CAP 4630
Artificial Intelligence

Instructor: Sam Ganzfried
sganzfri@cis.fiu.edu



Schedule

A 10/31: Continue planning (HW3 out)

A 11/2: Finish planning, start probability (Bayesian networks)

A 11/6: Withdrawal deadline

A 11/7: TA will go over HW?2

A 11/9: Continue probability (Bayesian networks, Markov model:
A 11/14: Markov decision processes (HW4 out)

A 11/16: Reinforcement learning

A 11/21, 11/28, 11/30, 12/5: Machine learning (classification,
regression, clustering, deep learning)

A 12/7: Project presentations and class prajeet
I Project code likely due bit earlier, 1212/4, TBA.

A Final exam on 12/14



Announcements

A HW3 outtoday duel1/14 (2:05pm in lecture or
2:00pm onMoodle)

T https://www.cs.cmu.edusganzfri/HW3 Al.pdf
I Must be done individually (no partner)

A Midterm exams
A HW?2 solutions and graded assignments
A Midterm grades and withdrawal deadline



https://www.cs.cmu.edu/~sganzfri/HW3_AI.pdf

Class project

A For the class project students will implement an agerg-for
player Kuhn poker This is a simple, yet interesting and
nontrivial, variant of poker that has appeared in the AAAI
Annual Computer Poker Competition. The grade will be
partially based on performance against the other agents in a
classwide competition, as well as final reports and presentatic
describing the approaches used. Students can work alone or |
groups of 2

A Link to play against optimal strategy for eoard poker:
I http://www.cs.cmu.edu/~ggordon/poker/

A Paper on Nash equilibrium strategies fgrl8yer Kuhn poker
I http://poker.cs.ualberta.ca/publications/AAMAS3Bkuhn.pdf



http://www.computerpokercompetition.org/index.php/75-limit-games

Linear programming (LP)

A Countless realvorld applications have been successfully
modeled and solved using LP techniques. This has produced
ongoing revolution in the way decisions are made throughout
sectors of the economy. Typical applications include the
scheduling of airline crews, the distribution of products througl
a manufacturing supply chain, and production planning in the
petrochemical industry.

A Because of the simplicity of the LP model, software has been
developed that is capable of solving problems containing
millions of variables and tens of thousands of constraints.
Computer implementations are widely available for most
mainframes, workstations, and microcomputers. A variety of
problems with nonlinear functions, multiple objectives,
uncertainties, or multiple decision makers, such as those arisi
In game theory, can be modeled as linear programss



LP solution concepts

A Solution: An assignment of values to the decision variables is :
solution to the LP model. Given a solution, the expressions
describing the objective function and the constraints can be
evaluated. A solution ieasibleif all the constraints, the nen
negativity restrictions, and the simple upper bounds are satisfis
If any one of the restrictions is violated, the solutiomfeasible

A Optimal solution: A feasible solution that maximizes or
minimizes the objective function (depending on the criterion).

The purpose of an LP algorithm is to find the optimal solution ¢
to determine that no feasible solution exists.



LP solution concepts

A Alternative optima: If there is more than one optimal solution

(solutions that yield the same value of the objective z), the mod
IS said to have multiple or alternative optimal solutions. Many
practical problems have alternative optima.

No feasible solution If there is no specification of values for the
decision variables that satisfies all the constraints, the problem
said to have no feasible solution. In practical problems, it is
possible that the set of constraints does not allow for a feasible
solution (e.g., X >= 3, X <=2). Such a situation might result from
mistake in the problem statement or an error in data entry.
Redundant equality constraints or nearly identical inequality
constraints in the problem formulation may lead to a false
Indication that no feasible solution exists. Although the set of
equalities may have a solution in theory, rounding errors inhere
In computer computations may make the simultaneous satisfac
of these equalities (and sometimes inequalities) impossible.



LP solution concepts

A Unbounded model If there are feasible solutions for which the
objective function can achieve arbitrarily large values (if
maximizing) or arbitrarily small values (if minimizing), the
model is said to be unbounded. When all variables are restricl
to be nonnegative and have finite simple upper bounds, this
condition is impossible. If no bounds are specified for some
variables, the model may have an unbounded solution. Howe
since most decisions must take into account limitations on
resources and laws of nature, such a model is probably a poo
representation of the real problem.



Simplex algorithm

A The simplex algorithm, developed by George Dantzig in 1947, solves LP
problems by constructing a feasible solution at a vertex of the polytope and t
walking along a path on the edges of the polytope to vertices with non
decreasing values of the objective function until an optimum is reached for st
In many practical problems, "stalling" occurs: Many pivots are made with no
Increase in the objective function. In rare practical problems, the usual versic
of the simplex algorithm may actually "cycle". To avoid cycles, researchers
developed new pivoting rules.

A In practice, the simplex algorithm is quite efficient and can be guaranteed to
the global optimum if certain precautions against cycling are taken. The simg
algorithm has been proved to solve "random" problems efficiently, i.e. in a cu
number of steps, which is similar to its behavior on practical problems.

A However, the simplex algorithm has poor warase behavior: Klee and Minty
constructed a family of linear programming problems for which the simplex
method takes a number of steps exponential in the problem size. In fact, for
time it was not known whether the linear programming problem was solvable
polynomial time, i.e. of complexity class P. 9



Interior point algorithm

A In contrast to the simplex algorithm, which finds an optimal
solution by traversing the edges between vertices on a
polyhedral set, interiepoint methods move through the interior
of the feasible region.

A The ellipsoid algorithm (Khachiyan) is the first wecstse
polynomiattime algorithm for linear programming. To solve a
problem which has n variables and can be encoded in L input
bits, this algorithm uses O(n”4 L) psedaathmetic operations
on numbers with O(L) digits. Khachiyan's algorithm and his
long standing issue was resolved by Leonid Khachiyan in 197
with the introduction of the ellipsoid method. The convergence
analysis has (readumber) predecessors, notably the iterative
methods developed by Naum Z. Shor and the approximation

algorithms by Arkadi Nemirovski and D. Yudin. 10



LP Duality

A Primal problem Maximizec™ subject to Ax <= b, x >=0

A Correspondinglual problem Minimize b"y subject toATy>= c,
y >=0

A Weak duality theorem: The objective function value of the

dual solution is always greater than or equal to the objective
function value of the primal at any feasible solution.

A Strong duality theorem: If the primal has an optimal solution,
x*, then the dual also has an optimal solution y*, and=<b'y*

A Fact: the dual of a dual linear program is the original primal
linear program.

A Fact: Every feasible solution for a linear program gives a bour
on the optimal value of the objective function of its dual.

11



https:/Mmath.stackexchange.com/questions/243706Aahathe-advantagesf-dualof-a-problem

A Understanding the dual problem can lead to specialized algorith
for some important classes of LP problems
I E.g., Hungarian algorithm for assignment problem, Network Simplex metl

A The dual can be helpful feensitivity analysis

I Modifying p r | ntanstiaisnts can make original primal optimal solution
Infeasible, but only changes objective function or adds new variable to dL
so original dual solution is still feasible (and close to new optimal solution

A Sometimes finding initial feasible solution to dual is much easiet
than finding one for the primal.
I Ax>=Db,x>=0, for b>=0, duahly<=c,y>=0, for c>=0. Origin feasible for dual.

A Dual variables givehadow price$or primal constraints

I E.g., profit maximization problem with resource constraiiibe value yof
corresponding dual variable in optimal solution tells that you get an incree
of in maximum profit for each unit increase in the amount of resaurce

A Sometimes dual is just easier to solve

I Problem with many constraints and few variables can be converted into c
with few constraints and many variables. 12



Cutting plane method for ILP

A Cutting plane methods for MILP work by solving a riateger
linear program, thénear relaxationof the given integer
program. The theory of Linear Programming dictates that und:
mild assumptions (if the linear program has an optimal solutio
and if the feasible region does not contain a line), one can
always find an extreme point or a corner point that is optimal.
The obtained optimum is tested for being an integer solution. |
It IS not, there Is guaranteed to exist a linear inequality that
separates the optimum from the convex hull of the true feasibl
set. Finding such an inequality is the separation problem, and
such an inequality is a cut. A cut can be added to the relaxed
linear program. Then, the current Aioieger solution is no
longer feasible to the relaxation. This process is repeated unti
an optimal integer solution is found. 13



Gomory cut (for ILP)

A Cutting planes were proposed by Rafpbmoryin the 1950s as a
method for solving integer programming and mkxegger
programming problems. However most experts, including
Gomoryhimself, considered them to be impractical due to
numerical instability, as well as ineffective because many rounc
of cuts were needed to make progress towards the solution.
Things turned around when in the R1i90s Gérard€ornugjols
and ceworkers showed them to be very effective in combinatior
with branchandbound (called branehndcut) and ways to
overcome numerical instabilities. Nowadays, all commercial
MILP solvers us&omorycuts in one way or anothg&omory
cuts are very efficiently generated from a simplex tableau,
whereas many other types of cuts are either expensive or even
NP-hard to separate. Among other general cuts for MILP, most

notably liftandproject dominate&omorycuts. Y,



Gomory cut algorithm

Let an integ i in & rd Form) as:

Maximize ¢” =
Subject to Az = b,
> 0, x; all integers.

t an integer point then the method finds a
points on the other. This is then added as an additional linear consir. de the ve , creating a modified linear pro
repeated until an ir r solution is found.

Using the simplex  a set of equations of the form

a basic variable and the ari: . Rewrite this equation so that the integer parts are on the left side and the fractional parts are on the

- &) = b

than 1 and the left i t ore the common value must b han or equal to 0. So the inequality
er for the basic solution x,

So the inequality above s the b : esire for this inequality, a new constraint is added to the linear
program, namely

o+ Y (la

15



Truth table for wumpusworld

‘ B1 1 2, : 2 35 3 ' : R3 1y

_/fl/.\‘( | : ' : rue | true | true
| false : e rue | false | true

false UE 2 | : true | false | true

false ue | 2 R : true | true | true
false - 5 o : ; true true | true

false r L L ' trive true true

false | false

f”/</ ' , |

LriLe L7 LriLe LriLe L1
l‘igllrc 19 A truth table constructe | 101 | ledee base given 11
if R, through 5 are true, whic h occul
right-hand column). In all 3 rows, /’
there might (or might not) be a pitin 12,

> 128 rows (the on
is {2 reisnopitin[1,2]. O




Satisfiability

A A sentencd(in logic) issatisfiableif it is true in, or satisfied by,
somemodel. For example, the knowledge base, (R1 AND R2
AND R3 AND R4 AND R5), issatisfiablebecause there are
three models in which it is true.

A Satisfiability can be checked by enumerating the possible
models until one Is found that satisfies the sentence. The
problem of determining the satisfiablility of sentences In
propositional logid the SAT problen® was the first problem
proved to be NREomplete. Many problems in computer science
(including the planning graph one, and integer programming)
are really satisfiability problems

AMany speci-abivedgéSamlgorithrt
formulated as an-Q ILP (or more generally a CSP).

17



Conjunctive Normal Form (CNF)

A(A OR B OR C) AND (D OR E) A

A Every propositional formula can be converted into an equivaler
formula that is in CNF. This transformation is based on rules
about logical equivalences: the double negative law, De Morga
laws, and the distributive law.

A Since all logical formulae can be converted into an equivalent
formula in conjunctive normal form, proofs are often based on
the assumption that all formulae are CNF. However, in some
cases this conversion to CNF can lead to an exponential
explosion of the formula. For example, translating the following
nonCNF formula into CNF produces a formula withclauses

RS



CNF

A(X1 AND Y1) OR (X2 XARNND YH2) (
A The generated formula is:

A(X1 OR X2 X0R ANDR( Y1l OR X¥)32 C
AND (X1 OR Y2 ORN® OR1 OR Y:
Xn) AND (Y1 OR YM)2 OR ¢é OR

A Formula contains 2”°n clauses, each clause contains either Xi
Y| for eachi.

A An important set of problems in computational complexity
Involves finding assignments to the variables bbalean
formula expressed in Conjunctive Normal Form, such that the
formula is true. ThedSAT problem is the problem of finding a
satisfying assignment tolkmoleanformula expressed in CNF In
which each disjunction contains at most k variableéSAJ is
NP-complete (like any other-BAT problem with k>2) while 2
SAT is known to have solutions in polynomial time. 19



Planning

A Al planning arose from investigations into stafece search,
theorem proving, and control theory and from the practical
needs of robotics, scheduling, and other domains.

A Shakeythe robot was the first generglurpose mobile robot to
be able to reason about its own actions. While other robots
would have to be instructed on each individual step of
completing a larger taskshakeycould analyze commands and
break them down into basic chunks by itself.

A Due to its nature, the project combined research in robotics,
computer vision, and natural language processing. Because o
this, it was the first project that melded logical reasoning and
physical action. Some of the most notable results of the projec
Include the A* search algorithm, the Hough transform, and the
visibility graph method.

20



Shakey

A https://www.youtube.com/watch?v=7bsENSmwUBS8

— e s e 3

TELEVISION
~|CAMERA

B ON-BOARD

N LoGIC———— 8

CAMERA — 8
CONTRO
uni T

BUMP
DETECTOR

21



Fuzzy logic

A Fuzzy logic is a form of manyalued logic in which the truth
values of variables may be any real number between 0 and 1.
IS employed to handle the concept of partial truth, where the
truth value may range between completely true and completel
false By contrast, in Boolean logic, the truth values of variable
may only be the integer values 0 or 1. Furthermore, when
linguistic variables are used, these degrees may be managed
specific (membership) functionsuzzy logic has been applied
to many fields, from control theory to artificial intelligence

22



A Classical logic only permits conclusions which are either true or f
However, there are also propositions with variable answers, suct
one might find when asking a group of people to identify a color.
such instances, the truth appears as the result of reasoning from
Inexact or partial knowledge in which the sampled answers are
mapped on a spectrum

A Humans and animals often operate using fuzzy evaluations in m:
everyday situations. In the case where someone is tossing an ob
Into a container from a distance, the person does not compute e
values for the object weight, density, distance, direction, containe
height and width, and air resistance to determine the force and a
to toss the object. Inste&e instinctivelyapplies quick "fuzzy"
estimates, based upon previous experience, to determine what o
values of force, direction and vertical angle to use to make the to

A Both degrees of truth and probabilities range between 0 and 1 ar
hence may seem similar at first, but fuzzy logic uses degrees of t
as a mathematical model of vagueness, while probability is a
mathematical model of ignorance. -



Fuzzy logic

A A basic application might characterize various-garges of a
continuous variable. For instance, a temperature measuremer
for anttHlock brakes might have several separate membership
functions defining particular temperature ranges needed to
control the brakes properly. Each function maps the same
temperature value to a truth value in the O to 1 range. These t
values can then be used to determine how the brakes should
controlled

A 3-step process:
1. Fuzzifyall input values into fuzzy membership functions

2. Execute all applicable rules in thdebasdgo compute the fuzzy output
functions

3. De-fuzzify the fuzzy output functions to get "crisp" output values.
24



Fuzzification

A In this image, the meanings of the expressions cold, warm, an
hot are represented by functions mapping a temperature scale
point on that scale has three "truth valdeshe for each of the
three functions. The vertical line in the image represents a
particular temperature that the three arrows (truth values) gau
Since the red arrow points to zero, this temperature may be
Interpreted as "not hot". The orange arrow (pointing at 0.2) ma
describe it as "slightly warm" and the blue arrow (pointing at
0.8) "fairly cold".

temperature =—
&

Fuzzy logic temperature

25



Applications of fuzzy logic

A Many of the early successful applications of fuzzy logic were
Implemented in Japan. The first notable application was on the
high-speed train in Sendai, in which fuzzy logic was able to
Improve the economy, comfort, and precision of the. tideas
also been used in recognition of hand written symbols in Sony
pocket computers, flight aid for helicopters, controlling of
subway systems in order to improve driving comfort, precision
of halting, and power economy, improved fuel consumption fo
automobiles, singldutton control for washing machines,
automatic motor control for vacuum cleaners with recognition
surface condition and degree of soiling, and prediction system
for early recognition of earthquakes through the Institute of
Seismology Bureau of Meteorology, Japan

AFI U talk on climate chfezoyge &
reasoningo https:// www. ¢€i s.f
changenationatsecurity/ 26



Planning example: air cargo transport

A Threeactions
I Load, Unload, Fly

A Two predicates
I In(c,p) means that cargo c is inside plane p

I At(x,a means that object x (either plane or cargo) is at
airport a.

A Initial state

I Conjunction (AND) ofground atoms(Atoms that are not
mentioned are false).

A Goal

I Conjunction of literals

A Preconditionsandeffects

I Must be specified for each action -



AIr cargo transport problem

e

///// ( “‘l /(( '] ) AS‘[J‘(_) ) /\ ‘1/ (( '2. ./l'wl\' ) /\ 1/( I)I " ‘S'F()) /\ ‘4/(13')‘ .]l‘j[\- )
A Cargo(C1) N Cargo(Co) A Plane(P;) A Plane(Py) g

A Airport(JFK) A Avrport(SF 0))
Goal(AL(Cy, JFK) A At(Cy, SFO))

Action(Load(c, p, a),
PRECOND: At(c, a) A At(p, a) A Cargo(c) A Plane(
EFFECT: = At(c, a) A In(c, p))

Action(Unload(c, p, a),

PRECOND: In(c, p) A At(p, a) A Cargo(c) A Plane(p) A Airport(a)
EFFECT: At(c, a) A — In(c, p))

Action(Fly(p, from, to), . . fonkos
PRECOND: At(p, from) A Plane(p) A Airport(from) A Airport(to)
EFFECT: — At(p, from) N At(p, to))

—

p) A Airport(a)

% Dhrs Al : ) Ir cargo Lr: tation planning problem.
1 A T ’ an air cargo transportati
| Figure 10.1 A PDDL description of an Aar i

—————— S




AIr cargo transport problem

A Note that some care must be taken to make surktthe
predicates are maintained properly. When a plane flies from o
airport to another, all the cargo inside the plane goes with it. Ir
first-order logic it would be easy to quantify over all objects th:
are inside the plane. But ba§i®DL (Planning Domain
Definition Language) does not have a universal quantifier, so
need a different solution. The approach we use is to say that ¢
piece of cargo ceases to Aeanywhere when it i a plane;
the cargo only becomés the new airport when it is unloaded.
SoAtr e a |l | yavalablzfor sise at a givelocation 0

A PDDL based off STRIPS language.

AS



STRIPS

A In artificial intelligence, STRIPS (Stanford Research Institute
Problem Solver) is an automated planner developed by Richa
Fikesand Nils Nilsson in 1971 at SRI InternationBhe same
name was later used to refer to the formal language of the inp
to this planner. This language is the base for most of the
languages for expressing automated planning problem instant
INn usetoday.

A STRIPS instance is quadruple <P,0,l,G>

T P Is set otonditions

I O Is set obperators(i.e., actions). Each action specifies preconditions
andpostconditions

I lis initial state (set of conditions that are initially true).
I G isgoal statgset of conditions needed to be true/false to achieve goal

30



AIr cargo transport problem

A What is a solution for this problem?

31



AIr cargo transport problem

A One solution (there may be others):
[Load(C1,P1,SFO), Fly(P1,SFO,JFK), Unload(C1,P1,JFK),
Load(C2,P2,JFK), Fly(P2,JFK,SFO), Unload(C2,P2,SFO)].

32



AIr cargo transport problem

AWhat about fAdegenerateod
Fly(P1,JFK,JFKP

A This should be ao-op (no operation), but it
apparently has contradictory effects according to the

definition (the effect would include At(P1,JFK) AND
IAt(P1,JFK)).

A It is common to ignore such problems and assume th
the effects just cancel out. A perhaps better approaclt
to add inequality preconditions saying that filoen
andto airports must be different. We will see another
similar example shortly.

33



Spare tire problem

A The goal is to have a good spare tire properly mount
onto the caros axl e, whe
on the axle and a good spare tire In the trunk.

A Four actions:
I Removing the spare tire from the trunk
I Removing the flat tire from the axle
I Putting the spare on the axle
I Leaving the car unattended overnight

A Assume that the car is parked in a particularly bad
neighborhood, so that the effect of leaving it overnigr

IS that thdire disappear.
34



Spare tire problem

’V -
Init( Tire(Flat) N Tire(Spare) N At(Flat,A:Ele) A At(Spare, Trunk))

Goal(At(Spare, Azle))

Action(Remove(obj, loc),

PRECOND: At(obj, loc)
EFFECT: — At(obj,loc) A At(obj, Ground))
Action(PutOn(t, Azle),
PRECOND: Tire(t) A At(t, Ground) A — At(Flat, Azle) A — At(Spare, Azle
EFFECT: - At(t, Ground) N At(t, Azle))
Action(LeaveOvernight,
PRECOND:
EFFECT: = At(Spare, Ground) A — At(Spare, Azle) A — At(Spare, Trunk)
A~ At(Flat, Ground) A - At(Flat, Azle) A — At(Flat, Trunk))

Figure 10.2  The simple spare tire problem.




Spare tire problem

A Solution?

36



Spare tire problem

A [Remove(Flat, Axle), Remove(Spare, Trunk),
PutOnSpare, Axle)].

37



Blocks world

A One of the most famous planning domains is known

theblocks world. This domain consists of a set

of

cubeshaped blocks sitting on a table. The blocks can
be stacked, but only one block can fit directly on top «
another. A robot arm can pick up a block and move It

to another position, either on the table or on to
another block. The arm can pick up only one b
time, so it cannot pick up a block that has anot

0 of
ock at

ner on

on it. The goal will always be to build one or more
stacks of blocks, specified in terms of what blocks ar
on top of what other blocks. For example, a goal mig

be to get block A on B and block Bon C.



Blocks world

.I.'il e

Start State

Goal State

Figure 104  Diagram of the blocks-world problem in Figure 10.3.

39



Blocks world

A We useOn(b,x) to indicate that block is onx, where x
IS either another block or the table. The action for
moving block b from the top of x to the top of y will be
Move(Db,X,y). One of the preconditions on moving b Is
that no other block be on it. In firstder logic, this
would be !'Exists x Onqb), or alternativelyForAll x
~On(x,b). Basic PDDL does not allow quantifiers, so
Instead we introduce a predic&kar(x) that is true
when nothing is on Xx.

40



Blocks world

- 7<J’,7——‘_’_’———N——
mit(On(A, Table) N On(B, Table)
(Onie 3, Table) A On(C, A) A
\ Block(A) A Block o |
| . _( ) A\ Block(B) A Block(C) A Clear(B) A Clear(C) A Clear(T
Goal(On(A,B) A On(B,C)) ' S} & Clesr (T aic))
Action(Move(b, z,y),
PRECOND: On(b,z) A Clear(b) A Clear(y) A Block(b) A Block(y) A

(bz) A (bAy) A (@#Y),
EFreCT: On(b,y) A Clear(z) A —On(b,z) A ~Clear(y))

Action(MoveTo Table (b, x),

b,z) A Clear(b) N Block(b) A Block(z),

PRECOND: On(
A =On(b,x))

EFFeCT: On(b, Table) N Clear(x)

41



A Solution?

Blocks world

42



Blocks world

A [MoveToTabléC,A), Move@®,Table,Q, Move(A, Table,B]

43



Blocks world

A The actionrMovemoves a block b from x to y if both b
and y are clear. After the move is made, b Is still clea
but y Is not. A first at théloveschema is

A Action(Move(,Xx,y),
I PrecondOn(,x) AND Clear(b) AND Clear(y)

I Effect: Onp,y) AND Clear(X) AND ~Onb,x) AND
~Clear(y).

44



Blocks world

A Unfortunately, this does not maintaiear properly
when x or y Is the table. When x Is the Table, this
action has the effe€llear(Table) but the table should
not become clear; and whgaTablg it has the
preconditionClear(Table) but the table does not have
to be clear for us to move a block onto it. To fix this,
we do two things. First we introduce another action tc
move a block b from x to the table:

A Action (MoveToTabléb,x),
I PrecondOn(,x) AND Clear(b)

I Effect: Onp, Tablg AND Clear(x) AND ~Onp,Xx))
45



Blocks world

A Second, we take the interpretation of Clear(x) to be
Nt hhere I s a c¢cl ear space
Interpretation, Clear(Table) will always be true. The
only problem is that nothing prevents the planner fror
using MoveDb,x, Tablg instead oMoveToTablé¢b,x),
which leads to a larger than needed search space,
though functionally is not problematic. We can fix this
by introducing the predicat&lockand addlock(b)
AND Block(y)to the precondition dflove

46



Planning In relation to other class modules

A We have seen that planning and search are very intertwined f
robotics (e.g.Shakeymplements A* search).

A Resemblance between Planning Domain Definition Language
and First Order Logic.

A Planning graph can be represented Satisfiability problem in
Conjunctive-Normal Form (conjunction (or AND) of clauses),
which is an instance of constraint satisfaction.

A Certain Al planning models also solved by integer programmit
http://www.cs.umd.edu/~nau/papers/vossen1999use.pdf

47



Have cake and eat cake too

Init( Have( Cake))
Goal( Have(Cake) N FEaten(Cake))
Action(Fat( Cake)

PRECOND: Have(Cake)

EFFECT: - Have(Cake) A Faten(Cake))
Action(Bake( Cake)

PRECOND: — Have(Cake)

EFFECT: Have( Cake)

Figure 10.7  The “have cake and eat cake too” problem.




Planning graph

So S As S,

/ Bake(Cake)
Have(Cake) Have(Cake)

Have(Cake
X

- Have(Cake) — Have(Cake)

Eat(Cake)
Eaten(Cake) Eaten(Cake

Eat(Cake)

- Eaten(Cake)

— Eaten(Cake) - Eaten(Cake!

Figure 10.8  The planning graph for the ¢

\
‘have cake and eat cake too’ * problem up 10 level
S2. Rectangles indicate actions (sm

lu
all squares indicate persistence actions), and st
lines indicate preconditions and effects. Mutex links are shown as curved gray lines. Not &

mutex links are shown, because the graph would be too cluttered. In general, if two iter

are =Y ‘ ¥y > “‘
are mutex at .5;, then the persistence actions for those literals will be mutex at 4i and
need not draw that mutex link.

- il




Planning graph

A A planning problem asks if we can reach a goal state from the
Initial state. Suppose we are given a tree of all possible action
from the Initial state to successor states, and their successors
and so on. If we indexed this tree appropriately, we could
answer the planning questi ol
SO I mmedi ately, by just | ook
exponential size, so this approach is impractical. A planning
graph is a polynomiadize approximation to this tree that can be
constructed quickly. The pl:
definitively whether G iIs reachable frasg, but it canestimate
how many steps it takes to regehThe estimate is always
correct when it reports the goal is not reachable, and it never
overestimates the number of steps, so it is an admissible

heuristic. 50






