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Decision making is an inseparable component of all the
activities commonly studied by cognitive psychologists.
This is manifested by the prominent role that decision
processes play in many areas of cognition, ranging from
perceptual processes (Link, 1992) to memory recogni-
tion (Ratcliff, 1978) and categorization (Nosofsky & Pal-
meri, 1997). Recently, a convergence of ideas has formed
regarding the dynamic nature of the decision process that
underlies all the above-mentioned cognitive abilities (cf.
Ratcliff, Van Zandt, & McKoon, in press)—namely, the
idea that activation for or against each action is sequen-
tially sampled, from moment to moment, and accumulated
over time. The accumulation process continues until a
threshold is reached, at which time a “winner takes all”
action is triggered. This sequential sampling type of dy-
namic decision process has been highly successful in ex-
plaining the effects of time pressure on accuracy and
speed–accuracy tradeoff (see Link, 1992; Nosofsky & Pal-
meri, 1997; Ratcliff et al., in press).

The broad success of sequential sampling models in
perception, memory, and categorization has led some de-

cision researchers to explore their usefulness in the more
traditional domain of decision-making tasks, such as risk-
taking decisions (Albert, Aschenbrenner, & Schmalhofer,
1989; Aschenbrenner, Albert, & Schmalhofer, 1986; Buse-
meyer, 1985; Diederich, 1995; Kornbrot, 1989; Petrusic
& Jamieson, 1978; Wallsten, 1995). However, the majority
of decision researchers have not followed this lead, and
most of the studies in decision making have centered on
testing static models originating from economic rather
than cognitive theory (see Goldstein & Weber, 1996). Con-
sequently, there has been a neglect in conducting inde-
pendent tests of the predictions made by sequential sam-
pling models of risk-taking decisions. The purpose of this
article is to test some basic predictions regarding the ef-
fects of time pressure on risk-taking decision making.

The risk-taking decision task used for this experiment
was developed by Dror, Katona, and Mungur (1998) and
is a simplified variant of the game of blackjack. In this
task, the decision maker must decide whether or not to
gamble by taking another card from a deck in order to max-
imize his or her total points without exceeding 21. This
task was chosen because the information-processing de-
mands (stimulus encoding and response production) are
minimal and identical across trials, thus enabling us to iso-
late the time pressure effects in the decision stage. Fur-
thermore, this task allowed us to systematically manipu-
late the levels of risk by varying the probability that taking
a card would “bust” (exceed 21).

For this simple task, sequential sampling models make
an a priori prediction regarding the effect of time pressure
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on the frequency of choosing the gamble (details are pre-
sented in the Appendix): Time pressure will increase the
frequency of choosing a gamble when the risk (proba-
bility of losing) is high but will decrease the frequency
of choosing the gamble when the risk (probability of los-
ing) is low. In other words, sequential sampling models
predict a crossover interaction effect between time pres-
sure and risk level on frequency of choosing the gamble.
Thus, time pressure is predicted not to have a uniform ef-
fect (of being either more conservative or more prone to
take risks) but, rather, a polarization in terms of behavior:
At the low risk, people turn more conservative and take
fewer gambles, whereas at the high risk, they are more
risky and take more gambles.

The sequential sampling model also makes specific
predictions for this task concerning the mean response
times for two different types of responses. A congruent
response occurs if a card is chosen when there is very low
risk (the response is compatible with the risk level); an
incongruent response occurs if a card is not chosen when
there is very low risk (the response is not compatible with
the risk level). The sequential sampling model predicts
that incongruent responses take a longer time to make
than congruent responses (see the Appendix for details).

A second reason for selecting this task is that a num-
ber of studies have investigated the blackjack game, iden-
tifying optimal versus heuristic strategies (Anderson &
Brown, 1984; Bond, 1974; Keren & Wagenaar, 1985; Phil-
lips & Amrhein, 1989). The optimal strategy for maxi-
mizing the probability of winning is to take an additional
card if the current total falls below an optimal cutoff cri-
terion, where this criterion is determined in a complex
way that takes into account the card shown for the op-
posing player. A common heuristic strategy for this task
is the never-bust strategy, which is a conservative tendency
to avoid taking an additional card and to stay with the
current total. Although nonoptimal, the never-bust strat-
egy is attractive because it avoids the possibility of ac-
tively taking an action that may be directly responsible
for losing the game.

Changes from optimal toward simpler heuristic strate-
gies under time pressure provide an alternative explana-
tion for the effects of time pressure on risk taking (see,
e.g., Johnson, Payne, & Bettman, 1995; Payne, Bettman,
& Luce, 1996). However, the predictions inferred from
strategy switching differ from the predictions derived from
sequential sampling models for this particular task. It is
predicted that, in switching to a never-bust strategy under
time pressure, the frequency of choosing the gamble never
increases (because the likelihood of switching to the sim-
pler never-bust strategy increases under time pressure).

Another plausible hypothesis is that participants switch
to a fast-guess strategy under time pressure. That is, an
individual will occasionally make fast random guesses
when under time pressure. Like the sequential sampling
model, this fast-guess hypothesis predicts a crossover in-

teraction for choice probability. But unlike the sequential
sampling model, the fast-guess model predicts faster re-
sponses for incongruent than for congruent responses
(see the Appendix for details).

The study reported here includes two parts. The first
part reports the main empirical results obtained from col-
lecting behavioral data on decision making under time
pressure. To achieve this goal, we tested participants on
Dror et al.’s (1998) risk-taking decision-making task under
a time pressure condition and under a no time pressure
condition. This was done independently of the second
part, which consisted of generating predictions for both
choice probability and decision time through the use of
a sequential sampling model (Busemeyer & Townsend,
1993) and comparing the predictions to the actual be-
havioral data. In the Discussion section, we review related
research on decision making under time pressure and
contrast the predictions of sequential sampling models
with alternative explanations based on changes in heuris-
tic strategies under time pressure.

METHOD

Participants
Thirty-two participants (16 males, 16 females) took part in the

study for credit in an undergraduate psychology course.

Materials
The decision task was a computer-simulated card game similar to

the game of blackjack, where the goal is to maximize the sum of
cards without going over 21. The modified blackjack task was de-
signed for several purposes. First, it was a simplification of the fa-
miliar blackjack game (e.g., in our task, we excluded aces to avoid
the ambiguity of whether they should be counted as 1s or 11s and
excluded jacks, queens, and kings to avoid issues relating to percep-
tual recognition of the face cards; we also did not allow “splitting”
and other options that are part of the blackjack game). Second, the
probabilities associated with each choice are easily manipulated by
the values of the cards dealt to the players, and decisions are easily
quantified by the time it takes to make a binary decision (to take an
additional card or not).

On each trial, the participant received two cards, which appeared
at the top half of the computer screen, and the computer received a
single card, which appeared at the bottom half of the screen. Each
card was 3.2 � 4.9 cm, with its number displayed a single time in
the center of the frame, using a 36-size font, Geneva typeface.

The player’s cards were manipulated to vary the level of risk pro-
duced by the probability that the player’s total would exceed 21 (and
lose the hand). At the very low end of the risk level spectrum were
the trials with a sum of 11 or less, in which case there was no risk
in taking an additional card (regardless of the value of the additional
card, participants could not go over 21). There were also trials with
low risk (trials with sums of 12 or 13), trials with medium risk (tri-
als with sums of 14 or 15), trials with high risk (trials with sums of
16 or 17), trials with very high risk (trials with sums of 18 or 19),
and trials with infinite risk (trials with a sum of 20, in which case it
is wrong to take an additional card, because participants would nec-
essarily go over 21 and lose their entire hand).

The value showing on the computer’s card was also manipulated
on each trial. The computer’s card was programmed to have a low
level (card values of 2, 3, or 4), a moderate level (card values of 5,
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6, or 7), or a high level (card values of 8, 9, or 10). A high level for
the computer card was used to increase the total sum that the player
needed to beat the computer and, consequently, increase the play-
er’s need to take another card. A low level was used to decrease the
total sum that the player needed to beat the computer and, conse-
quently, reduce the player’s need to take another card.

Trials were counterbalanced to ensure an equal number of trials
with all the possible combinations of player’s and computer’s cards.
For each possible sum of the participants’ two cards (17 possible sums,
from 4 to 20), a group of 9 trials was constructed, giving a total of
153 trials. Each of the 9 trials in every group was matched to one of
the nine possible values of the computer’s card (2–10). The possible
combinations of the participants’ cards were also counterbalanced
(e.g., for the total sum of 14, all the following combinations were
used as equally as possible: 4 and 10, 5 and 9, 6 and 8, 7 and 7, 8
and 6, 9 and 5, and 10 and 4). For administering the task, the 153
trials were organized in a sequence of nine blocks, each consisting
of 17 trials. Each block contained a single presentation of all the pos-
sible sums of cards, and the order of the trials within the blocks was
randomized. (Although this counterbalancing procedure has exper-
imental design advantages, it has the disadvantage of influencing the
frequencies in such a way that each triple of cards is not equally likely.)

Procedure
The participants were tested individually in a single testing ses-

sion. Half the participants were first tested with no time pressure
and then with time pressure; the other half of the participants were
tested in the reverse order (in each group of participants who were
tested in a certain order—either time pressure first or no time pres-
sure first—half the participants were male and half were female).
For both the time pressure and the no time pressure conditions, the
participants were tested on the identical 153 experimental trials, ex-
cept that the order of the trials was different (trials were randomized
within each block). Time pressure was created by asking the par-
ticipants to respond as quickly as possible. It was emphasized that
their response time was critical. Under the no time pressure condi-
tions, the participants were told to take as much time as they needed
to respond and were asked to carefully consider their decisions. The
participants were seated approximately 45 cm from the computer
screen. Instructions appeared on the computer screen, followed by
three practice trials.

At the onset of each trial, an exclamation point was displayed on
the computer screen. When the participants were ready to begin the
trial, they pressed the space bar. Three cards appeared in each trial;
two were considered to be dealt to the participant, and one to the op-
ponent. On the basis of the value of these cards, the participant de-
cided whether or not to take an additional card (“splitting,” “insur-
ance,” and other options from the game of blackjack were not
allowed). If a new card was taken, the value of the new card was
added to the participant’s total; if the participant decided not to take
another card, the total remained unchanged. The participants’ goal
was to have the sum of their cards be higher than their opponent’s,
without exceeding 21.

The participants were instructed to assume that, after they made
their decision, they and their opponent would have the opportunity
to take additional cards. They were also informed that they would
not see what additional card they received, what additional cards
the opponent received, or who won the hand (this was done to en-
sure that participants would not change decision strategy or crite-
rion during the task as a result of recent positive or negative out-
comes of previous decisions; see Dror, Rafaely, & Busemeyer, 1999,
and Rafaely, Dror, & Busemeyer, 1998, for details). Rather, after
making a decision, the participants would be presented on the next
trial with a new and independent sample of cards. If the participants
chose to take an additional card, they pressed the yes key (the “b”
key, which was labeled yes). If the participants did not want an ad-
ditional card, they pressed the no key (the “n” key, which was la-

beled no). After the participants responded, a blank screen appeared
for 350 msec, followed by an exclamation point to signal the begin-
ning of a new trial. The participants responded yes and no by using
two fingers of their dominant hand and pressed the space bar with
their nondominant hand. The participants did not receive any feed-
back or additional information. Throughout the instructions and
practice trials, the participants were encouraged to ask questions,
and clarifications were given by the experimenter as needed. How-
ever, no talking was allowed during the actual experiment.

RESULTS AND DISCUSSION

Empirical Data
First, choice probabilities (proportion of trials in

which an additional card was requested) are reported,
using the player’s risk level (1 � no risk, 2 � low risk,
3 � medium risk, 4 � high risk, 5 � very high risk, 6 �
infinite risk), the computer’s card level (1 � low level,
2 � moderate level, 3 � high level), and time pressure (no
pressure vs. pressure) as within-subjects factors. Second,
response times (pooled across choices) are described,
using the same three factors. Finally, conditional response
times (computed separately for gambling and not gam-
bling responses) are shown, using risk category (low �
risk levels 1, 2, or 3 vs. high � risk levels 4, 5, or 6), time
pressure (pressure vs. no pressure), and response cate-
gory (choose to gamble vs. choose not to gamble) as fac-
tors. (Computer card was omitted because of sample size
limitations.)

Choice probability. As is illustrated in Figure 1 (left
panels), choice probability decreases as risk level in-
creases. More important, the curve within each panel for
the no time pressure condition is steeper than the corre-
sponding curve for the time pressure condition, produc-
ing a crossover interaction between risk level and time
pressure. This crossover result confirms the a priori pre-
diction made by sequential sampling models.

A specific test of the critical risk level � time pres-
sure crossover interaction was performed by computing
a single degree of freedom contrast, using the logistic
transformed choice proportions as follows. We computed
the difference between the no time pressure and time
pressure conditions at two different levels of risk, levels
2 and 5. These two levels were chosen because they are
moderately extreme, but not to the extent that the choice
probabilities approach zero or one. At level 2, the differ-
ence was predicted by the sequential sampling models to
be positive, and at level 5 it was expected to be negative.
We observed the following results: First, the difference
between the no pressure and the pressure conditions for
the risk level 2 produced a positive contrast equal to
+.56; second, the difference between the no pressure and
the pressure conditions at risk level 5 produced a nega-
tive contrast equal to �.32; finally, the contrast of these
two differences was significant, according to a t test
[t(155) � 10.08, p < .0001].

Another notable finding is that the computer’s card
level moderated the effects of risk level and time pres-
sure: When there was no time pressure, a low level for
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Figure 1. The left three panels show the probability of taking an additional card by the participants as a function
of risk level. The top, middle, and bottom panels are for low, moderate, and high computer card levels. In all panels,
there is a backward-S-shaped curve as risk level increases, and the time pressure curve is flatter than the no time pres-
sure curve. Furthermore, there is a crossover interaction between the curves for the time pressure and no time pres-
sure conditions in each of the panels. These effects are moderated by the computer card level, but only for the no time
pressure condition. The right three panels show the predictions of the model for choice probability under the same
experimental conditions. The steeper curve represents the predictions when the inhibitory threshold is set to a high
criterion and the bound is increased, and the flatter curve represents the predictions when the inhibitory threshold
is set to a low criterion (under time pressure) and the bound is smaller. The precise quantitative form of the curves
depends on specific parameter values estimated from the data, but the crossover interaction pattern and the effect
of the computer card level is a parameter-free prediction of the model.
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the computer’s card suppressed the tendency to gamble
at the low risk levels, whereas a high level for the com-
puter’s card enhanced the tendency to gamble at the low
risk levels; however, when there was time pressure, the
computer’s card had little or no effect on the choice prob-
ability. If the data for the time pressure condition is re-
plotted with choice probability as a function of risk level
and a different curve for each computer card level, the
three curves lie virtually right on top of each other. This
reflects the fact that the computer card level had no ef-
fect under the time pressure condition and suggests that
the participants did not have sufficient time and resources
to consider the computer’s card.

The trends in Figure 1 are supported by statistical tests
obtained from a three-way repeated measures analysis of
variance (ANOVA) using the logistic transformed choice
proportion for each subject and condition as the depen-
dent variable. The main effect of risk level was signifi-
cant [F(5,155) � 178.10, MSe � 0.514, p < .0001], the
risk level � time pressure interaction was significant
[F(5,155) � 4.68, MSe � 0.061, p < .0005], and the risk
level � time pressure � computer card level interaction
also was significant [F(10,310) � 2.32, MSe � 0.053,
p � .0121]. The main effect of computer card level was
significant [F(2,62) � 57.31, MSe � 0.097, p < .0001],
the computer card level � risk level interaction was sig-
nificant [F(10,310) � 15.29, MSe � 0.076, p < .0001], and
the computer card level � time pressure interaction also
was significant [F(2,62) � 3.29, MSe � 0.055, p � .0440].

Response time. As is illustrated in Figure 2 (left pan-
els), the mean response time is an inverted-U-shaped
function of risk level. However, the level of this curve is
much lower and the slope is much flatter under the time
pressure condition than under the no time pressure con-
dition. Finally, the peaks of the curve shift from left to right
as the computer card level increases from low to high.

The trends in Figure 2 are supported by statistical tests
obtained from a three-way repeated measures ANOVA,
using the mean response time for each subject and con-
dition as the dependent variable. The main effect of risk
level was significant [F(5,155) � 20.92, MSe � 1,010,309,
p < .0001], the risk level � time pressure interaction was
significant [F(5,155) � 11.5, MSe � 642,320, p < .0001],
and the risk level � time pressure � computer card level
interaction also was significant [F(10,310) � 1.86, MSe �
243,049, p � .0498]. The main effect of computer card
level was significant [F(2,62) � 3.23, MSe � 294,584,
p � .0465], and the computer card level � risk level
interaction was significant [F(10,310) � 2.90, MSe �
274,504, p � .0017].

Conditional response time. Figure 3 (top panel) shows
the mean response times plotted as a function of risk cat-
egory, with a separate line for each response category
and time pressure condition. As can be seen in the fig-
ure, there is a crossover interaction between risk category
and response category, but only for the no time pressure
condition. The crossover interaction under the no time
pressure condition can be summarized as follows: The

decision to gamble takes less time than the decision not
to gamble when the risk category is low, but the decision
to gamble takes more time than the decision not to gam-
ble when the risk category is high. Recall from Figure 1
that choice probability follows the opposite pattern: The
decision to gamble is more frequent than the decision not
to gamble under the low risk category, but the decision to
gamble is less frequent than the decision not to gamble
under the high risk category. This replicates previous find-
ings that have shown an inverse relation between the prob-
ability that an alternative is chosen and the time required
to choose it (Busemeyer, 1982; Petrusic & Jamieson, 1978).

The trends in Figure 3 are supported by statistical tests
obtained from a three-way repeated measures ANOVA,
using the conditional mean response time for each sub-
ject and condition as the dependent variable. The risk
category � time pressure � response category interaction
effect was significant [F(1,17) � 5.557, MSe � 271,476,
p < .05]. (Note: the denominator degrees of freedom re-
flect missing observations owing to the fact that some
subjects never chose one of the alternatives under some
conditions. The analysis with missing cells was com-
puted with an SAS system type III sums of squares; see
SAS manual, 1996.)

Sequential Sampling Model Predictions
The specific sequential sampling decision model used

to generate predictions was derived from decision field
theory (Busemeyer & Townsend, 1993; Townsend &
Busemeyer, 1996), which is the only sequential sampling
model that has been mathematically formalized specifi-
cally for risky decision-making tasks. Hence, it enabled us
to generate quantitative as well as qualitative predictions
for the results of this experiment. Furthermore, decision
field theory has been successful in explaining a wide range
of fundamental findings from research on risk-taking de-
cision making (see Busemeyer & Townsend, 1993).

Figure 4 illustrates the basic process that is assumed
to occur within a single trial of this decision task. The
trial begins at time t � 0 with the presentation of the play-
er’s two cards and the computer’s card; then the player
begins the process of deciding whether or not to take an-
other card on this trial. The process begins with an ini-
tial preference state, denoted P(0), which is equal to zero,
assuming that the player starts out unbiased (i.e., P(0) �
0). Then, from moment to moment, the player imagines
and anticipates the positive or negative outcomes of each
choice, given the cards that are presented. At one mo-
ment, the player may anticipate winning by taking an ad-
ditional card, strengthening the approach tendency, so
that P(t � 1) � P(t) > 0. At a later moment, the decision
maker may imagine losing the hand by taking an addi-
tional card and going over 21, strengthening the avoidance
tendency so that P(t � 2) � P(t � 1) < 0.

This vacillation in tendencies continues until either
the approach tendency becomes strong enough to exceed
an inhibitory threshold to trigger the action of requesting
an additional card [P(t) > �θ] or the avoidance tendency
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Figure 2. The left three panels show the mean response time (pooled across gambling and not gambling responses)
that participants needed to decide whether or not to take an additional card as a function of risk level. The top, mid-
dle, and bottom panels are for low, moderate, and high computer card levels. In all panels, the participants needed
more time at the difficult trials (with medium levels of risk) and less time at the easy trials (when the risk level was
relatively high or low). With time pressure, the inverted-U-shaped response time curve was flatter and lower than the
curve with time pressure. The locations of the curves’ peaks are influenced by the computer card level. The right three
panels show the predictions of the model for mean response time (pooled across responses) for the same experimen-
tal conditions. The model accurately predicts the inverted-U-shaped relations between mean choice time and risk level
for each time pressure condition.
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becomes strong enough to exceed an inhibitory thresh-
old to trigger the action of declining an additional card
[P(t) < �θ]. The final choice on a particular trial is deter-
mined by whether the approach tendency or the avoid-
ance tendency crosses the threshold first. The decision
time is determined by the time it takes to exceed the
threshold magnitude.

According to the model of the decision process de-
scribed above, choice and decision time are controlled
by two factors: One is θ, the magnitude of the inhibitory
threshold; the second is d, the mean change in preference
state at each moment. The magnitude of the inhibitory
threshold, θ, is assumed to be determined by the time
pressure manipulation: The threshold is reduced under
the high time pressure condition. The inhibitory thresh-
old controls the amount of time spent thinking about the

decision, which in turn controls the amount of informa-
tion accumulated about the anticipated outcomes pro-
duced by each action. Increasing the threshold increases
the average decision time. Thus, more information is ac-
cumulated, which causes greater decision accuracy (the
probability of choosing the optimal response that maxi-
mizes the likelihood of winning). Decreasing the thresh-
old (under time pressure) reduces the average decision
time. Thus, less information is accumulated, which causes
decreased decision accuracy. (See Busemeyer, 1985, for
a more formal analysis, or the Appendix.)

The sign of the mean change in preference state, d, de-
termines whether the approach or avoidance tendency
grows stronger on the average over time. If d is positive,
the approach tendency (take another card) grows stronger
over time than the avoidance tendency, and if d is nega-

Figure 3. The top panel shows the mean response time participants needed for
each response alternative (to take a card and not to take a card—the conditional
response time) as a function of risk level. There is a crossover interaction between
the two, but only for the no time pressure condition. The bottom panel shows that
the model accurately predicts the behavioral data.
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tive, the avoidance tendency (decline another card) grows
stronger over time than the approach tendency.

Recall that the probability of exceeding 21 and losing
the game by taking another card increases as the player’s
total increases, but the need to take another card to beat
the computer increases as the value of the computer’s
card increases. These two factors are represented in the
model by assuming that the mean change in preference
state, d, is a decreasing function of the risk level and an
increasing function of the computer card level. This im-
plies that, for each fixed value of the computer card level,
the probability of choosing to gamble will be a decreas-
ing function of the risk level (see the Appendix for details).
However, under the time pressure condition, there may
be insufficient time to consider the computer’s card, so in
this case, the computer’s card is ignored. (Changes in at-
tention over time are consistent with Diederich’s [1995]
multiattribute generalization of decision field theory.)

The mathematics used to derive the formulas for this
particular model have been presented elsewhere (Buse-
meyer & Townsend, 1992, 1993), and the Appendix pro-
vides the derived formulas used to compute the predic-
tions shown below. It is important to note that strong
quantitative tests of the model are made possible through
the use of both choice probability and choice response
time measures of preference. The basic method for test-
ing the model is first to estimate the model parameters
from the choice probability data and then to use these
same parameters to generate parameter-free predictions
for the mean response time data.

More specifically, seven model parameters were esti-
mated from the 36 observed choice proportions, and these
parameter estimates were used in the formulas to com-
pute the choice probabilities from the model. The criti-
cal test is obtained by entering these same seven param-
eters into the formulas for computing the predictions for
choice response time data. This provides a generaliza-
tion test of the model by producing predictions for all of
the response time data that do not require estimating any
new parameters.

First, the right-hand panels of Figure 1 illustrate the
fits to the choice probability data. As can be seen by com-
paring the left and the right panels, the model correctly
reproduces the crossover interaction between risk level
and time pressure, and it also reproduces the effects of
computer card level on choice probability. Although the
specific form of the curves producing the crossover inter-
action depends on the estimated parameters, the backward-
S-shaped form of the function, as well as the crossover
interaction, is a necessary property of the model. In par-
ticular, if the data failed to show this crossover, the
model would be unable to fit the results.1

Second, the right-hand panels of Figure 2 illustrate the
predictions for the response time data. Note that these
predictions are made without using any parameters (this
includes the time unit for the predictions, so only the pat-
tern of the predictions is important). As can be seen by
comparing the left and the right panels, the model cor-
rectly predicts the inverted-U-shaped function relating re-
sponse time and risk level, and the model also correctly

Figure 4. A model of the task based on decision field theory. The horizontal axis rep-
resents the time interval, starting with the initial presentation of the two cards, until
a final decision is reached on whether or not to take an additional card. The vertical
axis represents the participant’s relative preference, where a positive preference is a
tendency to take another card and a negative preference is a tendency to avoid taking
another card. The jagged curve in the figure represents the evolution of the partici-
pant’s preference state over time, P(t). The action of taking an additional card or not
is determined by which threshold is exceeded on that trial, and the decision time is de-
termined by the time interval required to exceed that threshold (the vertical line at
time T ). As the bounds decrease (when the thresholds are lowered under time pres-
sure), the time interval to exceed a threshold is smaller.
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predicts the proportional reduction in response time at
each risk level produced by the time pressure manipula-
tion. Finally, the model correctly predicts the shift in the
peak of this U-shaped function with increases in the
computer card level.

A strong test of the model is obtained by evaluating
the predictions for decision times conditioned on the
specific choice (the response chosen). The model cor-
rectly predicts that the mean time to take another card is
shorter than the mean time to choose to not take another

card, when the risk level is relatively low. The model also
correctly predicts the opposite order when the risk level
is relatively high. Furthermore, the model predicts that
this crossover interaction effect is attenuated by time
pressure (see the bottom part in Figure 3).

Strategy-Switching Model Predictions
An alternative explanation for the effects of time pres-

sure on decision behavior is that subjects switch to sim-
pler heuristic strategies under time pressure. Two possi-

Figure 5. The unfilled bars represent the mean response time for a congruent re-
sponse, and the dark filled bars represent the mean response time for the incongru-
ent response. The first pair represents the no time pressure condition, and the second
pair represents the time pressure condition. The top panel represents the observed
data, the middle panel represents the predictions of the original sequential sampling
model, and the bottom panel represents the predictions of the fast-guess model.
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bilities were discussed earlier, the never-bust strategy
and the fast-guess strategy. The crossover interaction ef-
fect observed in Figure 1 clearly rules out the never-bust
strategy, but it does not rule out the fast-guess strategy.
A critical test of the fast-guess hypothesis can be obtained
by examining the predictions for congruent and incon-
gruent mean response times. In general, the fast-guess
model predicts fast incongruent responses, whereas the
original sequential sampling model predicts slow incon-
gruent responses (see the Appendix for details).

More specifically, the fast-guess model asserts that,
under time pressure, participants will make a fast random
guess on some proportion of trials. To test this model, new
parameters were estimated from the sequential sampling
model by fitting it to the choice data and mean response
time data with one major change (see the Appendix for
details). Instead of decreasing the threshold bound under
time pressure conditions, this parameter was held con-
stant, and a new parameter was added, representing the
probability of fast guessing under time pressure. In sum,
seven parameters (six original plus one fast guess) were
estimated from the choice probability data, and these
same parameters were used to make predictions regard-
ing decision time. This model produced essentially the
same fit to the choice probability data as the original se-
quential sampling model.

The critical test of the sequential sampling model ver-
sus the fast-guess model is shown in Figure 5. The top
panel shows the observed mean time to make congruent
(white bar) versus incongruent (dark bar) choices, where
a congruent choice was to take another card under very
low risk (levels 1 or 2) and an incongruent choice was
the decision not to take a card under these same condi-
tions.2 The left pair of bars represents the no time pressure
condition, and the right pair represents the time pressure
condition. Note that the incongruent responses were made
more slowly than the congruent responses under the crit-
ical time pressure condition.3

The middle panel shows the corresponding predictions
of the original sequential sampling model. As can be
seen in the figure, the original sequential sampling model
accurately predicts the pattern of observed results under
both time pressure conditions. The bottom panel shows
the corresponding predictions produced by the fast-guess
model. As can be seen, the fast-guess model fails to de-
scribe the pattern of results under the time pressure condi-
tion. In sum, the finding of slower incongruent responses,
as compared with congruent responses, is contrary to the
fast-guess model and supports the original sequential
sampling model.

GENERAL DISCUSSION

Recent emphasis has been placed on the decision pro-
cess in numerous successful models from a variety of
cognitive domains (Link, 1992; Nosofsky & Palmeri,
1997; Ratcliff, 1978; Smith, 1995). It seemed interest-
ing to examine this decision process in the more “pure”

decision-making domain. This is especially important
inasmuch as the above-mentioned models all have simi-
lar conceptualizations of what constitutes the decision-
making process—namely, sequential sampling over time
until a certain threshold is met.

We collected behavioral data on a risk-taking decision-
making task (Dror et al., 1998) to independently test these
types of models. Because sequential sampling models
have considered the effects of time pressure (Link, 1992;
Nosofsky & Palmeri, 1997; Ratcliff, 1978), we included
a time pressure component in our behavioral task. We
used decision field theory (Busemeyer & Townsend, 1993;
Townsend & Busemeyer, 1996) to generate predictions,
because it is a sequential sampling model that has been
mathematically developed for risky decision making
and, thus, it enabled us to make precise predictions for
our behavioral gambling-like task.

Our behavioral data were consistent with previous be-
havioral research (Dror et al., 1998), showing that par-
ticipants systematically were less likely to take a card as
the risks increased and that response time for making the
decisions decreased as the risks were toward the ends of
the risk level spectrum. Our manipulation of time pres-
sure caused a polarization effect; participants were more
conservative and less likely to take an action (request an
additional card) at the lower levels of risk and were more
risky and likely to take an action at the higher levels of
risk. That is, the S-shaped choice probability curve, as a
function of risk, was flatter under the time pressure con-
dition. Response times decreased with time pressure,
and the inverted-U-shaped choice time curve, as a func-
tion of risk, was also flatter under the time pressure con-
dition. Finally, the time to make a choice was inversely
related to the probability of making that choice, repli-
cating previous findings (Busemeyer, 1982; Petrusic &
Jamieson, 1978).

The empirical results described above were consistent
with the predictions generated by decision field theory.
The theoretical analyses based on this model indicated
that time pressure produced two different effects on the
decision process. One was to reduce the threshold bound
for the cumulative preference strength needed to make a
decision, and the second was to reduce the amount of at-
tention given to less important dimensions in the task.
The effect of time pressure on the threshold bounds is
consistent with a long-standing assumption of decision
field theory (Busemeyer, 1985). The effect of time pres-
sure on attention to less important dimensions is consis-
tent with recent generalizations of decision field theory
to multidimensional choice problems (Diederich, 1995).

An alternative hypothesis, based on the idea of strat-
egy switching, was also evaluated. Many recent studies
(for an overview, see Svenson & Maule, 1995) have at-
tempted to explain changes in choice behavior under time
pressure by changes in decision strategies, from a more
accurate and time-consuming strategy to a less accurate
but simpler and faster heuristic strategy (see, e.g., John-
son et al., 1995; Payne et al., 1996). Keren and Wagenaar
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(1985) have identified two such strategies in blackjack-
type tasks (see, also, Anderson & Brown, 1984; Bond,
1974; Phillips & Amrhein, 1989). First, the basic strat-
egy, which is the optimal strategy that maximizes the
probability of winning, requires the player to consider
his or her own cards as well as the computer’s card. Sec-
ond, the never-bust strategy is a conservative tendency to
avoid taking an additional card and to stay with the cur-
rent total. Note that the never-bust strategy only requires
attention to the player’s cards and does not require atten-
tion to the computer’s card. Although nonoptimal, the
never-bust strategy is attractive because it is simple and,
more important, avoids the possibility of actively taking
an action (requesting an additional card) that may be di-
rectly responsible for losing the game.

The basic or optimal strategy for our risk-taking task
is to always choose to take an additional card if the cur-
rent total sum of the cards falls below a cutoff criterion
(this criterion depends on, among other things, the com-
puter’s card). In other words, if we were to plot the choice
probability curve predicted by this strategy (similar to that
shown in Figure 1), it would be a backward step function
with an abrupt jump from one to zero at the cutoff. How-
ever, if this cutoff varies across participants, the curve pro-
duced by averaging across participants would appear as
a backward-S-shaped curve like that shown in Figure 1.

The never-bust strategy is a very simple heuristic strat-
egy of not taking an additional card if there is some risk
that the player’s new total will exceed 21. It is reasonable
to expect that, under time pressure, at least on some pro-
portion of trials, participants may abandon the more dif-
ficult process of locating the optimal cutoff for the sim-
pler heuristic strategy that guarantees not losing the entire
hand by taking an additional card. However, this strategy-
switching model does make one important distinguish-
ing prediction. That is, the curve produced under time
pressure must lay completely below that predicted by no
time pressure (because the proportion of trials in which
participants use the simpler strategy of not taking an ad-
ditional card always increases under time pressure). How-
ever, as is apparent in Figure 1 (top panel), our data do
not support this prediction.

Another plausible heuristic strategy is to resort to fast
random guesses under time pressure. This fast-guess
model explains the time pressure � risk level crossover
interaction effect on choice probability as being the re-
sult of mixing random guesses on some proportion of tri-
als, which flattens out the backward-S-shaped curve.
However, the fast-guess model incorrectly predicts that
subjects will make faster incongruent, as opposed to
congruent, responses under time pressure, which is con-
trary to the observed results.

In sum, for this particular task, the never-bust and fast-
guess strategies are the most common and obvious heuris-
tics, and we can rule out the hypothesis that participants
tend to switch to these particular strategies under time

pressure. In contrast, the sequential sampling model pro-
vides a comprehensive explanation of both the choice
probability and the choice response time behavioral data.

Of course, it is impossible to enumerate all conceivable
strategies, so we cannot completely eliminate the general
form of this explanation. Moreover, one could interpret
changes in attention to the opponent’s card as a kind of
strategy switch. But then the notion of strategy becomes
so broad that one has to question its testability or pre-
dictive utility.

One final comment is that our results do not rule out
other possible effects of time pressure on decision pro-
cesses, such as a speed-up of each processing step (see
Ben Zur & Breznitz, 1981). But note that simply speed-
ing up processing by a constant factor under time pressure
cannot explain the changes in the pattern of choice prob-
abilities and response times produced by time pressure.

It is interesting to note that our empirical results, ob-
tained from a traditional decision-making task, appear to
be very similar to the speed–accuracy tradeoff results
found in other cognitive tasks, such as perception (see
Link, 1992), memory (see Ratcliff, 1978), and catego-
rization (see Nosofsky & Palmeri, 1997). Furthermore,
the success of sequential sampling models in accounting
for the results obtained from this risk-taking decision-
making task strengthens our confidence in the general use
of this decision process across a variety of cognitive tasks
(for further discussion on the usefulness of such models,
see Dror & Gallogly, 1999). In summary, both the em-
pirical results and the theoretical analyses presented in
this study support the view that common principles of de-
cision processes underlie a wide range of cognitive tasks.
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NOTES

1. Note that the above model assumes that time pressure has two sep-
arate effects on the decision process. One is a decrease in the threshold
bound, and the second is a decrease in attention to the opponent’s card.
One might question whether both of these assumptions are really nec-
essary. To answer this question, the model was refit under two different
constraints. On the one hand, when the model was refit assuming a de-
crease in threshold but no decrease in attention under time pressure, the

model failed to produce the observed time pressure � opponent’s card
interaction effect. On the other hand, when the model was refit assum-
ing a decrease in attention but no decrease in threshold under time pres-
sure, the model failed to produce the observed crossover interaction be-
tween time pressure and risk level. In sum, both assumptions were
required to explain the choice probability results.

2. The two extreme low risk level conditions were used for this test
for two reasons. The first reason is that the two most extreme levels pro-
vide the most diagnostic and the clearest definitions for congruent and
incongruent responses. Second, the experimental design provided 90
trials per subject under the two lowest levels, but it provided only 18 tri-
als per subject under the two highest levels. The reader should also note
that the data shown in Figures 3 and 5 overlap but are not the same. For
example, in Figure 3, the open square plotted under the low risk cate-
gory represents mean time to choose no card, averaged over risk levels
1, 2, and 3; in Figure 5, the black bar above the time pressure label rep-
resents the mean time to choose no card, averaged over risk levels 1 and
2. Risk level 3 was included in Figure 3 in order to include all of the data
in the basic analyses. Risk level 3 was not included in Figure 5 because
this risk level was too high to treat choosing no card as an incongruent
response. In other words, risk level 3 does entail some risk, which makes
it an ambiguous case for defining the choice of no card as an incongru-
ent response.

3. A dependent t test was used to perform a statistical test of the hy-
pothesis implied by the fast-guess model. Define µC and µI as the pop-
ulation mean response times for the congruent and incongruent re-
sponses, respectively, under time pressure. To falsify the fast-guess model,
we need to reject the directional hypothesis H0: (µI � µC ) < 0. The
sample mean difference between congruent and incongruent response
times under time pressure produced a t statistic that exceeded the con-
ventional cutoff for rejecting this hypothesis [t(31) � 1.8, p < .05].

APPENDIX

The purpose of this appendix is to present the formulas used
to compute the predictions from the model derived from deci-
sion field theory for this task. Decision field theory has seven
stages, but it was sufficient to use only stage three (Equations
3c and 3d in Busemeyer & Townsend, 1993) for this simple
task. In this case, the formula for the probability of choosing to
gamble for an individual, denoted Pr[G], derived from the gen-
eral theory for this task, is

Pr[G] � 1/[1 � exp(�2θd )]. (1)

Note that this is an S-shaped logistic function of the mean change
in preference state, d, and that the threshold, θ, moderates the
slope of this logistic function. Recall that d is inversely related
to the risk level, and therefore, choice probability is predicted
to be a backward-S-shaped function of risk level. Increasing the
time pressure decreases θ, which decreases the slope of the lo-
gistic function of d, and this produces the predicted crossover
interaction.

The mean time to make a choice for an individual subject,
denoted E[T ], derived from the general theory for this task, is

E[T ] � (θ /d ) (2Pr[G] � 1). (2)

Conceptually, the ratio (θ /d ) can be interpreted as the well-
known formula, travel time equals distance divided by rate of
travel. Under time pressure, the distance to travel θ decreases,
so that the time to travel also decreases. Note that this equation
does not include a time unit for the decision process, and so the
time constants for the predicted and observed times are not
equated. Thus, the predicted times are only proportional to the
observed times.

Fitting the choice probability data entailed estimating seven
parameters (detailed below), by searching for values that min-
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imized the sum of squared deviations between the predicted and
the observed choice probabilities. Two of the seven parameters
were used to estimate two threshold values (θ � 1.44 for the no
time pressure condition, and θ � 0.955 for the time pressure
condition).

Four parameters were used to determine the mean change in
preference, d, for each of the 36 conditions, as follows. Denote
di jk as the mean change in preference under risk level i(i � 1,
2, 3, 4, 5, 6), computer card level j ( j � 1, 2, 3), and time pres-
sure condition k (k � 0,1). The following expression was used
to determine the mean change:

dijk � [(1 � k) cj � a(i � 3.5)]. (3)

When k � 0 (no time pressure), the mean change equals the dif-
ference between the effect of the computer card level and the ef-
fect of the risk level; when k � 1 (time pressure present), the ef-
fect of the computer card is eliminated, and the mean change is
inversely related to the effect of the risk level. The effect of risk
level was assumed to be proportional to the risk level, with the
constant of proportionality estimated from the choice data (a �
.842). Three parameters were estimated from the choice data to
represent the effect of the computer card level (c1 � 2.85, c2 �
2.92, c3 � 3.14).

An additional seventh parameter was used to incorporate in-
dividual differences into the model. This was accomplished by
adding a random effect Sl to Equation 3:

dijkl � [(1 � k) cj � a (i � 3.5 � Sl)]. (4)

Conceptually, negative values of Sl represent individuals that
are more risk seeking than the average person and positive val-
ues of Sl represent individuals who are more risk aversive than
the average person. In general, the distribution of individual
difference effects is unknown. For simplicity, the individual dif-
ference effects Sl were represented by a binomial distribution
across the values {�1.5, �1.0, �0.5, 0, 0.5, 1.0, 1.5} with a
parameter p � .42 (estimated from the choice data). Specifi-
cally, the probability of Sl was computed by

P[Sl � s] � [(6!)/(2s � 3)!(3 � 2s)!] p2s � 3(1 � p)3 � 2s. (5)

To summarize, the choice probabilities and mean response
times were computed separately for each condition and each
value of the individual difference effect Sl, using Equations 1,
2, and 4, and then these predicted values were averaged across
the individual differences Sl for each condition, using the prob-
abilities defined by Equation 5. The seven parameters were es-
timated with the choice probability data alone, and then these
same seven parameters were used to compute the mean re-
sponse times shown in Figure 3 and Figure 5.

The fast-guess model is obtained by employing Equations 1
and 2 directly for the no time pressure conditions and by modify-
ing Equations 1 and 2 by mixing a guessing probability, g, under
time pressure:

Pr[G] � (1 � g) /[1 � exp(�2θd )] � (.5)g, (6)

and

E [T ] � (1 � g) (θ/d ) (2Pr[G] � 1) � g � Tg , (7)

where Tg is the mean time required to make a fast guess. The mean
time to make a fast guess cannot be estimated from the choice
data alone. Therefore, it was necessary to estimate eight pa-
rameters from both the choice and the mean response time data:
a threshold, θ, constant across time pressure conditions; a guess-
ing rate g under time pressure; three coefficients for the com-
puter card; two coefficients, a and p, described earlier, used to
determine the mean change for each condition and individual;
and, finally, the mean time to make a guess, Tg . These eight pa-
rameters were then used to compute the mean times to make
congruent and incongruent responses, shown in Figure 5.

As Figure 5 shows, the predictions computed from the deci-
sion field model indicate that the mean response time under
very low risk is slower for incongruent responses than for con-
gruent responses for both time pressure conditions. The con-
ceptual reason for this prediction is that, when the risk level is
very low, incongruent responses tend to be chosen when the mean
change in preference for an individual (Equation 4) is small in
magnitude; when this occurs, the rate of travel (see Equation 2)
slows down the time reach the boundary for both time pressure
conditions. For example, when the risk level is very low but an
individual is very risk aversive, the mean change in preference
will be close to zero; this is the case that is most likely to pro-
duce an incongruent response, but this response also tends to
take more time because of the slow rate of travel.

In contrast, the predictions computed from the fast-guess
model indicate that incongruent responses are faster than con-
gruent responses under time pressure and very low risk. The
conceptual reason for this prediction is that the fast-guess model
assumes that a change in decision strategy occurs under time
pressure. Thus, it predicts the same result as the decision field
model with no time pressure. But under time pressure, the in-
congruent responses tend to be produced by the fast guesses,
which makes the incongruent responses faster than the congru-
ent responses (the latter tend to occur after waiting to reach the
criterion bound).
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