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Abstract—This paper describes a robust algorithm for estimating a single latent sharp image given multiple blurry and/or noisy
observations. The underlying multi-image blind deconvolution problem is solved by linking all of the observations together via a
Bayesian-inspired penalty function, which couples the unknown latent image along with a separate blur kernel and noise variance
associated with each observation, all of which are estimated jointly from the data. This coupled penalty function enjoys a number of
desirable properties, including a mechanism whereby the relative-concavity or sparsity is adapted as a function of the intrinsic quality
of each corrupted observation. In this way, higher quality observations may automatically contribute more to the final estimate than
heavily degraded ones, while troublesome local minima can largely be avoided. The resulting algorithm, which requires no essential
tuning parameters, can recover a sharp image from a set of observations containing potentially both blurry and noisy examples,
without knowing a priori the degradation type of each observation. Experimental results on both synthetic and real-world test images
clearly demonstrate the efficacy of the proposed method.

Index Terms—Multi-observation blind deconvolution, blind image deblurring, sparse priors, sparse estimation

1 INTRODUCTION

MULTI-OBSERVATION blind deconvolution problems
exist under various guises in fields such as sig-

nal/image processing, computer vision, communications,
and controls. For example, in communications it is fre-
quently known as multi-channel blind equalization, where the
objective is to estimate an unknown input signal that drives
the output of several observed channels without knowledge
of the source signal or the channel [20]. Similarly, many con-
trol theory applications require the blind identification of a
multi-channel plant model [37], while multi-channel blind
deconvolution for single-input and multiple-output (SIMO)
systems is an integral part of signal processing tasks includ-
ing speech dereverberation [10]. Finally, from a computer
vision and image processing perspective, numerous sce-
narios taken from photography [23] and microscopy [26]
present us with multiple captures of the same physical
scene under different imaging conditions. In all of these
examples, the core estimation problem involves the recon-
struction of some intrinsic source signal of interest, along
with a series of observation-dependent convolution opera-
tors, from a series of degraded observations.
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Although the algorithms and attendant analysis apply
in a general setting, this paper will present a robust
blind deconvolution approach derived in the specific
context of multi-image deblurring. Here the goal is to
recover a single sharp, latent image from multiple blurry
and/or noisy observations obtained using, for exam-
ple, the exposure bracketing or burst-mode functional-
ity found on many consumer cameras. Fig. 1 presents
a representative example. A typical factor causing blur
is the relative motion between camera and scene dur-
ing the exposure period, which may arise from hand
jitter [9], [22].

Given L corrupted versions of a latent sharp image
x, the uniform convolutional blur model [9] assumes the
observation process

yl = kl ∗ x+ nl, ∀l ∈ {1, . . . ,L}, (1)

where l is the observation index, kl is a point spread
function (PSF) or blur kernel, ∗ denotes the convolu-
tion operator, and nl is a zero-mean Gaussian noise
term with covariance λlI. Within this context, the ulti-
mate goal of multi-image blind deblurring is to estimate
the sharp and clean image x given only the blurry and
noisy observations {yl}Ll=1, without any prior knowledge
regarding the unknown kernels kl or noise levels λl. By
combining the complementary information from multiple
images, it is often possible to generate higher quality esti-
mates of the scene x than in the single-observation, blind
deconvolution case [21].

While a number of successful multi-image blind
deconvolution methods exist, e.g., [4], [6], [21], [23], [39],
there remains room for practical improvements and addi-
tional theoretical understanding. In this regard, we present
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Fig. 1. Dual motion deblurring examples. Full images are shown in
Fig. 10.

a principled energy-minimization algorithm that can han-
dle a flexible number of degraded observations without
requiring that we know the nature (e.g., blurry vs. noisy) or
extent of the degradation for each observation. The under-
lying cost function relies on a coupled penalty function,
which combines the latent sharp image estimate with a
separate blur kernel and noise variance associated with
each observed image. Theoretical analysis reveals that this
penalty provides a useful agency for adaptively balancing
the effects of observations with varying quality, while at the
same time avoiding suboptimal local minima. All unknown
quantities are optimized using a majorization-minimization
algorithm that requires no tuning parameters. Additionally,
when only a single observation is present, the method
reduces to a principled, single-image blind deconvolution
algorithm with an image penalty that adaptively interpo-
lates between the �0 and �1 norms without any heuristic
hyperparameter. Experimental results on both synthetic and
real-world test images validate the proposed method rela-
tive to the current state-of-the-art. Finally, some brief dis-
cussions on non-uniform blur extension is presented. A pre-
liminary version of this work appeared in [35]; however, the
conference version contains no proofs, algorithm deriva-
tions, detailed analysis, nor the extensive empirical results
contained here.

The remainder of the paper is organized as fol-
lows. Section 2 briefly reviews some related single image
deblurring work as well as existing multi-image blind
deconvolution algorithms; we then introduce our alter-
native algorithm in Section 3. Theoretical properties and
analysis related to the proposed adaptive penalty func-
tion are presented in Section 4. Extensive empirical com-
parisons are conducted in Section 5. Some algorithm
details, including the derivations of the cost function
and the associated minimizing algorithm as well as a
discussion on kernel prior extensions are provided in
Section 6, followed by the proofs of the Theorems in
Section 7.

2 RELATED WORK

Blind deconvolution techniques are too numerous to
exhaustively survey here. Therefore, we will only present
relevant state-of-the-art algorithms and briefly mention
some of their limitations.

2.1 Single-Image Blind Deblurring
Blind deblurring using only a single image has been
addressed using a number of different techniques [2], [7],
[9], [13], [15], [22], [32], [36]. Many of these can be viewed
as maximum a posterior (MAP) estimators with different

prior/penalty terms [7], [13], [22], [32], [36], leading to
optimization problems of the form

min
x,k
‖k ∗ x− y‖22 + μEx(x)+ τEk(k). (2)

Here Ex(x) and Ek(k) regularize the latent image and blur
kernel respectively while μ and τ are standard weighting
factors. The MAP formulation is relatively straightforward,
but frequently requires additional heuristics such as struc-
ture selection and sharp edge prediction for generating
good deblurring results [7], [22], [32].

Variational Bayesian (VB) techniques provide an alter-
native to MAP estimation that attempt to make more
thorough use of the underlying posterior distribution of
the latent image [2], [9], [15], [17], [27]. Although miti-
gating some of the shortcomings of MAP, VB nonetheless
depends on certain posterior factorial assumptions (the so-
called mean-field approximation) and cost function that has
function-valued arguments and multiple integrations, mak-
ing transparent analysis difficult. Moreover, a pre-specified,
decreasing sequence of noise values is required to achieve
reasonable results with some of the most successful recent
VB algorithms [2], [15]. Consequently, rigorous analysis
leading to principled, multi-image extensions does not
currently exist.

2.2 Multi-Image Blind Deblurring
Rav-Acha and Peleg use two motion blurred images
with different blur directions and show that restora-
tion quality is superior than when using only a sin-
gle image [21]. Since this work, many other multi-image
blind deblurring algorithms have been developed [4],
[6], [23], [39]. Most of these assume that only two
blurry observations {y1,y2} are present. In addition to
other standard regularizers common to single-image blind
deconvolution algorithms, a ‘cross-blur’ penalty function
given by

Ek(k1,k2) = ‖k2 ∗ y1 − k1 ∗ y2‖22, (3)

is often included [6], [23]. The rationale here is that, given
the commutative convolutional model from (1), Ek(k1,k2)

should be nearly zero if the noise levels are low and
the correct kernels have been estimated. This penalty also
implicitly relies on the coprimeness assumption, meaning
that the blur kernels can only share a scalar constant [23].
Once the unknown kernels are estimated, the sharp image
x may be recovered using a separate non-blind step if
necessary.

Although computationally efficient, inclusion of this
quadratic energy term does not always produce good ker-
nel estimation results [6], [39]. One reason is that if the noise
level is relatively high, it can dominate the minimization of
Ek(k1,k2), leading to kernel estimates that are themselves
blurry, which may then either produce ringing artifacts or
loss of detail in the deblurred image [39]. Another issue is
solution ambiguity, meaning that for a given optimal solu-
tion {k̃1, k̃2}, there exists a family of solutions {k̃1∗h, k̃2∗h}
that also minimize (3) [6], [39]. Finally, a practical limita-
tion of Ek(k1,k2) is that it only applies to images pairs,
and hence would expand combinatorially as the number of
observations grows.
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To mitigate some of these problems, a sparse penalty on
the blur kernel may be integrated into the estimation objec-
tive directly [6], [23] or applied via post-processing [39]. For
example, Chen et al. propose a modified version of (3) that
regularizes the kernel estimates using a sparse prior Es, a
continuity (smoothness) prior Ec, and a robust Lorentzian
factor ϕ leading to the cost function

Ek(k1,k2) = ϕ(k2 ∗ y1− k1 ∗ y2)

+α
2∑

l=1

Es(kl)+ β
2∑

l=1

Ec(kl), (4)

where α and β are trade-off parameters [6]. Similarly,
Šroubek et al. modified (3) and incorporated a sparsity-
promoting kernel prior based on a rectified �1-norm [23].

In contrast, Zhu et al. proposed a two-step approach
for dual-image deblurring [39]. The blur kernels are first
estimated using [23] with (3) incorporated. The resulting
‘blurry’ estimates {k̂1, k̂2} are then refined in a second,
sparsifying step. For this purpose, {k̂1, k̂2} are treated as
two blurry images whose sharp analogues are produced
by minimizing

Ek(k1,k2,h) =
2∑

l=1

‖kl ∗ h− k̂i‖22 + α
2∑

l=1

‖kl‖pp (5)

over k1, k2, and h, with p ≤ 1 producing a sparse �p norm
over the kernels. This helps to remove the spurious factor
h mentioned above while producing sparser kernel esti-
mates. Although these approaches are all effective to some
extent, the sparsity level of the blur kernels may require
tuning.

2.3 Multi-image With Special Capturing
In addition to motion-blurred observation processes,
deblurring has also been attempted using multiple images
captured under different imaging conditions such as var-
ied exposure lengths [1], [34] and coded apertures [38].
For example, an image pair composed of a short expo-
sure observation, which is typically sharp but noisy, and a
long exposure observation, which will generally be blurry
but with limited noise, contains complementary informa-
tion that can be merged to form a single, high-quality image
estimate [34]. These assumptions simplify kernel estimation
substantially. One strategy is to first independently denoise
the short exposure image. A second linear regression step
can then be used to estimate the blur kernel of the long
exposure image by treating the output of the first step as
the latent sharp image [34].

Beyond exposure time length, other points of the image
acquisition process can be exploited to implement multi-
image blind deblurring. Relevant examples are numer-
ous: a prism system based upon special alignments in
motion-blurred image pairs [16]; a procedure that employs
flash sequences to obtain complementary high-resolution
detail and ambient illumination components of image
pairs [40]; coded exposure images captured with a flut-
tered shutter to preserve high-frequency information [1];
image pairs obtained using coded apertures that also reflect
high-frequency components while facilitating depth recov-
ery [38]; and deblurring with the assistant of an auxiliary

video camera with low spatial resolution but high frame
rate [24].

While using multiple images generally has the potential
to outperform the single-image methods by fusing com-
plementary information [6], [21], [23], [34], a principled
approach that applies across a wide range of scenarios with
little user-involvement or parameter tuning is still some-
what lacking. Our algorithm, which applies to any number
of both noisy or blurry images without explicit trade-off
parameters, is one attempt to fill this void.

3 A NEW MULTI-OBSERVATION BLIND
DECONVOLUTION ALGORITHM

We will work in the derivative domain of images for
ease of modeling and better performance [9], [15], mean-
ing that x and y will denote the lexicographically ordered
image derivatives of sharp and blurry images respectively
obtained via a particular derivative filter.1 Because con-
volution is a commutative operator, the blur kernels are
unaltered.

Now consider the case where we have a single observa-
tion y. The observation model from (1) defines a Gaussian
likelihood function p(y|x,k); however, maximum likelihood
estimation of x and k is obviously ill-posed and hence
we need a prior to regularize the solution space. In this
regard, it is well-known that the gradients of sharp natu-
ral images tend to exhibit sparsity [9], [15], [17], meaning
that many elements equal (or nearly equal) zero, while a
few values remain large. With roots in convex analysis [18],
it can be shown that essentially all iid distributions that
favor such sparse solutions can be expressed as a maximiza-
tion over zero-mean Gaussians with different variances.
Mathematically, this implies that p(x) = ∏m

i=1 p(xi) where
m is the size of x (y is of size n < m) and

p(xi) = max
γi≥0

N (xi; 0, γi) exp
[
−1

2
f (γi)

]
. (6)

Here f is an arbitrary energy function. The hyperparame-
ter variances γ = [γ1, . . . , γm]T provide a convenient way
of implementing several different estimation strategies [18].
For example, perhaps the most direct is a form of MAP
estimation given by

max
x;γ ,k≥0

p(y|x,k)
∏

i

N (xi; 0, γi) exp
[
−1

2
f (γi)

]
, (7)

where simple update rules are available via coordinate
ascent over x, γ , and k (a prior can also be included on k if
desired). However, recently it has been argued that an alter-
native estimation procedure may be preferred for canonical
sparse linear inverse problems [30]. The basic idea, which
naturally extends to the blind deconvolution problem, is to
first integrate out x, and then optimize over k, γ , as well as
the noise level λ. The final latent sharp image can then be
recovered using the estimated kernel and noise level with
standard non-blind multi-image deblurring algorithms.

1. The derivative filters used in this work are {[− 1, 1], [− 1, 1]T}.
Other choices are open.
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Using the framework from [30], [31], it can be shown that
this alternative estimator is formally equivalent to solving

min
x;k,λ≥0

1
λ
‖y− k ∗ x‖22 + g(x,k, λ), (8)

where g(x,k, λ) � minγ≥0 xT�−1x+ log |λI+H�HT|, and H
is the convolution matrix of k. The derivation of (8) is sum-
marized in Section 6.1. Note that this expression assumes
that f is a constant; rigorous justification for this selection
can be found in [31].

Optimization of (8) is difficult in part because of
the high-dimensional determinants involved with realistic
sized images. To alleviate this problem, we use determi-
nant identities and a diagonal approximation to HTH as
motivated in [15]. This leads to the simplified penalty
function

g(x,k, λ) = min
γ≥0

∑

i

[
x2

i
γi
+ log

(
λ+ γi‖k̄‖22

)]
, (9)

with an extra (n−m) log λ term. Here ‖k̄‖22 �
∑

j k2
j Īji and Ī

is an indicator matrix with the j-th row recording the (col-
umn) positions where the j-th element of k appears in H.
‖k̄‖22 can be viewed as the squared norm of k accounting
for edge effects, or equivalently, as the squared norm of
each respective column of H. While technically then ‖k̄‖22
should depend on i, the column index of H, we omit explicit
referencing for simplicity.2

In addition to many desirable attributes as described
in [31], the cost function (8) provides a transparent entry-
point for multi-image deblurring. Assuming that all obser-
vations yl are blurry and/or noisy measurements of the
same underlying image x, then we may justifiably postulate
that γ is shared across all l. This then leads to the revised,
multi-image optimization problem

min
x,{kl,λl≥0}

L∑

l=1

1
λl
‖yl − kl ∗ x‖22 + (n−m) log λl

+ g(x, {kl, λl}),
(10)

where the multi-image penalty function is now naturally
defined as

g(x, {kl, λl}) �

min
γ≥0

L∑

l=1

m∑

i=1

[
x2

i
γi
+ log(λl + γi‖k̄l‖22)

]
.

(11)

The proposed cost function (10) can be minimized using
coordinate descent (similar to MAP) outfitted with con-
venient upper bounds that decouple the terms embedded
in (11). The resulting majorization-minimization approach,
which is summarized in Algorithm 1, is guaranteed to
reduce or leave unchanged (10) at each iteration, with sim-
ilar convergence properties to the EM algorithm. Detailed
derivation of the proposed algorithm is provided in the
Section 6.2.

While admittedly simple, the proposed model has a
number of desirable features:

2. If H is assumed to be a circulant matrix, then in fact all
i-dependency is removed.

Algorithm 1: Multi-Observation Blind Deconvolution

Input: blurry images {yl}Ll=1
Initialize: blur kernels {kl}, noise levels {λl}
While stopping criteria is not satisfied, do

• Update x:

x←
[∑L

l=1
HT

l Hl
Lλl
+ �−1

]−1 ∑L
l=1

HT
l yl

Lλl

where Hl is the convolution matrix of kl
• Update γ :

γi ← xi
2 +

∑L
l=1 zli
L , � = diag(γ )

zli �
(
(
∑

j k2
ljĪji)λ

−1
l + γ−1

i

)−1

• Update kl:

kl ← arg min
kl≥0

1
λl
‖yl −Wkl‖22 +

∑

j

k2
lj(

∑

i

zliĪji)

with W the convolution matrix of x
• Update noise levels λl:

λl ←
‖yl − x ∗ kl‖22 +

∑m
i=1

∑
j k2

ljzliĪji

n
End

• It can handle a flexible number of degraded obser-
vations without requiring an extra ‘cross-blurring’
term, which generally limits the number of obser-
vations.

• The input can be a set of blurry or noisy observa-
tions without specifying the degradation type of each
example; the algorithm will automatically estimate
the blur kernel and the noise level for each one. We
note that in the case of a single observation, the pro-
posed method reduces to a robust single image blind
deblurring model given some minor modifications.3

• The penalty function g couples the latent image, blur
kernels, and noise levels in a principled way. This
leads to a number of interesting properties, includ-
ing an inherent mechanism for scoring the relative
quality of each observed image during the recovery
process and using this score to adaptively adjust the
sparsity of the image regularizer. Section 4 is devoted
to these developments.

• The resulting algorithm (Algorithm 1) is tuning
parameter free thus requires minimal user involve-
ment.

4 ANALYSIS

This section will examine several theoretical aspects of the
penalty function (11). These properties help to explain the

3. In the special case of a single image, extra care must be taken
when learning the noise. In this sense the multi-image scenario enjoys
a significant advantage in that with each additional image, the num-
ber of unknown parameters increases modestly (since the latent sharp
image is unchanged) relative to the total number of observations.
Hence learning the noise accurately for one image is actually much
harder than learning multiple noise levels from multiple observations.
On the positive side though, with only a single image our model col-
lapses into a more simplified form rendering additional theoretical
analyses and extensions possible. These contingencies unique to the
L = 1 case will be considered in a future publication.
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success of our algorithm and hopefully demystify, at least to
some extent, what otherwise may appear to be a somewhat
non-standard, coupled regularizer that differs substantially
from typical MAP estimators.

4.1 Penalty Function Properties
For convenience, we first define

h(x, ρ) � min
γ≥0

L∑

l=1

[
x2

γ
+ log(ρl + γ )

]
. (12)

where ρ � [ρ1, . . . , ρL]T with ρl � λl/‖k̄l‖22.4 Then by noting
the separability across pixels, (11) can be re-expressed as

g(x, {kl, λl}) =
m∑

i=1

h(xi, ρ)+m
L∑

l=1

log ‖k̄l‖22, (13)

which partitions image and kernel penalties into a more
familiar form. The second term in (13) penalizes the ker-
nels via a logarithmic transformation of the respective �2
norms. However, we can reformulate this term into an alter-
native form that may be more familiar. Let k∗l denote a set
of kernels that minimize (10). Consequently, solving (10) is
equivalent to minimizing

min
x,{kl,λl≥0}

L∑

l=1

1
λl
‖yl − kl ∗ x‖22 +

m∑

i=1

h(xi, ρ),

s.t. log ‖kl‖22 ≤ log ‖k∗l ‖22 ∀l.
(14)

Because the logarithm is a smooth, continuous function
over the constraint set, it can be removed from the above
constraint. Consequently, the corresponding Langrangian
for (14) can be expressed as

min
x,{kl,λl≥0}

L∑

l=1

1
λl
‖yl − kl ∗ x‖22 +

m∑

i=1

h(xi, ρ)

+
L∑

l=1

Cl‖k̄l‖22,
(15)

for some constants Cl. Thus, the proposed cost function can
be viewed as utilizing weighted quadratic kernel penal-
ties, a typical choice in many blind deblurring algorithms,
e.g., [7]. Importantly though, while existing algorithms
must heuristically select each Cl, our algorithm implic-
itly computes these trade-off parameters automatically.
Additionally, with minor modifications, it is possible to
incorporate non-quadratic kernel factors into this frame-
work as discussed in Section 6.3.

We now turn to the image penalty h(x, ρ) in (13), which
is quite different from existing image regularizers, and eval-
uate some of its relevant properties via the Theorems below
followed by further discussion and analysis.

Theorem 1 (Concavity). The penalty function h(x, ρ) is a
concave non-decreasing function of |x|.
Proofs will be deferred to the Section 7. See Fig. 2 for a

graphical illustration of the penalty function. Theorem 1
explicitly stipulates that a strong, sparsity promoting x

4. Because of boundary effects, technically ρ will depend on i;
however we omit this dependency to simplify notation.

Fig. 2. Plot of the penalty function h(x, ρ) with L = 1 (normalized).

penalty is produced by our framework, since concavity
with respect to coefficient magnitudes is a well-known,
signature property of sparse penalties [30]. Yet while
this attribute may anchor our approach as a legitimate
sparse estimator in the image (filter) domain, it does not
explain precisely why it often produces superior results
compared to more traditional MAP (or penalized regres-
sion) approaches, which also frequently possess a similar
attribute (e.g., �1 norm-based penalties). For this purpose
we must look deeper and examine how ρ modulates the
effective penalty on x.

First, for two values of the vector ρ, e.g., ρ1 and ρ2, we
use ρ2 
 ρ1 to denote elementwise ’≥’ with at least one
element where the inequality is strict. We also define the
function hρα :R+ → R as hρα (z) = h(z, ρ = ρα), with domain
z ≥ 0. Note that because h is a symmetric function with
respect to the origin, we may conveniently examine its con-
cavity/curvature properties considering only the positive
half of the real line.

Theorem 2 (Relative Sparsity). The penalty function
h(x, ρ) is such that:

1) For all ρ1 and ρ2, hρ2(z) − hρ1(z) → 0 as z → ∞.
Therefore, hρ1 and hρ2 penalize large magnitudes of x
equally.

2) Let ρ2 
 ρ1. Then if z < z′, we have hρ2(z)− hρ1(z) >
hρ2(z′)− hρ1(z′). Therefore, as z→ 0, hρ2(z)− hρ1(z) is
maximized, implying that hρ1 favors zero-valued coeffi-
cients more heavily than hρ2 .

4.2 Discussion
From a more intuitive standpoint, ρ represents a form of
shape parameter that modulates the concavity, or spar-
sity favorability, of the image penalty

∑
i h(xi, ρ). Moreover,

each element of ρ can be viewed as a measure of the rel-
ative quality of a given observation, with larger values
indicative of lower quality. This is justified by the fact that
larger values of some λl (meaning a higher noise level), or
small values of some ‖k̄l‖22 (meaning a more difficult, dis-
tributed kernel5), imply that ρl = λl/‖k̄l‖22 will be large.

5. For a given value of
∑

j klj, a delta kernel maximizes ‖k̄l‖22, while
a kernel with equal-valued elements provides the minimum.
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Thus we may conclude that the degree of sparsity promo-
tion in x is ultimately determined jointly by the quality of
the constituent observations.

More difficult cases (elements of ρ are all large) occur
for one of two reasons: (i) Either the underlying images are
really corrupted by complex, diffuse blur kernels and/or
high noise, or (ii) in the initial stages the algorithm has
not been able to converge to a desirable, low-noise, low-
blur solution. In both cases, it can be shown by analyzing
the variational expression for h that it becomes flat and
nearly convex. This represents a highly desirable adaptation
because it helps prevent premature convergence to poten-
tially suboptimal local solutions allowing coarse structures
to be identified accurately (structures which generally do
not require a highly sparse, non-convex prior to identify
per the analysis in [14]).

In contrast, for cases where at least one image has a small
ρl value, h(x, ρ) becomes highly concave in |x| (sparsity
favoring), even approaching a scaled (approximate) version
of the �0 norm. To see this, note that whenever ρl ≈ 0,
the log(γ + ρl) term associated with the l-th image will
dominate the variational formation of h(x, ρ) leading to the
approximation

h(x, ρ) ≈ min
γ≥0

[
x2

γ
+ log γ

]
+ constant ≡ log |x|. (16)

We then obtain a scaled approximation to the maximally-
sparse, non-convex �0 norm since

∑

i

log |xi| = lim
p→0

1
p

∑

i

(|xi|p − 1) ∝ ‖x‖0. (17)

Therefore, a single small element in ρ implies that the image
penalty will heavily favor sparse solutions, allowing fine-
grained kernel structures to be resolved.6

Crucially, the existence of a single good kernel/noise
estimation pair during the estimation process (meaning the
associated ρl is small) necessitates that in all likelihood a
good overall solution is nearby (otherwise ρl being small
would mean the cost function value is high). This remains
true even if some blur kernel/noise pairs associated with
other observations are large. Consequently there is now
relatively little danger of local minima with a non-convex
penalty since we presumably must be in the neighborhood
of a good solution.

The shape-adaptiveness of the coupled penalty function
is the key factor leading the algorithm to success in the
general case. Both the noise and blur dependency allow
the algorithm to naturally possess a ‘coarse-to-fine’ estima-
tion strategy, recovering large scale structures using a less
aggressive (more convex) sparse penalty in the beginning,
while later increasing its aggressiveness for recovering the

6. In brief, image blur decreases sparsity, hence a sparse prior is
needed to favor sharp images. However, blur also reduces image vari-
ance as pointed out in [14], which can cause marginally sparse priors
such as the �1 norm to actually favor the blurry solution in areas with
fine structure. Fortunately, the �0 norm and close approximations are
insensitive to changes in variance, hence they are indispensable for
resolving fine details.

Fig. 3. Image estimation quality under different SNR levels.

small details.7 This helps to avoid being trapped in a local
minima while recovering the blur kernel progressively.8

Finally, there is also a desirable form of scale invari-
ance attributable to the proposed cost function, meaning
that if x∗ and {k∗l } represent the optimal solution to (10)
under the constraint

∑
j klj = 1,∀l, then α−1x∗ and {αk∗l }

will always represent the optimal solution under the mod-
ified constraint

∑
j klj = α,∀l. Many previous models lack

this type of scale invariance, and the exact calibration of
the constraint (or related trade-off parameters) can funda-
mentally alter the form of the optimal solution beyond an
irrelevant rescaling, thus require additional tuning.

4.3 Illustrative Example
Interestingly, one auxiliary benefit of this procedure is that,
given a set of corrupted image observations, and provided
that at least one of them is reasonably good, the existence
of other more highly degraded observations should not in
theory present a significant disruption to the algorithm.
In principle, such images are effectively discounted auto-
matically, and each estimated ρl can be treated as a score
function.

As an example, consider the following empirical compar-
ison. We take one sharp image (the bridge image) from
Levin’s dataset [14], and generate blurry/noisy image pairs
for testing. The blurry image is generated by convolving the
sharp image with a motion blur kernel at 45 degrees and
with motion length of 5 pixels. The noisy image is gener-
ated by adding random Gaussian noise to the sharp image,
with different standard derivations. The image estimation
quality is measured with the Sum of Squared Difference
(SSD) metric as defined by [14]. Fig. 3 shows the image

7. We note that, even with this mechanism in place, using a multi-
resolution scheme can still be helpful for improving performance.
Hence we apply low-resolution results to initialize higher levels for
the results reported in Section 5, a standard practice in nearly all
deblurring algorithms we are aware of.

8. This phenomena is in some ways similar to certain homotopy
sparse estimation schemes (e.g., [5]), where additional hyperparame-
ters are introduced to gradually introduce greater non-convexity into
canonical compressive sensing problems, but without any dependence
on the noise or other factors. The key difference here with our method
is that penalty shape modulation is explicitly dictated by both the
noise level λ and the kernels kl in an entirely integrated fashion with
no heuristic hyperparameters involved.
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Fig. 4. Error bar plot: Comparison of Šroubek et al.’s method [23] and
ours on Levin et al.’s dataset [14].

estimation error curve using the blurry/noisy image pair
under different signal-to-noise-ratio (SNR) values for the
noisy image. As can be observed from Fig. 3, the estima-
tion error increases as the SNR decreases, but is generally
lower than the estimation error from the single blurry
image (dashed line in Fig. 3), implying that even highly
noisy images can still provide some useful information up
to a point. However, when the SNR dips below around
-15 or -20 dB, the image estimation quality of the algo-
rithm starts to maintain an almost constant error level,
which is at nearly the same level as when using the single
blurry image alone. This demonstrates that the inclusion of
a highly degraded (essentially junk) image does not sub-
stantially derail the algorithm, likely because of the role of
‘scoring’ different observations using ρl as discussed above.

The underlying reason why this desirable scoring phe-
nomena occurs becomes more clear upon closer inspection
of (10). Consider the case where we have a junk image yr,
meaning an observation that is either so noisy or so blurry
that it conveys almost no information regarding the true,
sharp x. The associated data fidelity term 1

λr
‖yr − kr ∗ x‖22

can be minimized in one or more of the following three
ways:

(i) λr can be increased.
(ii) kr can become a large, diffuse kernel allowing it to

convert virtually any x into yr (accounting for irrele-
vant scaling factors, this generally reduces ‖k̄l‖22 for
the reasons stated previously).

(iii) Or finally, x can be directly matched to yr (with kr
a delta kernel).

Both (i) and (ii) naturally cause ρr to increase. Moreover,
once ρr increases, log(ρr + γ ) converges to something like
a modestly large constant regardless of γ (because of
the logarithm), and therefore the effective image penalty
approximately satisfies

h(x, ρ) ≡ min
γ≥0

∑

l�=r

[
x2

γ
+ log(ρl + γ )

]
(18)

at every voxel. Thus, the estimation of x using all remaining
terms is more or less independent of the r-th observa-
tion. Provided that other images are of relatively high
quality, then some elements of ρ may be small while

Fig. 5. Recovered image and blur kernels of Šroubek et al.’s method [23]
and ours on {x1, b1}, i.e., the first image and kernels 1–4 from Levin
et al.’s dataset [14].

still maintaining a small value of
∑

l�=r
1
λl
‖yl − kl ∗ x‖22.

Moreover, zero-valued elements of x will naturally drive
h(x, ρ) towards minus infinity, and thus the overall cost
function can be reduced drastically to a large negative
value.

Alternatively, suppose (iii) occurs to some extent instead.
If x is at all matched to yr, then it generally cannot be
sparse and h(x, ρ) can only be reduced marginally. Hence it
is unlikely that the overall cost function will be minimized.
Consequently, the natural outcome of a junk observation is
a desirable form of image pruning as we have illustrated
in Fig. 3.

5 EXPERIMENTAL RESULTS

Using both synthetic data and real-world images, we now
compare our algorithm with several state-of-the-art multi-
image methods from Cai et al. [4], Šroubek et al. [23], Zhu
et al. [39] and Chen et al. [6] for blurry observations as well
as Yuan et al. [34] and Whyte et al. [28] on blurry/noisy
pairs.

5.1 Evaluation on Synthetic Data
We first use the standard test data collected by Levin
et al. [14] for evaluation, which consists of 4 images of size
255 × 255 and 8 different blur kernels, giving a total of 32
blurry images. The kernel sizes range from 13×13 to 27×27.
The blurry images, ground-truth images, and the ground-
truth kernels are also provided. Following the experimental
settings in [23], we construct multi-observation test sets
with L = 4 blurry images by dividing the whole kernel set
into two halves: b1 = {1 · · · 4} and b2 = {5 · · · 8}. In so doing,
8 multi-observation sets are generated for testing. We then
perform blind deblurring using different algorithms on
each set. We compare our method with the recent method
of Šroubek et al. [23], for which the matlab implementation
is publicly available.9

The Sum of Squared Difference (SSD) metric defined
in [14] is used for measuring the error between the
deblurred and ground-truth images. Results are shown
in Fig 4, where the proposed method generates deblur-
ring results that are significantly better on most of the

9. http://zoi.utia.cas.cz/files/fastMBD.zip
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Fig. 6. Uniform and non-uniform deblurring. (a) Blurry image pair [4]. (b) Results from Cai et al. [4]. (c) Results produced with Šroubek et al.’s
software [23]. (d) Our results.

test images. The recovered image and blur kernels from
both methods for the first test set are shown in Fig. 5.
Here we observe that some fine details of the sharp image
are not recovered by Šroubek et al.’s method (e.g., sand
and sweater textures are compromised). In contrast, our
approach can recover the blur kernels with high quality
without using any explicit sparse prior over the kernel
(the kernel will automatically become sparse if the mod-
ified curvature of the image penalty is advantageous).
By incorporating a sparsity prior over the kernel, which
must be distinguished from image sparsity, the results
can be further improved (results not shown). Overall, the
more refined kernel estimates obtained via the proposed
approach translate into more details recovered in the latent
images.

5.2 Evaluation on Real-world Images
Blind restoration using multiple observations is a ubiqui-
tous problem, with many potential applications. This sec-
tion investigates two common scenarios using real-world
images.

• Dual motion deblurring: The use of two motion-
blurried observations for joint blind deblurring [4],
[6], [21], [23], [39], and

• Blurry/Noisy pair restoration: The use a short-exposure
noisy and long-exposure blurry image pair for joint
restoration [28], [34].

We emphasis that the reason we evaluate under these
somewhat restrictive scenarios separately is primarily for
ease of comparison with previous state-of-the-art algo-
rithms that have been explicitly tailored for each specific
case. In contrast, our algorithm does not require any mod-
ification and can handle both tasks seamlessly in a unified
way, and is in this sense more practical.

Dual Motion Deblurring: For dual motion deblur-
ring, we compare with the multi-image methods proposed
by Cai et al. [4], Šroubek et al. [23] with parameters set
via consultation with the author, Zhu et al. [39] as well as
Chen et al. [6] on several different real-world images used
in previous deblurring work. We first evaluate the relative
performance on an image pair from [4] as shown in Fig. 6.
The results of Cai et al., Šroubek et al., and our method are
also shown in Fig. 6, with the estimated blur kernels dis-
played in the top-right corner of each image. We observe
that the kernel estimations from Cai et al. are probably too
sparse, as the recovered image suffers from severe ringing
artifacts. The deblurred image by Šroubek et al. suffers less
from ringing than that of Cai et al., although our result has
even fewer artifacts. While we do not have access to the
ground-truth kernel for real-world images, our kernel esti-
mation appears to be reasonable given the high quality of
the estimated sharp image.

Fig. 7 provides further comparison with Šroubek et al.
on an image pair from [23], as well as with a standard

Fig. 7. Dual motion deblurring results. (a) Blurry image pair [23]. (b) Results produced with Cho et al.’s software [7]. (c) Results produced with
Šroubek et al.’s software [23]. (d) Our results.
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Fig. 8. Dual exposure deblurring results. (a) Blurry/Noisy image pair [34]. (b) Results produced with Cho et al.’s software using the blurry image [7].
(c) Result from Yuan et al. [34]. (d) Our results.

single-image method from Cho et al. [7] as a benchmark.
The kernel estimates from Šroubek et al. appear similar to
those from Cho et al.; however, the associated deblurred
image has fewer artifacts. The kernels estimated from the
proposed method are more sparse than those of Šroubek et
al. and the deblurred image has less significant artifacts.

The method of Zhu et al. [39] attempts to refine the esti-
mated blur kernels from Šroubek et al. [23] via an explicit
sparsity penalty. Comparisons between Zhu et al., Šroubek
et al., and our approach on an image pair from [39] are
shown in Fig. 10. While the kernel estimates from Zhu
et al. are indeed more compact than those from Šroubek
et al., the accuracy is likely still below that of our method.
For example, some fine details such as the text on the
book cover are not properly recovered. One potential rea-
son for this is that the kernel refining step of Zhu et al.
relies purely on the kernels estimated via Šroubek et al.,
without using the observed data. Therefore, although the
estimated blur kernels do become less diffuse, they are
not necessarily consistent with the observed data, as any
error generated in the original kernel estimation step will
be inevitably transferred during the kernel refining pro-
cess. In contrast, our approach can implicitly determine the
proper kernel sparsity directly from the data without any
secondary rectifications or an explicit sparse prior for the
kernel; it therefore appears to be more reliable on these test
images.

Further results on another set of blurry images used by
Chen et al. [6] are shown in Fig. 11. Here we observe that
the kernels from Šroubek et al. [23] are perhaps not accurate
enough, as the final deblurred image has severe ringing

artifacts. The kernels estimated by Chen et al. [6] are more
accurate as the deblurred image has less ringing. However,
the recovered image appears blurry and over-smoothed. In
contrast, the recovered image by our approach is clean and
sharp without any visible artifacts.

Restoration from Blurry/Noisy Pairs: As mentioned
previously, our algorithm can be seamlessly applied to
images with differing types of degradation extending
beyond the typical dual-motion deblurring tasks, e.g.,
restoration based on blurry/noisy pairs. Although the exist-
ing dual-motion deblurring algorithms tested above are
no longer directly applicable, alternative approaches have
been specifically tailored to work only with a blurry and
noisy pair [28], [34], and hence provide a benchmark for
comparison.

We first compare with Yuan et al. [34] on the
blurry/noisy image pair previously used in their paper. The
results, including Cho et al.’s method [7] as a single-blurry-
image baseline, are shown in Fig. 8. Not surprisingly, Yuan
et al. can generate a restoration result that is of higher qual-
ity compared to the result obtained from a single blurry
image and Cho et al.’s algorithm. Yet the image recovered
via our approach is of relatively similar quality to that of
Yuan et al.; however, we emphasize that our method is at a
substantial disadvantage because it has no knowledge that
we are dealing with a blurry/noisy pair and it has received
no special design for this situation. It is also interesting to
point out that the blur kernel estimated for the noisy image
is a delta kernel as would be expected if the correct solution
were to be found. This reflects the strong generalization
ability of our method.

Fig. 9. Dual exposure deblurring results. (a) Blurry/Noisy image pair [28]. (b) Uniform deblurring results from Whyte et al. [28]. (c) Non-uniform
deblurring result from Whyte et al. [28]. (d) Our results.
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Fig. 10. Dual motion deblurring results. From top to bottom: (a) and (b) Blurry image pair [39]. (c) Results produced with Šroubek et al.’s
software [23]. (d) Results from Zhu et al. [39]. (e) Our results. Zoomed parts of the images from the left column are shown on the right.

Then we compare with two recent blurry/noisy
pair-based methods from Whyte et al. [28] using images
from their paper. Results are shown in Fig. 9. Note
that Whyte et al.’s non-uniform method does not pro-
duce a typical 2D kernel per the standard convolu-
tional model (1), and hence no blur kernel is shown.
Again, we observe that our algorithm, without resort-
ing to more complicated observation models or special

tuning, performs competitively with algorithms specif-
ically designed to work with a known blurry and
noisy pair.

Actually, the framework developed in this work can
be naturally extended to handle non-uniform blur (e.g.,
due to camera shake) to further enhance its ability, by
representing Hl using appropriate basis functions (e.g., pro-
jection/homography operator [25]) as we mentioned in our



1638 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 8, AUGUST 2014

Fig. 11. Dual motion deblurring results. From top to bottom: (a) and (b) Blurry image pair [39]. (c) Results produced with Šroubek et al.’s
software [23]. (d) Results from Chen et al. [6]. (e) Our results. Zoomed parts of the images from the left column are shown on the right.

previous work [35]. The advantage of this generalization
can be observed from an example shown in Fig. 12.
It is shown that by using the non-uniform blur model,

the deblurred image has even fewer artifacts than the
result from our model with uniform blur assumption.
The kernel patterns recovered reveal that the actual
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Fig. 12. Uniform vs. non-uniform deblurring (a) Uniform deblurring
results (same as Fig. 6-(d)) (b) Non-Uniform deblurring results (c)
and (d) Non-uniform blur kernel patterns for the two blurry images
(Fig. 6-(a)). The recovered blur kernel patterns indicate that the blurs
of the two blurry images are actually non-uniform.

blurring effects for the two blurry images are spatially
variant.

6 ALGORITHM DETAILS

This section provides additional information regarding the
origins of the proposed cost function, as well as detailed
derivation of the associated update rules for minimizing
Algorithm 1. We conclude by discussing a simple modi-
fication of the algorithm to handle alternative blur kernel
penalty functions.

6.1 Cost Function Derivation
Here we provide a brief derivation of the cost function from
(8). Mathematically, the marginalization scheme described
in Section 3 requires that we solve

max
γ ,k,λ≥0

∫
p(y|x,k, λ)

∏

i

N (xi; 0, γi)dx

≡ min
γ ,k,λ≥0

yT
(
λI+H�HT

)−1
y+ log

∣∣∣λI+H�HT
∣∣∣

(19)

where � � diag[γ ], where the required integration involves
a standard convolution of Gaussians for which closed-form
solutions are available. It can be shown [30] using basic
linear algebra techniques that

yT
(
λI+H�HT

)−1
y = min

x

1
λ
‖y−Hx‖22 + xT�−1x. (20)

Plugging (20) into (19) we have

min
γ ,k,λ≥0

yT
(
λI+H�HT

)−1
y+ log

∣∣∣λI+H�HT
∣∣∣

= min
x,γ ,k,λ≥0

1
λ
‖y−Hx‖22 + xT�−1x+ log

∣∣∣λI+H�HT
∣∣∣

= min
x,k,λ≥0

1
λ
‖y−Hx‖22

+min
γ≥0

xT�−1x+ log
∣∣∣λI+H�HT

∣∣∣
︸ ︷︷ ︸

g(x,k,λ)

,

directly leading to (8).

6.2 Update Rule Derivation
Algorithm 1 from Section 3 is designed to minimize the
objective

L(x, {kl, λl}) =
L∑

l=1

1
λl
‖yl − kl ∗ x‖22

+ (n−m) log λl + g(x, {kl, λl}),
s.t. kl ≥ 0,∀l ∈ {1, . . . ,L},

(21)

where

g(x,k, λ) � min
γ≥0

L∑

l=1

m∑

i=1

[
x2

i
γi
+ log(λl + γi‖k̄l‖22)

]
. (22)

For this purpose we employ a majorization-minimization
technique by constructing upper bounds on some of the
terms embedded in g. This conveniently decouples relevant
factors and leads naturally to an alternating minimiza-
tion approach by iteratively solving a series of simple
subproblems leading to Algorithm 1.

To begin, we remove the minimization over γ from the
penalty term in L(x, {kl, λl}), resulting in a rigorous upper
bound, denoted L(x, γ , {kl, λl}), of the original cost function
since

L(x, γ , {kl, λl}) ≥ L(x, {kl, λl}), (23)

where equality is achieved whenever γ = γ opt. Therefore,
to minimize the original objective, we may instead min-
imize L(x, γ , {kl, λl}) over x, γ , kl, and λl for all l. This
can be accomplished via coordinate descent, meaning we
optimize one variable while keeping the others fixed.

x-subproblem: Isolating relevant terms, the latent image
x can be computed using the weighted least squares
problem

min
x

L∑

l=1

1
λl
‖yl − kl ∗ x‖22 + L

m∑

i=1

x2
i
γi
, (24)

where the optimal solution is given by the closed-form
solution

xopt =
[ L∑

l=1

HT
l Hl

Lλl
+ �−1

]−1 L∑

l=1

HT
l yl

Lλl
. (25)

Here Hl denotes the convolution matrix corresponding with
kl and � � diag(γ ).
γ -subproblem: With other variables fixed, the optimization
over each γi is separable and thus can be solved indepen-
dently via

min
γi≥0

L∑

l=1

[
x2

i
γi
+ log

(
λl + γi‖k̄l‖22

)]
. (26)
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Using the fact that

λl + γi‖k̄l‖22 = λlγi

(
1
γi
+ ‖k̄l‖22

λ

)
, (27)

we can rewrite (26) equivalently as

min
γi≥0

L∑

l=1

[
x2

i
γi
+ log γi + log

(
‖k̄l‖22
λl
+ γ−1

i

)]
, (28)

where the irrelevant log λl term has been omitted. Because
no closed-form solution for (28) is available, we instead
use basic principles from convex analysis to form a strict
upper bound that will facilitate subsequent optimization.
In particular, we use

zli

γi
− φ∗(zli) ≥ log

(
‖k̄l‖22
λl
+ γ−1

i

)
, (29)

which holds for all zli ≥ 0 when φ∗ is defined as the concave
conjugate [3] of the concave function φ(a) � log( ‖k̄l‖22

λl
+ α).

It can be shown that equality in (29) is achieved when

zopt
li =

∂φ

∂α

∣∣∣∣
α=γ−1

i

= 1
‖k̄l‖22
λl
+ γ−1

i

,∀i, l. (30)

Substituting (29) into (28), we obtain the revised γ -
subproblem

min
γi≥0

L∑

l=1

[
x2

i + zli

γi
+ log γi

]
, (31)

which gives the following update equation

γ
opt
i = xi

2 +
∑L

l=1 zli

L
. (32)

Although we can always cyclically update each γi and zli
until (26) is minimized, it is only necessary to update each
once to ensure that L(x, γ , {kl, λl}) is reduced.
k-subproblem: We will omit the subscript l to simplify
notation, recognizing that the following updates must
be repeated independently for all observations. Based on
(21) and (28), k can be optimized using the constrained
quadratic optimization problem

min
k≥0

1
λ
‖y−Wk‖22 +

m∑

i=1

log

(
‖k̄‖22
λ
+ γ−1

i

)
, (33)

where W is the convolution matrix of x. Because there
is no closed-form solution, we resort to similar bounding
techniques as before, adopting

‖k̄‖22vi − ψ∗(vi) ≥ log

(
‖k̄‖22
λ
+ γ−1

i

)
, (34)

where the bound holds for all vi ≥ 0 when ψ∗ is the concave
conjugate of the concave function ψ(α) � log( α

λ
+ γ−1

i ).
Similar to the z updates, equality (34) is achieved with

vopt
i = ∂ψi

∂α

∣∣∣∣
α=‖k̄‖22

= zi

λ
,∀i. (35)

Plugging (34) into (33), we obtain the revised optimization
problem

kopt = arg min
k≥0

1
λ
‖y−Wk‖22 +

m∑

i=1

vi‖k̄‖22 (36)

= arg min
k≥0
‖y−Wk‖22 +

∑

j

k2
j

( m∑

i=1

ziĪji

)
.

The second equality follows once we reincorporate bound-
ary conditions (see Section 3), meaning that ‖k̄‖22 �

∑
j k2

j Īji
is now an i-dependent quantity. This then reveals that (36)
possesses a standard, weighted �2-norm penalty on k. As a
simple convex program, there exist many high-performance
algorithms for solving (36).
λ-subproblem: As for k above, we omit the subscript l and
adopt a related bounding strategy for estimating the noise
level across all observed images. With other variables fixed,
the required optimization over λ is

min
λ≥0

1
λ
‖y− k ∗ x‖22 + n log λ+

m∑

i=1

log(
‖k̄‖22
λ
+ γ−1

i ). (37)

As there is no closed form solution, we use the bound

β

λ
− φ∗(β) ≥

m∑

i=1

log
(
β‖k̄‖22 + γ−1

i

)
(38)

which holds for all β ≥ 0 when φ∗ is the concave conju-
gate of φ(θ) �

∑n
i=1 log

(
θ‖k̄‖22 + γ−1

i

)
. Equality is achieved

with

βopt = ∂φ

∂β

∣∣∣∣
β=λ−1

=
m∑

i=1

‖k̄‖22
‖k̄‖22
λ
+ γ−1

i

. (39)

Plugging (38) into (37), we obtain

min
λ≥0

1
λ
‖y− k ∗ x‖22 + n log λ+ β

λ
, (40)

leading to the noise level update

λopt = ‖y− k ∗ x‖22 + β
n

. (41)

By iteratively cycling through each of the above subprob-
lems, we arrive at Algorithm 1. From a practical standpoint,
we also find that a multi-scale estimation scheme is bene-
ficial following nearly all recent deblurring work, e.g., [9],
[15], [23].

6.3 Extensions
The proposed framework is very general, and we can
easily place various, possibly structured sparse priors
over both x and k [29]. As a simple illustrative exam-
ple, we can replace the �2 kernel norm with ‖k‖pp and
0 < p < 2. Implementation is straightforward and only
requires incorporation of the additional bound

‖k‖pp ≤
∑

j

[
k2

j

φj
+

(
2− p

)

p

(p
2

) 2
2−p

φ

p
2−p

j

]
, (42)
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with equality if and only if φj = k2−p
j 2/p. The boundary

problem is not considered in here for simplicity; how-
ever, this can be easily handled using the previously
introduced diagonal indicator matrix Ī. More carefully
designed prior models for the kernel can also be incorpo-
rated, e.g., [8], [11], [12].

Note that although our framework nominally includes
a quadratic penalty on k, which in isolation would favor
a non-sparse kernel estimate, the coupling mechanism
intrinsic to our model provides a strong, sparsity-inducing
counter-effect allowing sparse kernels to be estimated
nonetheless if necessary. Simply put, when k becomes
sparse, while the ‖k‖22 factor may increase somewhat, there
is the potential to reduce the overall cost dramatically as a
consequence of Theorem 2 provided the sparse kernel can
yield a sparse image x. However, if no sparse image is pos-
sible, then a more diffuse kernel will be favored, which is
why the no-blur delta kernel is not a significant risk factor
for our algorithm.

7 PROOFS

This section will provide the proofs of the theorems given
in Section 4, which helps to understand further some
theoretical aspects of the proposed model.

7.1 Proof of Theorem 1
The proof follows by noting that each log(ρl + γ ) repre-
sents a concave, non-decreasing function of γ , and there-
fore the sum over l of these terms is also concave and
non-decreasing. Functions of the variational form minγ>0
z2/γ + f (γ ), where f (γ ) is a concave, non-decreasing func-
tion of γ can be shown to be concave functions of |z| via a
small extension of Theorem 3 in [30]. �

7.2 Proof of Theorem 2
Property (1) is very straightforward. As z → ∞, the
optimizing γ will become arbitrarily large regardless of
the value of ρ. In the regime where γ is sufficiently
large, the difference between the terms log(γ + ρ1

l ) and
log(γ + ρ2

l ) must converge to zero. It then follows that the
difference between the corresponding minimizing γ val-
ues, and therefore the cost function difference, converges
to zero.

For property (2), we will assume for simplicity of expo-
sition that for all l �= j, ρ2

l = ρ1
l , and that ρ2

j > ρ1
j .

The more general scenario naturally follows. We note that
it will always be the case that hρ2(z) − hρ1(z) for any z.
This occurs because for all γ , log(γ + ρ2

j ) > log(γ + ρ1
j ).

Therefore if

γ ∗2 � arg min
γ

z
γ
+ log(γ + ρ2

j )+ ψ(γ ), (43)

where ψ(γ ) �
∑

l�=j log(γ + ρl) (the superscript 1 or 2 is
irrelevant here since the values are equal), then

hρ2(z) >
z
γ ∗2
+ log(γ ∗2 + ρ1

j )+ ψ(γ ∗2 ) > hρ1(z). (44)

The minimizing value of γ ∗1 needed to produce the second
inequality will always satisfy γ ∗1 < γ ∗2 . This occurs because

γ ∗1 = arg min
γ

z
γ
+ log(γ + ρ1

j )+ ψ(γ )

= arg min
γ

z
γ
+ log(γ + ρ2

j )+ ψ(γ )+ log

(
γ + ρ1

j

γ + ρ2
j

)
.

The last term, which is monotonically increasing from
log(ρ1

j /ρ
2
j ) < 0 to zero, implies that there is always an

extra monotonically increasing penalty on γ , when ρ1
j < ρ2

j .
Since we are dealing with continuous functions here, the
minimizing γ will therefore necessarily be smaller. Using
basic results from convex analysis and conjugate duality,
it can be shown that the minimizing (γ ∗1 )

−1 represents the
gradient of hρ1(z) with respect to z (and likewise for γ ∗2 ),
and we know that this gradient will always be a positive,
non-increasing function. We may therefore also infer that
h′
ρ1(z) > h′

ρ2(z) at any point z.
We now consider a second point z′ > z. Because the

gradient at every intermediate point moving from hρ1(z) to
hρ1(z′) is greater than the associated gradients moving from
hρ2(z) to hρ2(z′), it must be the case that hρ1 increased at a
faster rate than hρ2 , and so it follows that

hρ2(z)− hρ1(z) > hρ2(z′)− hρ1(z′), (45)

thus completing the proof. �

8 CONCLUSION

By utilizing a novel penalty function that couples the
latent sharp image, blur kernels, and noise variances in
a theoretically well-motivated way, this paper describes
a unified multi-image blind deconvolution algorithm
applicable for recovering a latent, high-quality image
from a given set of degraded (blurry, noisy) obser-
vations, without any specific modifications for differ-
ent types of degradations. Moreover, it automatically
adapts to the quality of each observed image, allowing
higher quality images to dominate the estimation pro-
cess when appropriate. Experimental evaluations validate
the proposed method in different multi-image restoration
scenarios.

Several generalizations of our algorithm also hold
promise. Currently, translation mis-alignments between
observed images are already handled seemlessly since each
learned kernel can optimally adapt its position to com-
pensate for any shifts. For more complex mis-alignments
such as general rotations, we can either rectify the obser-
vations up to a translation before restoration [23], [33]
or potentially embed an alignment process directly into
Algorithm 1 using techniques similar to [19]. Actually, with
the non-uniform extension, the alignment and deblurring
can be achieved jointly, which offers much promise for han-
dling multi-image deblurring problem. Furthermore, some
of the analysis we conducted for blind deconvolution may
well apply to other related problems such as sparse dic-
tionary learning, convolutional factor analysis, and feature
learning. We will investigate these topics in our future
work.
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