames for future rounds as well). Note that our strategy for
the trunk is still well defined against a bet of 1000; it is just
the values for the midgame construction that are problematic.

In order to address this issue, we have developed a new
approach that will ensure that the midgame distributions are
robust to such “degenerate” behavior in portions of the trunk
strategy. Rather than interpret the opponent’s off-tree bet as
a single deterministic action in the computation of Pi, we
will instead take the weighted average of his strategy had
we mapped it either to A or B. Our approach, depicted
in Algorithm 3, takes an arbitrary trunk strategy and action
translation mapping as input. In the example described above,
the distributions would no longer be degenerate because we
will be interpolating between the nonzero probabilities of
raising to 400 in addition to the zeroes for 1000.2

Algorithm 3 Interpolated action translation algorithm
Inputs: Opponent’s private information state x−i, trunk action history
h, trunk strategy for opponent s−i, action translation mapping m,
nearest action mapping n.

p(x−i)← 1
for opponent actions a−j in h do

a′, a′′ ← n(a−j)
p(x−i)← p(x−i)·[s−i(a

′, h)m(a′, h) + s−i(a
′′, h)m(a′′, h)]

end for
return p(x−i)

Note that our new interpolated approach does not com-
pletely solve the degeneracy issue; for example, it is possible
that the opponent would never raise to both 400 and 1000
in the situation described above, in which case even the new

2Note that the recent agent Libratus precluded the need for action translation
within endgames by adding off-tree opponent actions and solving several new
endgames [18]. However, this approach would not be applicable to the portion
of the game prior to the endgame, and translation would still be required.

approach would give all hands probability zero. However, in
general we would expect it to be much more robust than
the prior approach, which would potentially fail each time
there is even a single action with probability zero for all
hands. We expect the benefit to be particularly high as more
refined abstractions are used, which include a larger number
of actions. An alternative approach could be to remove the
action from the abstraction altogether ex post after we observe
all hands have probability zero; however, this would also not
always solve the problem, and could also lead to huge gaps
between actions. For example, the next size beyond 1000 could
be 20000 (for all-in), which would likely also have probability
zero on all hands as well (it does for our trunk strategies).

IV. NO-LIMIT TEXAS HOLD ’EM AGENT

We have created an agent for two-player no-limit Texas
hold ’em using our approach. For the trunk preflop round
we use a fixed strategy that was precomputed. Then once
the flop, turn, and river rounds are entered, we solve for
the corresponding midgame assuming the trunk strategy. We
use our new interpolated translation algorithm to construct
the midgame input hand distributions for the opponent, as
described in Section III. To solve the midgames we apply
a version of CFR+ [23], which was the algorithm used to
compute a near-optimal strategy for limit Texas hold ’em [24].
For the payoff mapping we assume that a player wins the
full pot whenever the other player folds, and if the midgame
ends with neither player folding then we assume both players
achieve their equity in the pot (i.e., probability of winning
plus one half probability of tying) assuming the remaining
public cards are dealt uniformly at random. These payoffs
were precomputed offline for the flop round, and computed
in real time for the turn (for the river the payoffs are terminal
and there are no future midgames to be solved).

The runtime of the midgame-solving algorithm would de-
pend on the number of bet sizes used in the midgame and the
specific implementation. Our current version runs in around
30 seconds per midgame (it is several seconds longer for the
turn than the other rounds because we are computing the table
for the value payoff mapping in real time), though we know
that it can be significantly optimized. For instance, commercial
software PIOSolver runs in just milliseconds using a gradient-
based algorithm to solve for a river endgame using multiple bet
sizes [25], and therefore would also run at a similar speed for
single-round midgames with a payoff function. Unfortunately
their code is not publicly available (nor is code for CFR+
for extensive-form games), so we have implemented our own
version. In the future we plan to optimize our algorithm so
performance is competitive with the state-of-the-art solvers.

We have run experiments against a previous agent from
the AAAI Annual Computer Poker Competition [26] called
HITSZ-HKL. HITSZ-HKL, which was submitted to the 2017
competition, was trained by an experimental distributed im-
plementation of the Pure CFR algorithm. In incorporated
additional techniques for pruning, reducing the time spent
per training iteration. It use card abstraction (public card



clustering) and betting abstraction. It uses the vector form
for CFR+ with alternating updates and uses an efficient O(n)
technique for efficient terminal node reward evaluation, assum-
ing n information sets per player (as opposed to the standard
technique which is O(n2)). In the experiments, HITSZ-HKL
won at a rate of 0.288 big blinds per hand (or 288 milli big
blinds per hand), over a sample of 23 duplicate matches each
with 3000 hands. The 95% confidence interval was 0.097 big
blinds per hand, so these results are statistically significant.

V. CONCLUSION

We are in the process of improving our agent in various
dimensions and plan to run more comprehensive experiments
against HITSZ-HKL as well as several other previous agents
from the AAAI Annual Computer Poker Competition [26].
We admit that this research is in a very preliminary phase and
that the agent can be significantly improved on in many ways.
The most obvious improvement would be to develop other
more sophisticated value functions. While we have selected
a particular simple value mapping function to use for our
agent, our approach applies to arbitrary value functions, and
could be integrated with significantly more complex functions,
such as those computed with deep learning. We also plan
to obtain a stronger preflop strategy to use for the trunk
strategy; this is very important, because the preflop hand
probabilities are propagated down as the basis of all the
midgame input distributions, and poor preflop strategies would
likely serve as a very inaccurate model for the opponent’s
distribution. Furthermore we would like the computed preflop
strategies to have more bet sizes and fewer “probability zero”
situations, in order to make the hand distributions for the
midgame more robust. As described in Section IV, we plan to
significantly optimize our agent’s runtime, which we know is
possible based on the efficiency of commercial solvers. We
also plan to run comprehensive experiments to isolate out
the improvement obtained using our new interpolated action
translation approach as opposed to the standard paradigm.

While no-limit Texas hold ’em agents have already been
developed that defeat human professional players ([18], [19]),
these approaches appear to be heavily reliant on access to
massive computational resources. Despite the relatively poor
performance of our agent so far in preliminary experiments,
we think that eventually it could have several advantages over
these prior agents after significant improvements are made,
since our approach runs in seconds on a single machine and
can potentially be optimized to run in only milliseconds.
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