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Abstract

We study how increasing competition, by making prizes more unequal, affects effort
in contests. In a finite type-space environment, we characterize the equilibrium, analyze
the effect of competition under linear costs, and identify conditions under which these
effects persist under general costs. Our findings reveal that competition may encourage
or deter effort, depending on the relative likelihood of efficient versus inefficient types.
We derive implications for the classical budget allocation problem and establish that
the most competitive winner-takes-all contest is robustly optimal under linear and
concave costs, thereby resolving an open question. Methodologically, our analysis of
the finite type-space domain—which includes complete information as a special case
and can approximate any continuum type-space—provides a unifying approach that
sheds light on the contrasting results in these extensively studied environments.

1 Introduction

Contests, which reward agents with prizes based on their relative performance, are widely
used to encourage effort in various settings, such as crowdsourcing for innovation, sporting
events, and classrooms. Given their prevalence, understanding how different contest struc-
tures influence agents’ effort is crucial. A natural question in this context is how increasing
the competitiveness of a contest, by making prizes more unequal, affects agents’ incentives
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to exert effort. In recent work, Fang, Noe, and Strack [14] examined this question in a
complete information environment with homogeneous agents, uncovering a clear monotonic
relationship driven by the shape of the effort cost function: increasing competitiveness en-
courages effort under concave costs and discourages effort under convex costs. However,
the assumption of complete information is quite restrictive, as in many real-world contexts,
agents posses privately-known abilities.

In this paper, we analyze the effect of increasing competitiveness on effort in an envi-
ronment where agents have private abilities drawn independently from a finite type-space.
Given a contest and their private types, agents simultaneously choose their effort levels,
incur associated (type-dependent) costs, and receive prizes based on the rank order of their
efforts. We first characterize the unique symmetric equilibrium of the Bayesian game. The
equilibrium involves different agent types mixing over disjoint but continuous intervals, such
that more efficient types outperform less efficient types with probability one. We then an-
alyze the effect of increasing competition on expected equilibrium effort under linear effort
costs, and identify conditions under which these effects persist under general costs.

Our findings establish that under linear and concave costs, increasing competitiveness
by transferring value to the best-ranked prize always encourages effort. Consequently, for
the classical contest design problem of allocating a fixed budget across prizes, the winner-
takes-all contest is uniquely optimal under linear and concave costs. While Moldovanu and
Sela [30] previously derived a similar result in a continuum type-space environment, the
optimality of awarding multiple prizes in complete information environments (Barut and
Kovenock [1], Clark and Riis [5], Cohen and Sela [6]) led Sisak [37] to conjecture that in our
(intermediate) finite type-space setting, multiple prizes might still be optimal:

“The case of asymmetric individuals, where types are private information but
drawn from discrete, identical or maybe even different distributions, has not been
addressed so far. From the results ... on asymmetric types with full information,
one could conjecture that multiple prizes might be optimal even with linear costs.”

Our analysis demonstrates that, at least when types are drawn from identical distri-
butions, this conjecture does not hold. As soon as there is any little uncertainty in the
environment, the winner-takes-all contest is robustly optimal under linear and concave costs.

In general, however, increasing competitiveness by transferring value to better-ranked
prizes (other than the best-ranked prize) may encourage or discourage effort, depending
upon the underlying distribution of types. Intuitively, given the monotonic structure of the
equilibrium, increasing competition reduces the expected equilibrium prize of the less ef-
ficient types while raising it for the more efficient types. Unlike the complete information
case—where this effect is fully captured by the changes in effort costs, as equilibrium utilities
are zero—the transformation additionally impacts the equilibrium utilities (or information
rents, in the language of mechanism design) of the more efficient types in a setting with
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private types. We explicitly compute these effects on equilibrium utilities and expected ef-
fort under linear costs and show that as long as the equilibrium utility of the most efficient
type does not increase, the effects on effort under linear costs are informative about those
on equilibrium effort under general costs: the non-negative effects extend to concave costs,
while the non-positive effects extend to convex costs. This result generalizes the complete
information analysis of Fang, Noe, and Strack [14], where increasing competition has no
effect on equilibrium utility or expected effort under linear costs. In a binary type-space
environment with linear costs, we show that increasing competition always encourages effort
when the efficient type is sufficiently likely, while it always discourages effort (except when
transferring value to the best-ranked prize) when the inefficient type is sufficiently likely.1

The existing literature in contests has predominantly focused on the design problem
in environments where the type-space is either a continuum, or a singleton (the complete
information case), and the results highlight how the structure of the optimal contest can
vary significantly depending on the environment. For the continuum type-space, the most
competitive winner-takes-all contest has been shown to be optimal under linear or concave
costs (Moldovanu and Sela [30]), in some cases under convex costs (Zhang [43]), with neg-
ative prizes (Liu, Lu, Wang, and Zhang [25]), and with general architectures (Moldovanu
and Sela [31], Liu and Lu [26]). In comparison, in the complete information environments,
the minimally competitive budget distribution (all agents but one receive an equal positive
prize) has been shown to be a feature of the optimal contest quite generally (Barut and
Kovenock [1], Letina, Liu, and Netzer [24, 23], Xiao [42]). In a general framework with many
agents, Olszewski and Siegel [32, 33] show that awarding multiple prizes of descending sizes
is optimal under convex costs. Other related work has examined the effect of competition in
complete information setting (Fang, Noe, and Strack [14]), and continuum type-space setting
(Goel [17], Krishna, Lychagin, Olszewski, Siegel, and Tergiman [21]). The finite type-space
environment embeds the complete information as a special case and can approximate any
continuum type-space. Thus, our analysis of this intermediate and fundamental domain not
only bridges a gap in the literature, but provides a unifying approach offering insights into
the contrasting results in these extreme environments.2

There is a related literature on contests with a finite type-space, much of which assumes
binary type-spaces or a small number of agents and focuses on characterizing equilibrium
properties under asymmetric or correlated types. Siegel [36] establishes the existence of a
unique equilibrium under general distributional assumptions. With correlated types, Liu
and Chen [27] show that the symmetric equilibrium may be non-monotonic when the de-
gree of absolute correlation is high, Rentschler and Turocy [34] highlight the possibility of

1If the best prize is capped, the remaining budget may be best split equally across all but the worst prize.
2In early work, Glazer and Hassin [16] highlight this distinction by solving the problem in some special

cases. Other related studies include Schweinzer and Segev [35], Drugov and Ryvkin [10] who examine the
budget allocation problem under different contest success functions. For general surveys of the literature in
contest theory, see Corchón [7], Sisak [37], Dechenaux, Kovenock, and Sheremeta [8], Vojnović [41], Konrad
[19], Chowdhury, Esteve-González, and Mukherjee [4], Fu and Wu [15], Beviá and Corchón [2].
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allocative inefficiency in equilibrium, while Tang, Fu, and Wu [39] and Kuang, Zhao, and
Zheng [22] explore the impact of reservation prices and information disclosure policies, re-
spectively. With asymmetric type distributions, Szech [38] shows that agents may benefit
from revealing partial information about their private types to their opponents. Taking this
information to be exogenous, Chen [3] characterizes equilibrium outcomes for varying levels
of signal informativeness. Other contributions include Konrad [20], who examines contests
with altruistic or envious types, and Einy, Goswami, Haimanko, Orzach, and Sela [11], who
analyze common value all-pay auctions with private asymmetric information. In contrast to
this literature, our paper assumes symmetric and independent types and focuses on studying
the effect of competition on effort with arbitrarily general finite type-spaces.3

2 Model

Contest environment

There is a set of N + 1 risk-neutral agents. Each agent has a privately known type, which
is its effort cost function. We assume that there are K possible types, each of which is such
that agents incur zero cost from zero effort, higher cost from higher effort, and arbitrarily
large costs from arbitrarily large effort. Formally, each agent’s private type is drawn from a
finite type-space

C = {ck ∈ F : k ∈ [K]},
where the set F is defined as

F = {c : R+ → R+ | c(0) = 0, c′(x) > 0 for all x > 0, and lim
x→∞

c(x) = ∞}.

We further assume that the K possible types can be ordered by efficiency, and without
loss of generality, let types associated with higher indices be more efficient than those with
lower indices. Formally, the type-space C is an ordered type-space, defined as follows:

Definition 1 (Ordered type-space). A type-space C = {ck ∈ F : k ∈ [K]} is an ordered
type-space if, for all x > 0,

c′1(x) > · · · > c′K(x).

A particularly relevant subclass of ordered type-spaces, commonly studied in the liter-
ature on contests (with a continuum of types), consists of type-spaces where the types are
simply scaled versions of a single base function.

Definition 2 (Parametric type-space). A type-space C = {ck ∈ F : k ∈ [K]} is a parametric
type-space if there exists a (base) cost function c ∈ F and parameters θ1, . . . , θK ∈ R+, with
θ1 > · · · > θK , such that for each k ∈ [K],

ck(x) = θkc(x) for all x ∈ R+.
3In other related work, Ewerhart and Quartieri [13] study imperfectly discriminating contests with a finite

type-space, identifying conditions for uniqueness of equilibrium. There is also some work in mechanism
design, and auction design with finite type-spaces (Maskin and Riley [29], Jeong and Pycia [18], Vohra
[40], Lovejoy [28], Doni and Menicucci [9], Elkind [12]).
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Each agent’s private type is drawn independently from the type-space C according to
distribution p = (p1, . . . , pK), where pk > 0 for all k and

∑K
k=1 pk = 1. For each k, we let

Pk =
∑k

j=1 pj. We refer to the collection (N+1, C, p) as the contest environment and assume
that it is common knowledge.

Contest

A contest v = (v0, . . . , vN) assigns a prize value to each rank, with v0 ≤ · · · ≤ vN and
v0 < vN . Given a contest v and their private types, all N + 1 agents simultaneously choose
their effort. The agents are ranked according to their efforts, with ties broken uniformly at
random, and awarded the corresponding prizes. Specifically, the agent who exerts the highest
effort (outperforming all other N agents) is awarded the prize vN , and more generally, the
agent who outperforms exactly m ∈ {0, . . . , N} out of the N other agents is awarded the
prize vm. If an agent of type ck ∈ C wins prize vm after exerting effort xk ≥ 0, their payoff
is equal to the value of the prize minus the cost of exerting the effort:

vm − ck(xk).

Given a contest environment (N + 1, C, p), a contest v defines a Bayesian game between
the N+1 agents. Since the game induced by v is strategically equivalent to the game induced
by the contest w where wm = vm − v0 for all m ∈ {0, . . . , N}, we assume without loss of
generality that v0 = 0. Formally, we will restrict our attention to contests in the set

V = {v ∈ RN+1 : v0 ≤ v1 ≤ · · · ≤ vN where 0 = v0 < vN}.

Equilibrium

For any contest environment (N +1, C, p) and contest v ∈ V , we will focus on the symmetric
Bayes-Nash equilibrium of the induced Bayesian game. This is a strategy profile where
all agents use the same (potentially mixed) strategy, mapping types to a distribution over
non-negative effort levels, such that if an agent has type ck, choosing any effort level in the
support of the distribution for ck yields an expected payoff at least as high as any other
effort level, given that all other agents use the same strategy. We denote this symmetric
Bayes-Nash equilibrium by (X1, X2, . . . , XK), where Xk ∼ Fk represents the random level of
effort exerted by an agent of type ck. We further denote by X ∼ F the ex-ante random level
of effort exerted in equilibrium by an arbitrary agent, so that for any x ∈ R,

F (x) =
K∑
k=1

pkFk(x),

and the expected effort of an arbitrary agent is

E[X] =
K∑
k=1

pkE[Xk].
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Competition

We are interested in examining how increasing competitiveness of a contest influences the
expected equilibrium effort. As is standard in the literature, we define a contest as being
more competitive than another if the prizes are more unequal, measured using the Lorenz
order.

Definition 3. A contest v ∈ V is more competitive than w ∈ V if v is more unequal than w
in the Lorenz order, i.e.,

m∑
i=0

vi ≤
m∑
i=0

wi for all m ∈ {0, 1, . . . , N},

with equality for m = N .

Observe that, given a fixed budget V ∈ R+, the contest that awards the entire budget
to only the best-performing agent, v = (0, 0, . . . , 0, V ), is more competitive than any other
contest w ∈ V that distributes the entire budget. At the other extreme, the contest that
distributes the budget equally among all but the worst-performing agent, v = (0, V

N
, . . . , V

N
),

is less competitive than any other contest w ∈ V that distributes the entire budget.

Importantly, if v ∈ V is more competitive than w ∈ V , v can be obtained from w through
a sequence of transfers from lower-ranked prizes to higher-ranked prizes. The marginal effect
of such a transfer, say from prize m′ to m with m > m′, is captured by

∂E[X]

∂vm
− ∂E[X]

∂vm′
.

Our objective is to evaluate the impact of increasing competition on expected equilibrium
effort across different contest environments, and consequently, identify features under which
it may encourage effort, as well as those under which it may discourage effort. We will
explore implications of these findings for the classical design problem of allocating a fixed
budget across different prizes to maximize expected equilibrium effort.

Notation

We now introduce some notation used throughout the rest of the paper. We let

HN
m (t) =

(
N

m

)
tm(1− t)N−m

denote the probability that a binomial random variable Y ∼ Bin(N, t) takes the value m.
We also let

HN
≤m(t) =

m∑
i=0

HN
i (t) and HN

≥m(t) =
N∑

i=m

HN
i (t),
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denote the probabilities that Y ∼ Bin(N, t) takes a value at most m and at least m, respec-
tively.

Given a contest v ∈ V , note that if an agent outperforms each of the N other agents
independently with probability t ∈ [0, 1], then HN

m (t) represents the probability that the
agent outperforms exactly m out of these N agents, thereby being awarded the prize vm.
We thus define

πv(t) =
N∑

m=0

vmH
N
m (t),

and note that it denotes the expected value of the prize that an agent is awarded if it
outperforms each of the N other agents independently with probability t ∈ [0, 1].

3 Equilibrium

In this section, we characterize the symmetric Bayes-Nash equilibrium of the Bayesian game.
Before providing a complete description, we establish a robust structural property of this
equilibrium: agents mix over contiguous intervals, with more efficient agents choosing greater
effort than less efficient agents.

Lemma 1. Consider any contest environment (N+1, C, p) where C is an ordered type-space.
For any contest v ∈ V, a symmetric Bayes-Nash equilibrium (X1, . . . , XK) must be such that
there exist boundary points b0 < b1 < · · · < bK, with b0 = 0, so that for each k ∈ [K], Xk is
continuously distributed on [bk−1, bk].

Proof sketch. We show that a symmetric equilibrium must satisfy the following:

1. The equilibrium must be in mixed strategies, and cannot have any atoms. This is
because if an agent of type ck chose xk with positive probability, there is a positive
probability that all agents are tied at xk, and an agent of type ck would obtain a strictly
higher payoff by choosing xk+ϵ than that from choosing xk for ϵ > 0 and small enough.

2. The support of the effort distribution across types should be essentially disjoint, with
at most one effort level in the intersection of support of any two different types. This
is because going from one effort level to another, the change in expected prize is the
same irrespective of type, but the change in cost depends on the type. It follows that
two different agent-types cannot both be indifferent between two different effort levels.

3. The supports of the different types must be connected, i.e, there shouldn’t be any gaps.
This is because if there is any gap (d1, d2) in the support, an agent-type that has d2
in the support would obtain a strictly higher payoff by choosing d1. In doing so, the
expected prize awarded to the agent remains the same, while the effort cost is lower.
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4. Finally, the effort must be monotonic in types. This is because if the distribution of
type ck contains x and y in its support with x < y, then the indifference condition
of type ck, together with the ordered structure of C, implies that for any less efficient
type cj with j < k, choosing x would lead to a strictly higher payoff than choosing y.

Together, these properties imply the result. The full proof is in the appendix.

Thus, for any environment (N + 1, C, p) and contest v ∈ V , the equilibrium is such that
agents of the least-efficient type c1 mix between [0, b1], agents of type c2 mix between [b1, b2],
and so on, until we get to agents of the most-efficient agent-type cK , who mix between
[bK−1, bK ]. In particular, more efficient agents always choose greater effort than less efficient
agents, and the incentives to mix arise purely because of the possibility that agents might
face other agents of the same type as their own. Thus, the equilibrium with finitely many
types exhibits both the mixed structure characteristic of complete information environments
(Barut and Kovenock [1]) and the monotonic structure observed in environments with a
continuum of types (Moldovanu and Sela [30]).

It remains to identify the equilibrium distributions (F1, . . . , FK), which can now be de-
rived using the indifference condition. More precisely, an agent of type ck ∈ C should be
indifferent between all effort levels in [bk−1, bk], and this uniquely pins down the equilibrium
distribution Fk on [bk−1, bk]. The following result fully characterizes the unique symmetric
Bayes-Nash equilibrium of the Bayesian game.

Theorem 1. Consider any contest environment (N + 1, C, p) where C is an ordered type-
space. For any contest v ∈ V, the symmetric Bayes-Nash equilibrium (X1, . . . , XK) is such
that for each k ∈ [K], the distribution Fk : [bk−1, bk] → [0, 1] is defined by

πv(Pk−1 + pkFk(xk))− ck(xk) = uk for all xk ∈ [bk−1, bk], (1)

where the boundary points b = (b0, . . . , bK), with b0 = 0, and the equilibrium utilities u =
(u1, . . . , uK), with u1 = 0, satisfy

πv(Pk)− ck(bk) = uk for all k ∈ [K], (2)

and
πv(Pk−1)− ck(bk−1) = uk for all k ∈ [K]. (3)

Proof. Suppose (X1, X2, . . . , XK) is a symmetric Bayes-Nash equilibrium. From Lemma 1,
there exist boundary points b0 < b1 < b2 < · · · < bK , with b0 = 0, so that Xk is continuously
distributed on [bk−1, bk]. It follows that an agent of type ck must be indifferent between all
effort levels in this interval. Suppose (F1, F2, . . . , FK) is an equilibrium distribution. Notice
that if an agent of type ck ∈ C chooses xk ∈ [bk−1, bk], it outperforms any arbitrary agent
with probability Pk−1 + pkFk(xk), and thus, the expected value of the prize that this agent
is awarded is πv(Pk−1 + pkFk(xk)). Moreover, the cost of choosing xk is ck(xk). Thus, by
the indifference condition, the equilibrium distribution function Fk must satisfy Equation (1).
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It remains to solve for the boundary points and equilibrium utilities. Plugging in xk = bk
in Equation (1) leads to Equation (2), and plugging in xk = bk−1 in Equation (1) leads to
Equation (3). Starting from b0 = 0, Equation (3) gives u1 = 0, and then, Equation (2)
gives b1 = c−1

1 (πv(P1)). In general, once we have bk−1, Equation (3) gives uk, and then,
Equation (2) gives bk. Proceeding iteratively in this way, we can recover all the equilibrium
boundary points and utilities from Equations (2) and (3). Together, these three equations
fully characterize the unique symmetric Bayes-Nash equilibrium of the Bayesian game.4

Given the equilibrium characterization, we now derive a useful representation for expected
equilibrium effort. For any environment (N + 1, C, p) and contest v ∈ V , we reinterpret the
equilibrium by embedding it in an alternative space–specifically, as a mapping between equi-
librium effort and the probability t ∈ [0, 1] of outperforming an arbitrary agent. For instance,
the boundary point bk corresponds to the equilibrium effort associated with outperforming
an arbitrary agent with probability Pk. More generally, from Equation (1), the equilibrium
effort associated with outperforming an arbitrary agent with probability t ∈ (Pk−1, Pk) is

c−1
k (πv(t)− uk) .

Since, ex-ante, this probability t is uniformly distributed on [0, 1], we obtain the following
representation for expected equilibrium effort.

Lemma 2. Consider any contest environment (N+1, C, p) where C is an ordered type-space.
For any contest v ∈ V, the expected equilibrium effort of an arbitrary agent is

E[X] =

∫ 1

0

gk(t)
(
πv(t)− uk(t)

)
dt,

where gk = c−1
k and k(t) = max{k : Pk−1 ≤ t}.

This interpretation of the equilibrium as a mapping between effort and the probability
of outperforming an arbitrary agent provides a unified framework for analyzing symmetric
equilibrium across different environments and is central to our subsequent analysis.

4 Effect of competition on expected effort

In this section, we examine how increasing competitiveness of a contest influences the ex-
pected equilibrium effort, and also solve the designer’s problem of allocating a fixed budget
across prizes so as to maximize expected equilibrium effort.

4This equilibrium characterization effectively captures equilibrium behavior in both complete and con-
tinuum type-space environments. The complete information setting where all agents have the same type
c1 ∈ F is a special case of our model where the type-space C = {c1}. Moreover, by the convergence result
in Appendix C, the (pure-strategy) equilibrium in any continuum type-space is well-approximated by the
equilibrium of a sufficiently large and appropriately chosen finite type-space.
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From Lemma 2, it follows that for any environment (N + 1, C, p) and contest v ∈ V , the
marginal effect of increasing prize m ∈ [N ] on expected effort is

∂E[X]

∂vm
=

∫ 1

0

g′k(t)
(
πv(t)− uk(t)

) [
HN

m (t)−
∂uk(t)

∂vm

]
dt.

And thus, for any pair of prizesm,m′ ∈ [N ] withm > m′, the marginal effect of increasing
competition by transferring value from worse-ranked prize m′ to better-ranked prize m is

∂E[X]

∂vm
− ∂E[X]

∂vm′
=

∫ 1

0

g′k(t)
(
πv(t)− uk(t)

) [
HN

m (t)−HN
m′(t)−

[
∂uk(t)

∂vm
−

∂uk(t)

∂vm′

]]
dt. (4)

To interpret Equation (4), consider again an agent who outperforms an arbitrary agent
with probability t. Transferring value from m′ to m results in a marginal increase in this
agent’s expected prize of HN

m (t)−HN
m′(t). By subtracting the subsequent marginal increase

in utility
[
∂uk(t)

∂vm
− ∂uk(t)

∂vm′

]
, we isolate the marginal increase in effort costs, which is then

translated into the marginal effect on effort. Finally, taking a uniform expectation over
t ∈ [0, 1] gives the overall impact of the transformation on expected effort. Equation (4)
provides a general and useful framework in which to think about the effect of competition
on effort. We will now use this framework to analyze the effect of competition under some
important contest environments.

4.1 Complete information

We begin with the complete information environment, captured by a type-space containing
only a single type. This complete information case was the focus of Fang, Noe, and Strack
[14], who showed that increasing competition encourages effort when the cost function is
concave, and discourages effort when it is convex. We now recover this result in our frame-
work, introducing and illustrating some key ideas that will be useful later.

Consider a complete information environment with type-space C = {c1} where c1 ∈ F .
From Theorem 1, we know that for any contest v ∈ V , the equilibrium utility u1 = 0.
Consequently, the effect of increasing competition, as captured by Equation (4), simplifies
to

∂E[X]

∂vm
− ∂E[X]

∂vm′
=

∫ 1

0

g′1 (πv(t))
[
HN

m (t)−HN
m′(t)

]
dt.

Here, observe that
[
HN

m (t)−HN
m′(t)

]
, which represents the marginal effect on effort costs,

is negative for small t-values and positive for large t-values. Moreover, the aggregate effect
on effort cost is ∫ 1

0

[
HN

m (t)−HN
m′(t)

]
dt = 0.

Thus, increasing competition essentially shifts equilibrium effort costs from low t-values to
high t-values. Now for the effect on effort, the term g′1(πv(t)) can be interpreted as assigning
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different weights to the effect on effort costs across different t-values. If these weights are
monotonic in t (which they are when c1 is concave or convex), we can recover the effect on
effort from the effect on effort costs. We formalize this idea in the following lemma.

Lemma 3. Suppose a2 : [0, 1] → R is such that there exists t∗ ∈ [0, 1] so that a2(t) ≤ 0 for
t ≤ t∗ and a2(t) ≥ 0 for t ≥ t∗. Then, for any increasing function a1 : [0, 1] → R,∫ 1

0

a1(t)a2(t)dt ≥ a1(t
∗)

∫ 1

0

a2(t)dt.

From here, a straightforward application of Lemma 3 with a2(t) =
[
HN

m (t)−HN
m′(t)

]
leads to the following result about the effect of increasing competition on expected effort in
complete information environments (Fang, Noe, and Strack [14]).

Theorem 2. Consider a contest environment (N +1, C, p) where C = {c1} and c1 ∈ F . For
any pair m,m′ ∈ [N ] with m > m′, the following hold:

1. If c1 is concave, then for any contest v ∈ V, ∂E[X]

∂vm
− ∂E[X]

∂vm′
≥ 0.

2. If c1 is convex, then for any contest v ∈ V, ∂E[X]

∂vm
− ∂E[X]

∂vm′
≤ 0.

Thus, in a complete information environment, the effect of increasing competition on
expected equilibrium is determined solely by the structure of the cost function. It encourages
effort if the cost is concave, and discourages effort if the cost is convex. If the cost is linear,
so that it is both concave and convex, increasing competition has no effect on expected effort
(Barut and Kovenock [1]). For the design problem of allocating a budget across prizes to
maximize effort, the solution follows directly from Theorem 2, and we note it in the following
corollary.

Corollary 1. Consider a contest environment (N + 1, C, p) where C = {c1} and c1 ∈ F .
Suppose any contest v ∈ V such that

∑N
m=0 vm ≤ V is feasible.

1. If c1 is strictly concave, the contest v = (0, 0, . . . , 0, V ) uniquely maximizes E[X].

2. If c1 is linear, any contest v ∈ V such that
∑N

m=1 vm = V maximizes E[X].

3. If c1 is strictly convex, the contest v =
(
0, V

N
, . . . , V

N

)
uniquely maximizes E[X].

4.2 Incomplete information: Linear cost

We now turn to the incomplete information environment. Compared to the complete infor-
mation case, the analysis here is more nuanced, as increasing competition not only effects
the equilibrium effort, but also the equilibrium utilities of the different agent-types. More-
over, these effects on utilities may depend in an intricate way on the specific structure of the
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type-space C. To begin, we focus on the special case where all cost functions are linear.

Consider a contest environment (N + 1, C, p) where C is such that ck(x) = θk · x, with
θ1 > · · · > θK > 0. In this case, it turns out that for any contest v ∈ V , we can explicitly
solve for the expected effort. Using Lemma 2, we can express the expected effort as

E[X] =
K∑
k=1

pk ·
1

θk
·

[∫ Pk

Pk−1

πv(t)

pk
dt− uk

]
,

Here,

∫ Pk

Pk−1

πv(t)

pk
dt is simply the expected prize awarded to an agent of type ck ∈ C, and

is linear in vm for m ∈ [N ]. Further, using Equations (2) and (3), we can solve for the
equilibrium utilities and show that:

uk = θk

[
k−1∑
j=1

πv(Pj)

(
1

θj+1

− 1

θj

)]
for k ∈ [K], (5)

which is also linear in vm for m ∈ [N ]. Substituting these expressions, we derive the following
representation for the expected equilibrium effort.

Lemma 4. Consider a contest environment (N +1, C, p) where C is such that ck(x) = θk ·x,
with θ1 > · · · > θK > 0. For any contest v ∈ V, the expected equilibrium effort is

E[X] =
N∑

m=1

αmvm,

where

αm =
1

N + 1

[
1

θK
−

K−1∑
k=1

[
HN+1

≥m (Pk) + (N −m)HN+1
m (Pk)

]( 1

θk+1

− 1

θk

)]
. (6)

Thus, in the incomplete information environment with linear types, the expected equi-
librium effort is linear in the values of the different prizes, with coefficients that depend on
the specifics of the environment. It follows then that the effect of increasing competition in
this environment, as captured by Equation (4), simplifies to

∂E[X]

∂vm
− ∂E[X]

∂vm′
= αm − αm′ ,

which can now be explicitly evaluated using Equation (6).

In particular, we first note that increasing competition by transferring value to the best-
ranked prize always encourages effort. To see why, notice from Equation (6) that for any
prize m′ ∈ {1, . . . , N − 1},

αN − αm′ =
1

N + 1

[
K−1∑
k=1

[
HN+1

≥m′ (Pk)−HN+1
≥N (Pk) + (N −m′)HN+1

m′ (Pk)
]( 1

θk+1

− 1

θk

)]
.
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With m′ < N and K ≥ 2, it is straightforward to verify that αN − αm′ > 0. In other words,
for any contest v ∈ V , transferring value from any lower-ranked prize m′ to the top-prize N
leads to an increase in expected effort. Consequently, for the design problem, it follows that
allocating the entire budget to the best-performing agent is strictly optimal.

Corollary 2. Consider a contest environment (N+1, C, p) where C is such that ck(x) = θk ·x,
with θ1 > · · · > θK > 0 and K ≥ 2. Among all contests v ∈ V such that

∑N
m=0 vm ≤ V , the

contest v = (0, 0, . . . , 0, V ) uniquely maximizes E[X].

This result resolves the conjecture of Sisak [37], which suggested that allocating the bud-
get across multiple prizes might be optimal in this environment. Additionally, it extends
the optimality of the winner-takes-all contest under linear costs, previously established for a
continuum type-space environment by Moldovanu and Sela [30], to the finite type-space set-
ting. Thus, as soon as there is any uncertainty (incomplete information) in an environment
with linear costs, the winner-takes-all contest is strictly optimal.

Even though transferring value to the best-ranked prize always encourages effort, increas-
ing competition by transferring value to better-ranked intermediate prizes may not always
encourage effort. To see this, consider a contest environment with just two types. For this
case with K = 2, we can show that for any m ∈ {1, . . . , N − 1}, the marginal effect of
transferring value from prize m to prize m+ 1 on expected effort is

αm+1 − αm ≥ 0 ⇐⇒ P1 ≤
m+ 1

N
.

It follows that the effect of the transformation depends on the relative likelihood of effi-
cient and inefficient types. In particular, if P1 is small (P1 < 2

N
), increasing competition

by transferring value to better-ranked prizes always encourages effort. However, if P1 is big
(P1 >

N−1
N

), increasing competition actually generally discourages effort, except when trans-
ferring value to the best-ranked prize. Intuitively, increasing competition encourages effort
from the efficient types, while discouraging effort from the inefficient types. Thus, if the
population is more likely to be efficient, the overall effect is positive, but if it is more likely
to be inefficient, increasing competition by transferring value across intermediate prizes may
actually discourage effort.

4.3 Incomplete information: General cost

In this subsection, we continue our analysis of the incomplete information environment, al-
lowing for more general cost functions. Unlike the case of linear costs, where expected effort
depends linearly on the value of prizes, the precise relationship between expected effort and
the prize values under general costs may be complex. For tractability, we restrict our atten-
tion to parametric type-spaces.

Consider a contest environment (N +1, C, p) where C is a parametric type-space, defined
by parameters θ1 > · · · > θK and a (base) cost function c ∈ F , so that ck(x) = θk·c(x). In this
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case, if we let g = c−1, notice that we can express gk(y) = g
(

y
θk

)
, so that g′k(y) =

1
θk
g′
(

y
θk

)
.

Thus, for any contest v ∈ V , the effect of increasing competition on expected effort, as
captured by Equation (4), can be expressed as

∂E[X]

∂vm
− ∂E[X]

∂vm′
=

∫ 1

0

g′
(
πv(t)− uk(t)

θk(t)

)[
HN

m (t)−HN
m′(t)

θk(t)
− 1

θk(t)

[
∂uk(t)

∂vm
−

∂uk(t)

∂vm′

]]
dt

=

∫ 1

0

g′
(
πv(t)− uk(t)

θk(t)

)
[λm(t)− λm′(t)] dt, (7)

where

λm(t) =

(
HN

m (t)

θk(t)
− 1

θk(t)

∂uk(t)

∂vm

)
.

To analyze this, we first discuss how increasing competition affects the equilibrium utilities
of the different agent types. Fix any cost function c ∈ F and any contest v ∈ V . Notice
that we can reinterpret the induced Bayesian game as one where agents directly choose effort
cost, c(x), instead of choosing effort x. Consequently, the properties of equilibrium effort x
under linear costs, derived in Subsection 4.2, actually more generally represent properties
of equilibrium effort cost c(x) under cost function c.5 In particular, it follows that the
equilibrium utilities are exactly as those described in Equation (5), so that the marginal
effect of increasing competition on utility of type ck(·) = θk · c(·) is

∂uk

∂vm
− ∂uk

∂vm′
= θk

[
k−1∑
j=1

HN
m (Pj)−HN

m′(Pj)

(
1

θj+1

− 1

θj

)]
.

Notice that this effect of competition on equilibrium utilities is independent of the cost func-
tion c ∈ F , and also the contest v ∈ V .

We now return to analyzing the effect of competition on equilibrium effort. In Equation
(7), it follows that the cost function c ∈ F only influences the first term of the integrand,

g′
(

πv(t)−uk(t)

θk(t)

)
. As in our analysis of the complete information case, we interpret this term as

simply assigning different weights across different t-values. The second term, λm(t)−λm′(t),
captures the marginal effect of the transformation on (base) effort costs across different
t-values. From our analysis of the linear cost case (c(x) = x), we know that∫ 1

0

[λm(t)− λm′(t)] dt = αm − αm′ ,

which we can now interpret more generally as the marginal effect of increasing competition
on expected equilibrium (base) effort cost. If this second term, λm(t) − λm′(t), further ex-
hibits the single-crossing property, as it does in the complete information case, this effect

5As a corollary, for any contest environment (N + 1, C, p) where C is a parametric type-space with base
function c ∈ F , the winner-takes-all contest v = (0, . . . , 0, V ) uniquely maximizes E[c(X)] among all contests
feasible with a budget V .
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on effort cost may be informative about the effect on effort itself. It is straightforward to
verify that the term λm(t) − λm′(t) is continuous in t, and moreover, has the same sign of
the derivative as HN

m (t)−HN
m′(t), whenever it exists. It follows that the term is 0 at t = 0,

initially decreases, then increases, and eventually decreases again (unless m = N). Thus,
λm(1) − λm′(1) ≥ 0 is both necessary and sufficient to ensure that λm(t) − λm′(t) is single-
crossing in t. In other words, while increasing competition reduces the effort cost associated
with low t-values, the condition ensures that it leads to an increase in effort cost associated
with all the larger t-values.

With this, we are now ready to state our main result. The result identifies conditions
under which λm(1) − λm′(1) ≥ 0 and establishes how, under these conditions, the effect of
increasing competition on expected equilibrium effort under general costs may be inferred
from its effect on effort costs (or alternatively, from its effect on effort under linear costs).

Theorem 3. Consider a contest environment (N+1, C, p) where C is a parametric type-space,
defined by parameters θ1 > · · · > θK and (base) function c ∈ F , so that ck(x) = θk · c(x).
Let m,m′ ∈ [N ] with m > m′ be such that, either m = N or(

∂uK

∂vm
− ∂uK

∂vm′

)
≤ 0 ⇐⇒

K−1∑
k=1

(
HN

m (Pk)−HN
m′(Pk)

)( 1

θk+1

− 1

θk

)
≤ 0.

Then, the following hold:

1. If αm − αm′ ≥ 0 and c is concave, then for any contest v ∈ V, ∂E[X]

∂vm
− ∂E[X]

∂vm′
≥ 0.

2. If αm − αm′ ≤ 0 and c is convex, then for any contest v ∈ V, ∂E[X]

∂vm
− ∂E[X]

∂vm′
≤ 0.

In words, if increasing competition does not lead to an increase in the equilibrium utility
of the most-efficient type, or if it involves transferring value to the best-ranked prize, then
its effect on effort may be inferred from its effect on effort costs. In such cases, for any
contest v ∈ V , the effect on effort costs (or effort under linear costs) extends to the effect on
effort under concave costs if it is positive, and to the effect on effort under convex costs if it
is negative. Despite being somewhat limited in its scope, Theorem 3 provides a convenient
method to check if increasing competitiveness of a contest would encourage or discourage
effort under fairly general environments.

In particular, it allows us to solve the design problem of allocating a budget across prizes
for the case of concave costs. To see how, fix any contest environment (N + 1, C, p) where C
is a parametric type-space with a concave cost c ∈ F . For any contest v ∈ V , consider the
effect of transferring value from an arbitrary prize m′ ∈ {1, . . . , N − 1} to the best-ranked
prize m = N . From Theorem 3, if αN−αm′ ≥ 0, the transformation will have an encouraging
effect on expected equilibrium effort. But we know from our analysis of the linear costs in
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Subsection 4.2 that αN − αm′ ≥ 0. It follows that for any concave cost c ∈ F and contest
v ∈ V , transferring value to the best-ranked prize encourages expected equilibrium effort.
As a result, it is optimal to allocate the entire budget to the top-ranked prize.

Corollary 3. Consider a contest environment (N + 1, C, p) where C is a parametric type-
space, defined by parameters θ1 > · · · > θK and (base) function c ∈ F , so that ck(x) =
θk · c(x). If c is concave, among all contests v ∈ V such that

∑N
m=0 vm ≤ V , the contest

v = (0, 0, . . . , 0, V ) uniquely maximizes E[X].

This result extends the optimality of the winner-takes-all contest under concave costs,
previously established for a continuum type-space environment by Moldovanu and Sela [30],
to the finite type-space setting. Together with Corollaries 1 and 2, it follows that the
winner-takes-all contest is robustly optimal under concave costs, irrespective of whether the
environment is a complete or incomplete information environment.

5 Conclusion

This paper studies the effect of increasing competitiveness of contests in a finite type-space
environment. First, we completely characterize the unique symmetric Bayes-Nash equi-
librium, showing that it entails different agent types mixing over disjoint but connected
intervals, so that more efficient agents exert greater effort than less efficient ones. We rein-
terpret the equilibrium as a mapping between effort and the probability of outperforming
an arbitrary agent, which provides a unifying framework for studying contests across differ-
ent environments. We then show that the effect of increasing competition on effort is more
nuanced than in the complete information case because of the additional effect it has on the
equilibrium utilities of the more efficient types. We explicitly solve for these effects under
linear costs and identify conditions under which they extend to general costs. Our findings
suggest that increasing competition encourages effort if efficient types are likely, while dis-
couraging effort if they’re unlikely. We derive implications for the classical design problem of
allocating a budget across prizes, establishing the winner-takes-all contest as being robustly
optimal under linear and concave costs.

We hope that our results and methods will encourage further research in this fundamental
finite type-space domain. The question of how competition effects effort under arbitrary
(non-parametric) finite type-spaces remains open. It would also be interesting to study
variants of the design problem that allow for the possibility of more general mechanisms, a
direction recently explored by Letina, Liu, and Netzer [24] and Zhang [43] in the complete
information and continuum type-space environments, respectively. Furthermore, we believe
the finite type-space environment provides a more convenient framework for experimental
investigations compared to the continuum type-space. With the equilibrium predictions and
convergence properties we establish, we hope to also inspire more experimental research
investigating some of the theoretical predictions in the literature on contest design with
incomplete information.
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A Proofs for Section 3 (Equilibrium)

Lemma 1. Consider any contest environment (N+1, C, p) where C is an ordered type-space.
For any contest v ∈ V, a symmetric Bayes-Nash equilibrium (X1, . . . , XK) must be such that
there exist boundary points b0 < b1 < · · · < bK, with b0 = 0, so that for each k ∈ [K], Xk is
continuously distributed on [bk−1, bk].

Proof. Suppose (X1, X2, . . . , XK) is a symmetric Bayes-Nash equilibrium, and let X ∼ F
denote the ex-ante effort of an arbitrary agent. Let uk denote the payoff of agent of type
ck ∈ C under this symmetric strategy profile.

1. Mixed strategies: We first show that Xk cannot have any atoms. Suppose instead
that Pr[Xk = xk] > 0. We will argue that an agent of type ck obtains a strictly higher
payoff from choosing xk+ ϵ as compared to xk for ϵ > 0 and small enough. Notice that
under the given profile, there is a positive probability that all N +1 agents are tied at
effort level xk, in which case the ties are broken uniformly at random. Thus, choosing
xk + ϵ results in a discontinuous jump in the expected value of the prize awarded to
the agent (since v0 < vN), even though the additional cost ck(xk + ϵ)− ck(xk) can be
made arbitrarily small with ϵ small enough. It follows that for agent of type ck ∈ C,
the payoff from choosing xk + ϵ is strictly higher than that from choosing xk, which is
a contradiction. Thus, Xk must be a continuous random variable. Consequently, we
assume, without loss of generality, that the support of Xk is closed.

2. Disjoint support (essentially) across types: We now show that for any j ̸= k,
the support of Xj and Xk have at most one point of intersection. Suppose instead that
both x, y are in the support of both Xj and Xk and x ̸= y. Since an agent of type ck
must be indifferent between all actions in the support of Xk, it must be that

uk = πv(F (x))− ck(x) = πv(F (y))− ck(y),

and similarly for agent of type cj, it must be that

uj = πv(F (x))− cj(x) = πv(F (y))− cj(y).

But this implies that

πv(F (x))− πv(F (y)) = ck(x)− ck(y) = cj(x)− cj(y),

which contradicts the fact that C is ordered.

3. No gaps in support: We now show that there cannot be any gaps in the support of
X, and that it must take the form [0, bK ]. Suppose instead that there is an interval
(d1, d2) which is not in the support of X. Then, an agent with a type that has d2 in its
support obtains a strictly higher payoff from choosing d1, as this agent is still awarded
the same expected prize, but the cost incurred by this agent is lower. It follows that
the support of X must be convex. An analogous argument leads to the property that
the lower bound of the support must be 0.
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4. Monotonicity across types: Lastly, we show that there exist boundary points b1 <
b2 < · · · < bK such that the support of Xk is [bk−1, bk]. Suppose that x, y with x < y is
in the support of Xk. We will show that for an agent of type cj where j < k, choosing
x leads to a strictly higher payoff than choosing y. Observe that

uk = πv(F (x))− ck(x) = πv(F (y))− ck(y).

Now the payoff of agent of type cj from choosing y is

πv(F (y))− cj(y) = uk + ck(y)− cj(y),

and that from choosing x will be

πv(F (x))− cj(x) = uk + ck(x)− cj(x).

Since C is ordered,

cj(y)− cj(x) > ck(y)− ck(x) =⇒ ck(x)− cj(x) > ck(y)− cj(y).

It follows that the agent of type cj obtains a strictly higher payoff from choosing x as
compared to y.

Together, the properties imply that the equilibrium exhibits the structure in the Lemma.

Lemma 2. Consider any contest environment (N+1, C, p) where C is an ordered type-space.
For any contest v ∈ V, the expected equilibrium effort of an arbitrary agent is

E[X] =

∫ 1

0

gk(t)
(
πv(t)− uk(t)

)
dt,

where gk = c−1
k and k(t) = max{k : Pk−1 ≤ t}.

Proof. We first find the expected effort exerted in equilibrium by an agent of type ck. From
Theorem 1, we have that the (random) level of effort Xk satisfies

πv(Pk−1 + pkFk(Xk))− ck(Xk) = uk.

Rearranging and taking expectations on both sides, we obtain

E[Xk] = E [gk (πv(Pk−1 + pkFk(Xk))− uk)] (Since gk = c−1
k )

=

∫ bk

bk−1

gk (πv(Pk−1 + pkFk(xk))− uk) fk(xk)dxk

=

∫ 1

0

gk (πv(Pk−1 + pkt)− uk) dt (Substituting Fk(xk) = t).
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Then,

E[X] =
K∑
k=1

pkE[Xk]

=
K∑
k=1

pk

∫ 1

0

gk (πv(Pk−1 + pkt)− uk) dt

=
K∑
k=1

∫ Pk

Pk−1

gk (πv(p)− uk) dp (Substituting Pk−1 + pkt = p)

=

∫ 1

0

gk(t)
(
πv(t)− uk(t)

)
dt (where k(t) = max{k : Pk−1 ≤ t})

as required.

B Proofs for Section 4 (Effect of competition on ex-

pected effort)

Lemma 3. Suppose a2 : [0, 1] → R is such that there exists t∗ ∈ [0, 1] so that a2(t) ≤ 0 for
t ≤ t∗ and a2(t) ≥ 0 for t ≥ t∗. Then, for any increasing function a1 : [0, 1] → R,∫ 1

0

a1(t)a2(t)dt ≥ a1(t
∗)

∫ 1

0

a2(t)dt.

Proof. Observe that∫ 1

0

a1(t)a2(t)dt =

∫ t∗

0

a1(t)a2(t)dt+

∫ 1

t∗
a1(t)a2(t)dt

≥
∫ t∗

0

a1(t
∗)a2(t)dt+

∫ 1

t∗
a1(t

∗)a2(t)dt

= a1(t
∗)

∫ 1

0

a2(t)dt.

Theorem 2. Consider a contest environment (N +1, C, p) where C = {c1} and c1 ∈ F . For
any pair m,m′ ∈ [N ] with m > m′, the following hold:

1. If c1 is concave, then for any contest v ∈ V, ∂E[X]

∂vm
− ∂E[X]

∂vm′
≥ 0.

2. If c1 is convex, then for any contest v ∈ V, ∂E[X]

∂vm
− ∂E[X]

∂vm′
≤ 0.
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Proof. From Theorem 1, we know that u1 = 0, and thus, from Equation (4), we have that

∂E[X]

∂vm
− ∂E[X]

∂vm′
=

∫ 1

0

g′1 (πv(t))
[
HN

m (t)−HN
m′(t)

]
dt.

If c1 is concave, g1 = c−1
1 is convex, and thus, g′1(πv(t)) is increasing in t. Applying

Lemma 3 with a1(t) = g′1 (πv(t)) and a2(t) =
[
HN

m (t)−HN
m′(t)

]
gives the result.

If c1 is convex, g1 = c−1
1 is concave, and thus, g′1(πv(t)) is decreasing in t. Applying

Lemma 3 with a1(t) = −g′1 (πv(t)) and a2(t) =
[
HN

m (t)−HN
m′(t)

]
gives the result.

Lemma 4. Consider a contest environment (N +1, C, p) where C is such that ck(x) = θk ·x,
with θ1 > · · · > θK > 0. For any contest v ∈ V, the expected equilibrium effort is

E[X] =
N∑

m=1

αmvm,

where

αm =
1

N + 1

[
1

θK
−

K−1∑
k=1

[
HN+1

≥m (Pk) + (N −m)HN+1
m (Pk)

]( 1

θk+1

− 1

θk

)]
. (6)

Proof. Using the representation in Lemma 2, we have that for any contest v ∈ V ,

E[X] =

∫ 1

0

gk(t)
(
πv(t)− uk(t)

)
dt

=

∫ 1

0

(
πv(t)− uk(t)

)
θk(t)

dt

(
gk(y) =

y

θk

)
=

K∑
k=1

pk ·
1

θk
·

[∫ Pk

Pk−1

πv(t)

pk
dt− uk

]
.

1. Notice that for any k ∈ [K],

∫ Pk

Pk−1

πv(t)

pk
dt is the expected prize awarded to an agent of

type ck. To compute this, we instead compute the ex-ante expected total prize awarded
to agents of type ck. Notice that for any prize m ∈ {0, . . . , N}, the ex-ante probability
that this prize is awarded to an agent of type ck is simply[

HN+1
≥m+1(Pk)−HN+1

≥m+1(Pk−1)
]
.

Thus, the ex-ante expected total prize awarded to agents of type ck is

N∑
m=1

vm
[
HN+1

≥m+1(Pk)−HN+1
≥m+1(Pk−1)

]
.
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By an alternative calculation, which entails adding up over the N + 1 agents, this
expectation should equal

(N + 1) · pk ·
∫ Pk

Pk−1

πv(t)

pk
dt.

Equating these two, we get that∫ Pk

Pk−1

πv(t)dt =

∑N
m=1 vm

[
HN+1

≥m+1(Pk)−HN+1
≥m+1(Pk−1)

]
N + 1

.

Alternatively, we can also directly use the following fact to compute this integral:

∂HN+1
≥m+1(t)

∂t
= (N + 1)HN

m (t)

2. For the equilibrium utilities uk, we simply solve the Equations (2) and (3). For the
given type-space C with ck(x) = θk · x, these equations can be rewritten as

πv(Pk)− θkbk = uk and πv(Pk−1)− θkbk−1 = uk.

Solving this system of equations gives

bk =
k∑

j=1

πv(Pj)− πv(Pj−1)

θj
for k ∈ [K],

and

uk = θk

[
k−1∑
j=1

πv(Pj)

(
1

θj+1

− 1

θj

)]
for k ∈ [K].

Substituting these expressions in the above representation, we get that

E[X] =
K∑
k=1

1

(N + 1)θk

N∑
m=1

vm
[
HN+1

≥m+1(Pk)−HN+1
≥m+1(Pk−1)

]
−

K∑
k=1

pkuk

θk
.

From here, it follows that we can write

E[X] =
N∑

m=1

αmvm

where

αm =
K∑
k=1

[
HN+1

≥m+1(Pk)−HN+1
≥m+1(Pk−1)

]
(N + 1)θk

−
K∑
k=1

pk

k−1∑
j=1

HN
m (Pj)

(
1

θj+1

− 1

θj

)
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=
K∑
k=1

[
HN+1

≥m+1(Pk)−HN+1
≥m+1(Pk−1)

]
(N + 1)θk

−
K−1∑
k=1

(1− Pk)H
N
m (Pk)

(
1

θk+1

− 1

θk

)

=
1

N + 1

[
1

θK
−

K−1∑
k=1

HN+1
≥m+1(Pk)

(
1

θk+1

− 1

θk

)]
− (N + 1−m)

N + 1

K−1∑
k=1

[
HN+1

m (Pk)

(
1

θk+1

− 1

θk

)]

=
1

N + 1

[
1

θK
−

K−1∑
k=1

[
HN+1

≥m (Pk) + (N −m)HN+1
m (Pk)

]( 1

θk+1

− 1

θk

)]
.

Theorem 3. Consider a contest environment (N+1, C, p) where C is a parametric type-space,
defined by parameters θ1 > · · · > θK and (base) function c ∈ F , so that ck(x) = θk · c(x).
Let m,m′ ∈ [N ] with m > m′ be such that, either m = N or(

∂uK

∂vm
− ∂uK

∂vm′

)
≤ 0 ⇐⇒

K−1∑
k=1

(
HN

m (Pk)−HN
m′(Pk)

)( 1

θk+1

− 1

θk

)
≤ 0.

Then, the following hold:

1. If αm − αm′ ≥ 0 and c is concave, then for any contest v ∈ V, ∂E[X]

∂vm
− ∂E[X]

∂vm′
≥ 0.

2. If αm − αm′ ≤ 0 and c is convex, then for any contest v ∈ V, ∂E[X]

∂vm
− ∂E[X]

∂vm′
≤ 0.

Proof. For the given parametric type-space, we have from Equation (4) that for any contest
v ∈ V and any pair of prizes m,m′ ∈ [N ] with m > m′,

∂E[X]

∂vm
− ∂E[X]

∂vm′
=

∫ 1

0

g′
(
πv(t)− uk(t)

θk(t)

)
(λm(t)− λm′(t)) dt,

where

λm(t) =

(
HN

m (t)

θk(t)
− 1

θk(t)

∂uk(t)

∂vm

)
.

Further, we know from Theorem 1 that the equilibrium boundary points b = (b1, . . . , bK)
and utilities u = (u1, . . . , uK) must satisfy Equations (2) and (3). Solving these equations,
we get that the equilibrium utilities are as described in Equation (5), and thus, we get that

∂uk

∂vm
= θk

[
k−1∑
j=1

HN
m (Pj)

(
1

θj+1

− 1

θj

)]
.

Plugging in, we get that

λm(t)− λm′(t) =

(
HN

m (t)−HN
m′(t)

θk(t)

)
−

k(t)−1∑
j=1

(
HN

m (Pj)−HN
m′(Pj)

)( 1

θj+1

− 1

θj

) .

From here, one can verify that
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1. λm(0)− λm′(0) = 0

2. λm(1)− λm′(1) =


1
θK

− 1
θK

(
∂uK

∂vm
− ∂uK

∂vm′

)
if m = N

− 1
θK

(
∂uK

∂vm
− ∂uK

∂vm′

)
otherwise

3. λm(t)− λm′(t) is continuous in t

4. λm(t)−λm′(t) is differentiable at t ∈ [0, 1] for t ̸= Pk, and at any such t, the derivative
has the same sign as the derivative of HN

m (t)−HN
m′(t) with respect to t.

Since m,m′ are such that either m = N or

(
∂uK

∂vm
− ∂uK

∂vm′

)
≤ 0, we get that λm(1) −

λm′(1) ≥ 0. Together with the above properties, this implies that there is some t∗ ∈ [0, 1]
such that λm(t)− λm′(t) ≤ 0 for t ∈ [0, t∗], and λm(t)− λm′(t) ≥ 0 for t ∈ [t∗, 1].

Now if c is concave, g = c−1 is convex, and thus, g′
(

πv(t)−uk(t)

θk(t)

)
is increasing in t. Applying

Lemma 3 with a1(t) = g′
(

πv(t)−uk(t)

θk(t)

)
and a2(t) = λm(t)− λm′(t) gives

∂E[X]

∂vm
− ∂E[X]

∂vm′
≥ g′

(
πv(t

∗)− uk(t∗)

θk(t∗)

)∫ 1

0

(λm(t)− λm′(t))dt

= g′
(
πv(t

∗)− uk(t∗)

θk(t∗)

)
(αm − αm′)

and the result follows. An analogous argument applies for the case where c is convex.

C Convergence to continuum type-space equilibrium

In this section, we show that for any (parametric) continuum type-space and differentiable
distribution over this type-space, if we take a sequence of (parametric) finite type-space dis-
tributions that converge to this distribution, the corresponding sequence of mixed-strategy
equilibrium converges to the pure-strategy equilibrium under the continuum type-space. In-
tuitively, as the finite type-space becomes large, the interval over which an agent of a certain
type mixes shrinks, and essentially converges to the effort level prescribed by the pure-
strategy equilibrium under the continuum type-space. Thus, the equilibrium strategy in an
appropriate and sufficiently large finite-type space domain provides a reasonable approxima-
tion to the equilibrium strategy under the continuum type-space, and vice versa.

We restrict attention to parametric type-spaces with linear costs (c(x) = x), and note that
this is without loss of generality because of the equivalence between convergence properties
of equilibrium costs and equilibrium effort. First, we note the symmetric equilibrium under
a (parametric) continuum type-space (Moldovanu and Sela [30]).
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Lemma 5. Suppose there are N+1 agents, each with a private type (marginal cost of effort)
drawn from Θ = [θ, θ] according to a differentiable CDF G : [θ, θ] → [0, 1]. For any contest
v ∈ V, there is a unique symmetric Bayes-Nash equilibrium and it is such that for any θ ∈ Θ,

X(θ) =

∫ θ

θ

π′
v(1−G(t))g(t)

t
dt.

Proof. Suppose N agents are playing a strategy X : [θ, θ] → R+ so that if an agent’s type is
θ, it exerts effort X(θ). Further suppose that X(θ) is decreasing in θ. Now we want to find
the remaining agent’s best response to this strategy of the other agents. If the agent’s type
is θ and it pretends to be an agent of type t ∈ [θ, θ], its payoff is

πv(1−G(t))− θX(t).

Taking the first order condition, we get

π′
v(1−G(t))(−g(t))− θX ′(t) = 0.

Now we can plug in t = θ to get the condition for X(θ) to be a symmetric Bayes-Nash
equilibrium. Doing so, we get

π′
v(1−G(θ))(−g(θ))− θX ′(θ) = 0

so that

X(θ) =

∫ θ

θ

π′
v(1−G(t))g(t)

t
dt.

We now state and prove the convergence result.

Theorem 4. Suppose there are N + 1 agents and consider any contest v ∈ V. Let G :
[θ, θ] → [0, 1] be a differentiable CDF and let G1, G2, . . . , be any sequence of CDF’s, each
with a finite support, such that for all θ ∈ [θ, θ],

lim
n→∞

Gn(θ) = G(θ).

Let F n : R → [0, 1] denote CDF of the equilibrium effort under the finite type-space distribu-
tion Gn, and let F : R → [0, 1] denote CDF of the equilibrium under continuum type-space
distribution G. Then, the sequence of CDF’s F 1, F 2, . . . , converges to the CDF F , i.e., for
all x ∈ R,

lim
n→∞

F n(x) = F (x).

Proof. For the finite support CDF Gn, let Θn = (θn1 , θ
n
2 , . . . , θ

n
K(n)) denote the support

and pn = (pn1 , p
n
2 , . . . , p

n
K(n)) denote the probability mass function. From Theorem 1, let
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bn = (bn1 , b
n
2 , . . . , b

n
K(n)) denote the boundary points, un = (un

1 , u
n
2 , . . . , u

n
K(n)) denote the equi-

librium utilities, and F n
k denote the equilibrium CDF of agent of type θnk on support [bnk−1, b

n
k ].

Then, the CDF of the equilibrium effort, F n : R → [0, 1], is such that for any x ∈ R,

F n(x) =


0 if x ≤ 0

P n
k−1 + pnkF

n
k (x) if x ∈ [bnk−1, b

n
k ]

1 if x ≥ bnK(n)

. (8)

For the continuum CDF G : [θ, θ] → [0, 1], the CDF of the equilibrium effort, F : R →
[0, 1], is such that for any x ∈ R,

F (x) =


0 if x ≤ 0

1−G(θ(x)) if x ∈ [0, B]

1 if x ≥ B

. (9)

where θ(x) is the inverse of X(θ) (from Lemma 5) and B = X(θ). The following Lemma
will be the key to showing that F n(x) converges to F (x) for all x ∈ R.

Lemma 6. Consider any θ ∈ (θ, θ) and for any n ∈ N, let k(n) ∈ {0, 1, 2, . . . , K(n)} be
such that θnk(n) > θ ≥ θnk(n)+1 (where θn0 = ∞ and θnK(n)+1 = 0). Then,

lim
n→∞

bnk(n) = X(θ) and lim
n→∞

F n(bnk(n)) = 1−G(θ).

Proof. From Lemma 5 and Theorem 1, we have

X(θ) =

∫ θ

θ

π′
v(1−G(t))g(t)

t
dt and bnk(n) =

k(n)∑
j=1

πv(P
n
j )− πv(P

n
j−1)

θnj
.

Observe that

bnk(n) =

πv(P
n
k(n))

θnk(n)
−

k(n)−1∑
j=1

πv(P
n
j )

[
1

θnj+1

− 1

θnj

]
=

∫ 1/θn
k(n)

0

[
πv(P

n
k(n))− πv(1−Gn(1/x))

]
dx

n→∞−−−→
∫ 1

θ

0

[πv(1−G(θ))− πv(1−G(1/x))] dx (dominated convergence)

= [x(πv(1−G(θ))− πv(1−G(1/x)))]
1
θ
0︸ ︷︷ ︸

this is 0

+

∫ 1
θ

0

π′
v(1−G(1/x))g(1/x)

x
dx

=

∫ ∞

θ

π′
v(1−G(t))g(t)

t
dt (substitute t = 1/x)

= X(θ)

28



By definition, we have

lim
n→∞

F n(bnk(n)) = lim
n→∞

P n
k(n)

= lim
n→∞

[1−Gn(θ)]

= 1−G(θ)

Returning to the proof of Theorem 4, fix any x ∈ (0, B) and let θ ∈ (θ, θ) be such that
X(θ) = x. Then, we know that

F (x) = 1−G(θ).

We want to show that
lim
n→∞

F n(x) = 1−G(θ).

Take ϵ > 0. Find θ′ < θ and θ′′ > θ such that

0 < G(θ)−G(θ′) = G(θ′′)−G(θ) <
ϵ

4
.

Let x′ = X(θ′), x′′ = X(θ′′), so that x′ > x > x′′. Let δ = min{x′−x, x−x′′}. From Lemma
6, let N(ϵ) be such that for all n > N(ϵ),

max{|bnk(n) − x|, |bnk′(n) − x′|, |bnk′′(n) − x′′|} <
δ

2

and
max{|F n(bnk′(n))− (1−G(θ′))|, |F n(bnk′′(n))− (1−G(θ′′))|} <

ϵ

4
,

where k(n), k′(n), k′′(n) are sequences as defined in Lemma 6 for θ, θ′ and θ′′ respectively.
Then, for all n > N(ϵ),

F n(x) > F n(bnk′′(n))

> 1−G(θ′′)− ϵ

4

> 1−G(θ)− ϵ

2

and

F n(x) < F n(bnk′(n))

< 1−G(θ′) +
ϵ

4

< 1−G(θ) +
ϵ

2

so that |F n(x)− (1−G(θ))| < ϵ. Thus, limn→∞ F n(x) = 1−G(θ) = F (x) for all x ∈ R.
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