
The Mobile
Analytics Playbook:

A practical guide to better testing

Julian Harty Antoine Aymer

The Mobile
Analytics Playbook

A practical guide to better testing

©2016 Commercetest Limited. All rights reserved.

Second Edition
ISBN 978-0-9970694-0-2 (PDF Edition)
ISBN 978-0-9970694-1-9 (Print Edition)

January 2016

3

TABLE OF CONTENTS

TABLE OF CONTENTS

ABOUT THE AUTHORS

Julian Harty 7

Antoine Aymer 9

INTRODUCTION

User Experience is Everything 12

Does Mobile Testing Really Matter at All? 13

Time to Look at Mobile Analytics 15

What Will You Gain from Reading This Book? 16

HOW READY ARE YOU FOR MOBILE TESTING?

Fragmentation, or Godzilla in the Room! 20

Measuring Quality So It Can Be Improved 25

The Virtues of Virtual Devices 28

TESTING DISCIPLINES

From Manual to Interactive Testing 37

The Mandate for Automation 42

Pleading Performance in the Court of User Experience 47

Summary of the Testing Disciplines 51

FOUR PROVEN WAYS TO BOOST
APP TESTING

1) Better Testing 53

2) Test Automation and Continuous Automated Testing 57

3) Scaling Testing 59

4) Static Analysis 61

Limitations of These Four Proven Ways 62

UNDERSTANDING MOBILE ANALYTICS
AND FEEDBACK

Mobile Analytics Can Improve Mobile Apps 66

An Overview of Analytics 67

Processing Feedback 70

Applying Analytics 77

Analytics for Mobile Apps 79

Complementary Data 100

Summary of Mobile Analytics 103

5

TABLE OF CONTENTS

CONFLUENCE BETWEEN MOBILE ANALYTICS
AND SOFTWARE TESTING

Introduction 105

Examples of How Using Mobile Analytics
Can Help Users and the Business 109

Examples of How Mobile Analytics Helps with Testing 109

Optimise Your Testing 111

Mobile Analytics as the Spice to HPE ’s Suggested Test Plan 115

Mining Data Helps Identify Innovative Ways to Test 129

Test Recommendation Engine 129

Thresholds and Alerts 132

Things to Consider 132

YOUR FUTURE

Examples of Mobile Analytics Libraries 138

Tips and Traps 143

Take Your Pick 146

Testing Mobile Analytics 147

Integrating Mobile Analytics 152

Words to the Wise 154

Over to You 156

APPENDIX: FURTHER READING

Academic Research 157

Books 158

Articles 159

I would like to thank the following

people who made this work possible:

To my Ph.D. supervisors at the Open University,

Arosha Bandara and Sheep Dalton, who have helped

me research the topic since 2012. To the various

friends, colleagues, and companies who have

enabled me to learn, refine, and apply practices in

testing mobile apps. And to the team at Appachhi, in

India, where we’re applying various concepts to help

companies improve the testing of their mobile apps

using analytics to drive and improve the testing.

To Antoine Aymer who commissioned this book and

ended up helping co-author it. He contributed

personally and also by connecting me with various

leading individuals and organisations in this vibrant

and innovative area of using analytics to improve

our mobile apps and our work.

Finally, thank you to the various people who

contributed material, suggestions, and ideas; and

thank you also to the various reviewers.

- Julian Harty

7

ABOUT THE AUTHORS

JULIAN HARTY

Julian Harty has been actively involved in mobile apps since 2006 when

he joined Google as their first test engineer in Europe and was given the

responsibility of testing Google’s various mobile apps. Through working at

Google he became involved in various test automation frameworks, including

various opensource projects such as Robotium,1 Selenium,2 and Calabash.3

He also advises various commercial organisations on ways to improve the

qualities of their mobile apps.

Julian’s passion is to improve peoples’ lives through

appropriate use of mobile technologies. He co-created the

first Talking Book Reader for Android as a free, opensource

project, and he is one of the developers for Kiwix – the

offline Wikipedia reader used as an example in this book.

He established projects using solar power and Amazon

ABOUT THE AUTHORS

1 http://www.robotium.org

2 http://www.seleniumhq.org

3 https://github.com/calabash

Kindle tablets to help improve teaching and learning in various schools in

Kenya, and, more recently created projects using inexpensive computers such

as the Raspberry Pi and Android tablets with offline copies of contents from

Wikipedia, Khan Academy, and other educational resources.

Julian started his Ph.D. research in 2012 in order to discover how mobile

analytics could help improve software testing. The impetus was derived from

his experiences of seeing the power of using mobile analytics and some of

the current flaws and limitations in how they were being used in major global

mobile apps. Julian is one of the long-term contributors to the very popular

Mobile Developer’s Guide to the Galaxy,4 and he also wrote and published the

first book on test automation for mobile apps, A Practical Guide to Testing

Wireless Smartphone Applications,5 back in 2008.

One of Julian’s goals is to help others become so self-sufficient and capable

that they can, in turn, help others to do likewise. This book aims to help

you learn as much as you wish about ways to use mobile analytics and

complementary techniques to improve what you do and the mobile apps for

which you are responsible.

 @julianharty
 https://uk.linkedin.com/in/julian-harty-5a010413

4 http://enough.de/en/app-coaching/devguide/

5 http://www.morganclaypool.com/doi/abs/10.2200/S00219ED1V01Y200909MPC006

9

ANTOINE AYMER

My friends, colleagues, and peers define me as a passionate market-driven

technologist. I started to do product management in 2007, without realising it.

Since then, I have been exploring how brands are transforming their business

to create new, personal interactions. My research aims at helping mobile

teams solve the triple quality-time-cost constraint through innovative testing

strategies. The development of mobile apps makes this

equation even more subtle. It is similar to a chess game

where developers would inevitably create weaknesses

in their position. One use case they forget, one aspect of

the experience they overlook, and hours of hard work are

instantly turned to dust. Delivering the perfect experience

is unfeasible, but we can definitely come close.

Mobile is an amazingly complex topic for which I define QA product scope,

develop, and implement global go-to-market plans.

 @AntoineAymer
 https://www.linkedin.com/in/aymer

ABOUT THE AUTHORS

11

INTRODUCTION

We all want our work to be meaningful and valuable. Working with mobile

apps enables us to reach millions – potentially billions – of users if we

create something our users like, value, and find useful.

“Our business branch in 2014 is the 7:01 [train] from Reading to Paddington

– over 167,000 of our customers use our Mobile Banking app between 7am

and 8am on their commute to work every day.”6 Ross McEwan, CEO, Royal

Bank of Scotland.

Today’s reality is that mobile apps are transforming businesses. In mobile

banking, apps play an increasingly important role in primary bank switching

decisions. 60% of smartphone and tablet users report that mobile banking

capabilities are “important” or “extremely important” in the decision to switch.7

Businesses run on mobile apps – meetings are scheduled, updated, and

recorded while on the move and outside the reach of a typical office.

Consumers buy using mobile apps, and expect to be able to buy goods and

reserve tickets immediately, regardless of network conditions. Apps simply

INTRODUCTION

6 http://www.bbc.co.uk/news/business-your-money-26365616

7 AlixPartners: “As Consumer Banking Behavior Continues to Evolve, Mobile Is Now Mainstream Says AlixPartners Study”,
March 12, 2014

need to work! Our challenge is to develop apps that please our users even

though many factors are outside our direct control.

Users call many of the shots. They can make or break mobile apps based

on their feedback, which is based on their perceptions. They can share their

experiences widely and much of their sharing is public and can therefore reach

large audiences.

Welcome to this compact book designed to help you learn ways to improve the

testing of your mobile apps, particularly using mobile analytics as a key source

of information.

USER EXPERIENCE IS EVERYTHING

Users expect mobile apps to work seamlessly, regardless of their choice of

technology, their location, or context. They expect mobile apps to be valuable,

elegant, and useful, among other things.

Good user experience is moving beyond the app and the single device. People

want, and are starting to expect, that they can switch devices and continue

where they left off. They expect to transition seamlessly across devices and

platforms, e.g., watching a video from where they left off or being able to

complete an email draft.

User experience is emotional and is driven by how users think, perceive, and

feel. Intimacy, immediacy, and privacy are key factors. Users’ perceptions matter

tremendously: when they enjoy using an app they will keep using it, tell their

friends, and encourage others to also use the app. The qualities of an app

have a significant effect on user experience. Good quality software may not be

13

INTRODUCTION

enough to provide a brilliant user experience; however, we can say that poor

quality is very likely to adversely affect their experience and memories of that

app. Therefore, it is important to measure the various qualities of our apps and

improve those that fail to meet expectations. We will describe these qualities

later in the mobile testing chapter.

A good user experience is essential to achieving our business goals, whether

it is transforming our customers’ experience, increasing workforce productivity,

or growing revenues. Without effective feedback on this user experience, it is

almost impossible to measure the effectiveness of our work and to gauge if we

are on track to achieve these business goals.

DOES MOBILE TESTING REALLY MATTER AT ALL?

Mobile apps need to survive ongoing and continual changes of the run-time

environment, new devices, new operating system releases, etc. Any and all of

these can expose multiple problems with existing apps, which then need to be

updated to maintain the status quo. Active apps demand constant care even if

the functionality does not change.

In some respects, many of us are now more tolerant of faulty luggage than a

defective mobile app from the same company. Users are seldom tolerant of

flaws and failures of apps, unless the app is essential to them. According to a

recent report, 53% of users uninstall or remove the app in the case of a severe

issue, 37% stop using the app, and 28% looked for an alternative.8

8 Mobile app use and abandonment: Global survey of mobile app users, HP (January 2015)

Mobile testing is the first line of defence when it comes to diagnosing apps.

Essentially, testing helps us bridge the gap between theory and practice, and

helps to provide additional information and evidence sooner than we might

otherwise receive it.

As you probably know, the initial push is often to get something to work at all,

whether that is our app, our mobile testing, our test automation, or anything

else new we want to try. The bigger challenge is to find ways to get something

to always work, particularly as the users’ conditions and contexts change.

Testing mobile apps enables a team to find flaws and problems so that they

can be addressed, or mitigated, rather than letting users be the first to find them.

As testing of mobile apps matures, we move from introspective work, such

as “Does the code work?”, to more valuable and relevant mobile testing. Key

considerations include:

• How to better prioritize our development and mobile testing efforts.

• How to reduce or remove irrelevant practices.

• How to keep testing “laser-focused” on user experience and on

business success.

15

TIME TO LOOK AT MOBILE ANALYTICS

Forrester Research calls it the “mobile moment” – that brief instant when users

first try your mobile app and decide whether they love it or hate it. Multiple

studies confirm that the success of your mobile app – and potentially your

business – depends on launch speed, performance, stability, battery usage,

and other aspects of the user experience. For example, 55% of users hold the

mobile app responsible when they face performance or stability issues, and

53% uninstall or stop using the app.9

Mobile analytics provide an easy way to discover how your mobile apps

are being used. They are embedded in the app and send small messages

containing data to central servers while the app is running and being used.

Unlike other sources of information, they potentially cover your entire user-

base. The two main exceptions are: when your users choose not to provide

information10 and when there’s no network connection to servers that receive

and process the data.

Even the standard, often business-oriented, metrics can help us refine and

improve our testing. We can also enhance the standard reporting to gather

data to help us learn how the app is being used and how it is performing for

the end users.

Mobile analytics can be inexpensive to implement and operate. Often the

software and reporting are free of charge and easy to implement. However,

there are some caveats and limitations, which we will cover in this book to

help you choose wisely.

INTRODUCTION

9 Mobile app use and abandonment: Global survey of mobile app users, HP (January 2015)

10 In some cases, the mobile app or the mobile platform may provide the user with a choice of whether or not they would
like to provide analytical data to app developers. For instance, in iOS, Apple asks the user whether they are willing to
provide the data to developers when the user commissions the device as part of the setup process. When Julian surveyed
software testers the majority wanted the ability to decide whether the data would be provided. Sadly, many apps do not
ask the users and simply collect and send the data anyway.

As the usage of mobile analytics increases, we move from simple assessment,

such as “Is the app stable?”, to a broader perspective where we focus on

enhancing the development and testing practices, including:

• How to improve your mobile testing beyond the “shift left”

recommendation.

• How to move from traditional “hands-on” testing to the design,

analysis, and application of data generated by mobile apps,

the users, etc.

• How to use mobile analytics to improve user experience and the

quality of our work.

WHAT WILL YOU GAIN FROM
READING THIS BOOK?

This book strives to help you, the reader, enhance the quality, velocity, and

efficiency of your work by integrating mobile analytics and mobile testing.

Furthermore, by harnessing the extra information that is made available, we can

also reduce waste in our work and in the apps we ship.

This book unveils ways mobile analytics can help improve mobile apps,

particularly the testing aspects of the project. You will learn about 6 ways to help

improve app quality:

• Better testing (more skilful, appropriate, and relevant

testing techniques.)

• Test automation (tests are run automatically by software.)

• Static analysis (the source code is reviewed and assessed for

potential problems.)

17

• Scaling mobile testing (performing more tests, sooner, exceeding

the limitations imposed by interactive testing within a team, e.g.,

more testing in parallel.)

• Processing and applying feedback from users (e.g., from reviews on

app stores, social media, and in-app feedback.)

• Mobile analytics (and similar data emitted from the running app.)

The first four topics are covered in the following chapters on testing, and the

remaining two in the confluence chapter. By applying a testing perspective, we will

also help you determine the amount of confidence to place in whatever mobile

analytics the project decides to use.

INTRODUCTION

19

HOW READY ARE YOU
FOR MOBILE TESTING?

There should not be much debate about the usefulness of mobile testing.

We use it as a means to improve the quality of our apps and the associated

user experience.

From reading release notes and reviews on app stores, it is obvious that many

bugs escape into production without being detected. These then join unfixed

bugs found during regular testing. In fact, did you know that crashes and bugs

are one of the top reasons for iOS apps to be rejected by Apple?11

Worse, these bugs can have a major long-term effect on the apps if they result

in poor reviews: for instance, only 15% of users would consider downloading

an app with a 2-star rating.12

Why is mobile application testing as practiced by many today simply not good

enough? And what can we do about it?

HOW READY ARE YOU FOR MOBILE TESTING?

11 https://developer.apple.com/app-store/review/rejections/

12 Walz, A.: The Mobile Marketer’s Guide to App Store Ratings & Reviews, Apptentive, 05 May 2015

In this book, we assume you know the basics of testing mobile apps.

Therefore, we will only briefly review these different approaches and make

recommendations on how to build a cohesive mobile testing framework

across multiple disciplines: interactive, functional, and performance. Our

first challenge is to understand the scope and dimensions of the rest of the

challenges involved in testing mobile apps.

FRAGMENTATION, OR GODZILLA IN THE ROOM!

Fragmentation is probably the scariest impediment to validating the end user

experience. The practically infinite permutations impose such a huge challenge

to testers that we need to review the fundamentals. OpenSignal13 detected

24,093 distinct Android devices, illustrated as follows.

OpenSignal: Android Fragmentation by Manufacturer13

13 http://opensignal.com/reports/2015/08/android-fragmentation/

21

Device Characteristics

• Manufacturer (most popular: Samsung, LG, Motorola, HTC, Apple,
Microsoft, Blackberry, Sony); for Android, OpenSignal provides a helpful
illustration by manufacturer.

• Operating system and version.

• Carrier (Vodafone, EE, AT+T, Verizon, etc.) and type of network connection
(Wi-Fi, 4G, 3G, 2G, airplane mode.)

• Class (smartphone, tablet.)

• Physical attributes (thin, small, lightweight.)

• Display dimensions and resolution.

• Multimedia (camera, microphone, speakers, memory card.)

• Sensors (GPS, NFC, Bluetooth, Accelerometer, gyroscope, light, orientation,
proximity, ambient temperature, gravity, etc.)

• Built-in technology (battery, ROM, RAM, processing power (GPU, CPU), touch
screen, keyboard.)

• Connected hardware (smart watch, headphone, card reader, health
gadget, etc.)

HOW READY ARE YOU FOR MOBILE TESTING?

OpenSignal: Android Fragmentation by Manufacturer13

13 http://opensignal.com/reports/2015/08/android-fragmentation/

Platform Diversities

The combinations of devices and their operating systems have exploded

beautifully as illustrated in the iOS Support Matrix14 by Empirical Magic Ltd., and

Android in the detailed 2015 report by OpenSignal.com.13

The platform diversities include the operating systems, and the various APIs

available on specific versions of that operating system.

• Operating Systems (Android, iOS, Windows, Blackberry, and trending

ones such as Ubuntu, Firefox, Jolla, Tizen.)

• APIs of both libraries and frameworks. System APIs frequently vary from

one version of the operating system to another. Sometimes, third-party

APIs rely on specific operating system features and may therefore vary

depending on the operating system version.

13 http://opensignal.com/reports/2015/08/android-fragmentation/

14 From https://iossupportmatrix.com/ released as a Creative Commons Attribution License.

23

HOW READY ARE YOU FOR MOBILE TESTING?

iOS Support Matrix V3.214

14 From https://iossupportmatrix.com/ released as a Creative Commons Attribution License.

Fragmentation of Your App

As an app matures, there are likely to be multiple versions of the app installed on

users’ devices. The app may also be available in “lite” and/or “premium” editions.

Users may remain on old versions of an app for a very long time for various reasons.

A key consideration is to ensure that any server-side changes, for instance to an

API, still work well with older versions of the app.

User’s Choices, Settings, and Usage Patterns

Different users have different apps installed on their respective devices. The

combination of installed apps can affect the behaviour of other apps, even if they

are seemingly unrelated. Each person may have preferences in how both their

device is configured and how an app is configured. Finally for this topic, users may

have preferences and expectations where they perform a single logical action split

across several devices.

• Other apps installed on the device (in particular, numerous web

browsers for Android devices.)

• Localization, which may be configured at a device level and/or within a

specific app.

• App settings and preferences (user settings for both the app and the

device – for instance colour schemes and magnification – can have a

significant impact on the challenges of testing to see if the app works

with these permutations.)

• Changing network and location.

• Gateway and ports may be disabled or restricted on various networks,

for instance on an organisation’s Wi-Fi network.

• Multi-channel (apps are part of a larger ecosystem, where users start

on one device and continue on another.)

25

• Interaction (the touch gestures vary by platform and platform version

and even the terminology varies.)

• Apple (https://developer.apple.com/library/ios/documentation/

UserExperience/Conceptual/MobileHIG/InteractivityInput.html)

• Android (https://www.google.com/design/spec/patterns/gestures.html)

• Windows (https://msdn.microsoft.com/en-us/library/windows/apps/

hh202911(v=vs.105).aspx)

Fragmentation complicates testing, increasing both cost and time-to-market.

Some important questions therefore arise.

• How do we validate our user stories: in the comfort of our lab or in

the wild?

• What is our environment of choice to record and replay our test cases:

real devices, emulators, or simulators?

• Where do we use test devices: on-premise or in the cloud?

MEASURING QUALITY SO IT CAN BE IMPROVED

There are many ways quality can be measured. Here we will use ISO/IEC

25010:2011 as it is well recognised and clearly identifies many relevant qualities.

Functional Suitability

The functionality of an app needs to meet the expectations of the users

as well as providing functions the app owner wants to make available.

Mismatches between offering and expectation can cause frustration, confusion,

wasted development effort, and ultimately lose users.

HOW READY ARE YOU FOR MOBILE TESTING?

Performance Efficiency

Speed matters, as does latency, the sometimes seemingly endless delays

waiting for an app to respond or update the UI. Efficiency also matters in order

to reduce waste, for instance of precious resources such as network traffic, CPU,

memory, battery, and storage.

Usability

Mobile apps cannot afford steep learning curves; after all, many users will only

give you one shot before abandoning an app. Even more persistent users are

unlikely to appreciate apps that have awkward features (as compared with

challenging puzzles or games). Mobile apps also need to be usable on the

device and in the contexts in which users find themselves.

Accessibility

As a key aspect of usability, and as mobile devices become more pervasive,

people want and need to tailor them to suit their needs, e.g., to change the

colour scheme, the font size, or to have the device read out information on the

screen. Accessibility support used to be very weak on many mobile devices.

It is improving in current versions of the mobile platforms. Our apps need to

also improve so they work effectively with the various accessibility features

provided by the platforms.

Security

Insecure apps are likely to be discovered, and when they are, their provider

loses the trust of the users. That trust is hard to regain, and some users will

abandon the app and even stop doing business with that provider. Privacy

is a related concern for users, and while some may be willing to allow their

data and personal details to be made freely available, many more will have

27

concerns. Companies who consider the privacy aspects related to their apps are

more likely to gain and retain the trust of users.

Reliability

Part of apps being dependable is reliability – that apps work whenever

the user uses them. Apps also need to be able to provide a reliable and

dependable service when things they depend on fail or are unavailable, for

instance network connections.

Portability

A measure of how easily software can be used on additional platforms and

on additional devices is known as portability. Porting from one platform to

another can be a major undertaking, particularly for native apps. Portability

from one device model to another varies in complexity; for instance, non-

trivial Android apps may have custom implementations to work well on

Samsung devices.

Maintainability

Apps need ongoing changes to keep the app viable, particularly because

their environment continues to change as new operating system releases

and new devices become available.15 Changes include modifications to fix

problems and add new features, in addition to changes to keep pace with

new devices and operating system releases. Maintainability is the measure of

the quality of the source code and related materials in terms of being able to

make these changes.

15 Linares-Vásquez, M.: Supporting Evolution and Maintenance of Android Apps, ICSE '14

HOW READY ARE YOU FOR MOBILE TESTING?

Compatibility

Apps may need to be compatible with other apps, or APIs. For instance, they

may need to be compatible with third-party login authentication mechanisms

such as a Facebook logon service or a payment service such as PayPal.

We may also want to consider some characteristics the ISO standard does not

mention. These include qualities related to providing apps for a multi-lingual,

multi-cultural audience, such as localization and globalization.

As reported in the World Quality Report 2015-16,16 in 2015, organisations are

shifting their attention from more traditional functional and portability testing to

include security, performance, ease-of-use, and regression testing.

THE VIRTUES OF VIRTUAL DEVICES

Real devices are more realistic than virtual devices, particularly in terms of

testing your apps, as they faithfully reflect the devices users use. There have

been conflicting opinions on the value of using virtual devices for testing.

However, we have discovered that there are more virtues than many suppose

and they are a useful complement to testing using actual devices.

Before we go into the benefits, we would like to clarify some words that get

confused: emulators, simulators, and virtual devices. Emulators include the

same operating system as the devices they emulate. Simulators look similar to

the real devices but do not run the same version of the app; instead, the app is

compiled specifically to run in the simulator. Both are types of virtual devices.

16 https://www.capgemini.com/thought-leadership/world-quality-report-2015-16

29

Android uses emulators. They emulate either the ARM-based versions of

Android (most Android devices use an ARM-based CPU) or Intel-based versions

of Android. There were other versions of Android in early releases including for

MIPS devices; however, these are no longer available.

iOS (iPhones, iPads, etc.) use simulators. To run an iOS app on the computer,

the source code is compiled specifically to run in the simulator; that build of

the app cannot run on real devices.

Simulators tend to be less realistic in terms of replicating the fidelity of real

devices, and will suffer from the same limitations that emulators do; therefore,

we will focus on emulators for the rest of this section.

Emulators

When you’re keeping up with business demands for frequent, high-quality

mobile application releases, any tool that lets you perform testing more

quickly and cost effectively needs to be considered.

Therefore, it is only natural that emulators are a hot topic. Clearly, they

will be more economical than buying, managing, storing, and securing

hundreds of different device and OS combinations. And given that they

are virtual, emulators should to be faster at generating feedback into the

development lifecycle.

But the ultimate purpose of mobile testing is to replicate and measure as

accurately as possible the real user experience. How well can emulators

deliver quality for dev/test teams? Emulators do have some limitations that

HOW READY ARE YOU FOR MOBILE TESTING?

would make them not fully reflective of the user experience. The secret is to

understand the use case and how accurate an emulator or real device testing

is to understanding the user experience.

We asked GenyMobile, a Paris-based supplier of Android-based application

and system services, including an Android emulator. Here’s what their product

manager, Pascal Cans, wrote back:

“Even as an emulator editor, we recommend to customers to still test on

real devices. The ‘feeling’ of the user experience and the performance is

something hard to measure. Also, some device-specific bugs or hardware-

related bugs, cannot be reproduced on emulators.”

That said, there are many positives to using emulators. Pascal highlighted

multiple scenarios, which we have incorporated here.

Speed

• Automated non-regression tests can run faster.

• Scale (shorter feedback is always good on a project lifecycle.)

• You can set them up, and reset them, in seconds.

Control

• Emulators may provide greater and easier access to control sensor values,

network emulation, GPS location, etc.

31

Convenience

• Emulators are easy to create with various versions of operating systems

as they make compatibility testing of an app on the various actively

supported releases, rather than having to upgrade devices. Upgrading

devices can be problematic as in some cases there is no easy way to

reinstall older versions.

• Any hard-to-prepare testing state can be reproduced easily using

snapshots or device cloning – for example, testing an upgrade from

an old N-2 version to the new version, N is now easy to test: you just

snapshot the old version and upgrade copies of it as much as you need.

• Some sensors are hard to test, for example the battery. With a real device,

testing that an app doesn’t launch a big background synchronisation

process when there is only 5% battery left can be annoying if you have to

wait for the battery to deplete sufficiently.

• Custom versions of emulators can be created that have characteristics of

unobtainable devices. These can include new screen resolutions as well

as other characteristics.

• Going to the aftermarket to buy old devices not produced anymore can be

complex in some companies.

• Some devices require convoluted configuration of the host computer

before they will connect properly. They may also need device drivers etc.

Once your emulator is set up, you can simply use it.

• Testing your app on different network speed/latencies can be hard to set

up and control on real devices. They may need SIM cards, carrier contracts,

and pricey lab equipment to emulate appropriate network conditions, etc.

On an emulator, you just have to select the conditions you want.*

HOW READY ARE YOU FOR MOBILE TESTING?

* Although the emulator may lack the fidelity to accurately simulate real network conditions.

Cost

• For a team using a pool of between 30 and 40 Android devices, they may

need to replace 30% of those each quarter in order to stay up to date,

something which is time-consuming and costly. Emulators can run all the

versions of Android and all the screen sizes/density combinations, and they

may reduce the need to buy so many devices.

Efficiency

• Instrumentation (emulators can provide relatively good insights of the

inner state of the system – CPU, memory, threads state, system logs.)

• For exploratory tests, an emulator can easily monitor and record all

events and produce a screen record of the session to help one understand

and reproduce unexpected issues. The weakness is the inability to provide

feedback on the design and overall elegance of this application.

Limitations of Emulators

Where do emulators fall short? Here are various examples.

Power and Battery

Testing the impact of an app on battery performance is difficult because it

depends on so many variables, including how many other apps are running,

which ones, and how your app contributes to that ratio. Similarly, how does

your app react to a real incoming text message or phone call in the middle of

its flow?

33

Performance

It is important not to overlook the impact of the network on application

performance. Emulators use the network connection of the computer, which is

often faster and more reliable than mobile connections. Most of the latencies

occur on the network, so the difference in the performance characteristics

can mask some bugs when testing an app on emulators. However, network

virtualization software can emulate slower connections and other networking

problems to help redress the balance.

Client-side performance, in particular, tends to be very different when

measured on virtual devices and is often not very representative of

actual devices.

User Experience

The user experience of using a full-sized keyboard, mouse, and screen to

interact with emulators is very different from holding a device in your hands

and using it. Problems such as “fat fingers,” where people press the wrong

button because several elements are too small and close together in the UI on

real devices, are seldom noticed on emulators.

Device-Specific Flaws and Bugs

Emulators, with few exceptions, represent general devices, rather than specific

ones, so they will not contain device-specific quirks, firmware, libraries, or bugs.

Even emulators that resemble specific devices will behave differently. As a

piece of history, BlackBerry emulators provided the highest fidelity in terms of

replicating actual devices.

HOW READY ARE YOU FOR MOBILE TESTING?

As Antoine Aymer discussed in a blog post “For mobile application testing, do

you head to the wild or to the lab?”,17 crowd testing an app can complement

lab testing, in order to understand how the app responds to different gestures,

contexts, and interactions. There are some use cases that are difficult to

replicate in a lab, including the more qualitative assessments about UI design.

Emulators are a poor facsimile.

The Sweetspot for Emulators and Devices

Emulators are most useful early in the development lifecycle, when used by

developers to quickly iterate on developing a new app or new features. They

provide fast feedback and most integrated development environments (IDEs)

have integrated support for emulators where loading the app to an emulator

as soon as the app has been compiled.

During quality assurance (QA) and testing, real devices become much

more relevant, in order to see how well the app behaves on a variety of

representative hardware. Emulators can still be useful for some aspects of QA

but are unlikely to be used for the majority of the testing.

17 Aymer, A.: For mobile application testing, do you head to the wild or to the lab? hp.com; revised, 10 Sep 2014

35

Now that we have covered the testing challenges and have a better idea of how

virtual and real devices can help, we can move on to testing disciplines.

HOW READY ARE YOU FOR MOBILE TESTING?

Choosing When to Use Real and Virtual Devices

18

18 Device-specific crashes also occur and will have to be found on real devices. However, there are general crashes that can
be discovered on virtual devices.

37

TESTING DISCIPLINES

In this book we are using HP’s testing disciplines – interactive, automation,

and performance – as ways to test mobile apps. These might be considered as

three faces of a triangle where the disciplines are connected and need to be

combined to achieve adequate testing. We will discuss each discipline in turn.

FROM MANUAL TO INTERACTIVE TESTING

It may sound curious to consider talking about manual testing, since an Agile

mindset encourages us to maximise test automation. However, we still need

people to actually test mobile apps in order to capture and assess the human

aspects of using the apps, particularly in diverse and potentially unpredictable

situations. In addition, there are various limitations in test automation tools,

which means that many projects rely predominantly on testing by people,

rather than by computer programs.

Nonetheless, there’s much room for improvement in how people test mobile

apps. Manual testing is still a common term and tends to describe repetitive

testing, prescribed by pre-written test scripts on a small number of devices

and usage scenarios. It is slow, brittle, and time-consuming to maintain.

TESTING DISCIPLINES

More importantly, prescriptive, repetitive, manual testing fails to find bugs

caused by rich interactions, combinations of circumstances, and so on. Manual

testing is shifting from following prescriptive test cases to being more

interactive because of the complexity of assessing the human aspects of using

the app realistically on mobile devices. It becomes extremely effective when

it comes to understanding the “unpredictable” effect of mobile usage and

providing the human sentiment on the overall look and feel. The term we use

here is interactive testing.

Using Heuristics

Several thought-leaders have created testing heuristics. These heuristics

often include several of the quality factors and they help to encourage testers

to remember to test their mobile apps more comprehensively. They have

achieved good results in terms of helping focus testing. Although heuristics

are fallible, they provide a good structure to guide the testing of mobile apps

by defining critical risk areas to consider and test. Here are several mobile-

specific heuristics.

• I SLICED UP FUN19 is a useful and easy-to-read article covering many

aspects of testing a mobile app. This is one of the early heuristics, from

2010, yet still applicable.

• COP FLUNG GUN20 introduces six additional aspects (and misses

out others) from “I SLICED UP FUN”. The additions include Gestures,

Location, and Updates.

• FISH TANK21 focuses on testing through the development lifecycle.

19 *Kohl, J.: Testing Mobile Applications with I SLICED UP FUN! http://www.kohl.ca/; 2010.

20 Moolya Testing Blog: A mnemonic mobile app model, 06 May 2014.

21 Dhanasekar, S.: Fish Tank, a Test Model for Android and iOS apps, 08 Jan 2015.

39

• Empirical Development of Heuristics for Touch Interfaces22 includes a

useful comparison of differences between testing for “fat fingers” on

emulators and on actual devices. Another relevant article on testing

mobile apps is Heuristics for Evaluating Mobile Designs.23

Heuristics are predominately used during interactive testing sessions. They can

also be used more generally, for instance as reminders when designing automated

tests. A good place to learn about heuristics is from Mike Kelly who started using

them over a decade ago; see http://michaeldkelly.com/blog/category/heuristics.

21 Dhanasekar, S.: Fish Tank, a Test Model for Android and iOS apps, 08 Jan 2015.

22 Baker, R. and Sun, X.: Empirical Development of Heuristics for Touch Interfaces, 02 Jun 2014.

23 Heuristics for Evaluating Mobile Designs, last edited: 03 Nov 2014

FISH TANK Mindmap, used with permission
from the author, Dhanasekar21

TESTING DISCIPLINES

Using Personas

Mobile testers should consider using a variety of distinct personas (or profiles)

to validate the user experience with different mindsets. Personas are a well-

established practice in software testing. Each persona is modelled on a

distinct, characteristic user of the app. Testers can assume the characteristics

of that user as a role play where they try to think and act as that persona

would. Antoine Aymer wrote a useful article on using multiple mindsets to test

mobile apps.24 Personas can be based on interviews, user-provided feedback,

and/or analytics. During interactive testing, a tester may use several personas

to add variety. Through doing so, they are likely to find more issues than simply

being “themselves”.

Interactive testing can be performed in the lab and beyond the lab.

Interactive Testing in the Lab

“In-the-lab” testing refers to activities that take place in an organisation (or

outsourced) as part of their application development lifecycle.

Testers can either interact with a device in their hands or connect to one available

in a remote location. Some manual testing tools can automatically record the

actions performed in the GUI. They can also provide annotated screen captures,

movies, and device parameters. Testers can incorporate additional feedback on

their perceptions and experiences about using the app. This information can

accelerate collaboration between the development and quality assurance teams,

enabling faster defect resolution and eradication.

24 Aymer, A.: Mobile App: Into the mindset of a manual tester engineer (part 1), 05 Sep 2014.

41

Interactive Testing Beyond the Lab

The main challenge that in-the-lab practices fail to address is how to

incorporate user experience into the overall testing effort. We can scale our

testing beyond what we can achieve with in-the-lab capabilities by involving

people outside our company, such as crowdtesters and early adopters. As

Antoine Aymer concludes in a blog post,25 in-the-wild testing is not an

alternative to in-the-lab testing but a complementary practice. Mobile apps

can be distributed using platform-specific mechanisms (e.g., TestFlight) or

by using enterprise-oriented distribution tools. Crowdtesters can be employees

or external testers. They provide greater variety than practical in the lab,

for example:

• Expert testing of additional locales.

• Greater variety of usage conditions.

• Variety in interactive testing.26

Early adopters are users who opt-in to use (and hopefully test) early releases

of an app. They need to be willing to take partly baked releases and use them.

Also, many will provide more feedback than typical users, where that feedback

can be (1) acted on before the mainstream release or (2) kept distinct from

feedback of the “hardened” (or improved) mainstream release. They may be

supported via the app stores, and possibly additional feedback channels.

Facebook may have adopted an additional intermediate approach, where

employees are now required to use Android devices27 so they more closely

TESTING DISCIPLINES

25 http://h30499.www3.hp.com/t5/Application-Lifecycle-Management/For-mobileapplication-testing-do-you-head-to-the-
wild-or-to-the/ba-p/6474844#.VhLizbRVikp

26 Baker, R. and Sun, X.: Empirical Development of Heuristics for Touch Interfaces, 02 Jun 2014.

27 Tung, L.: Facebook reveals why it’s forcing workers to swap iPhones for Android; 30 Oct 2015.

reflect the experience of end users, and where they have the option to use

slow connections that more closely reflect reality for users in emerging markets.28

THE MANDATE FOR AUTOMATION

Test automation has been touted as essential for coping with the speed of

agile development projects. There are tens of choices of test automation for

mobile apps, including tools provided with the software development kits,

opensource, and commercial products. Some of these tools evolved from

desktop and/or web test automation, while others have been developed

specifically to test mobile apps.

Test automation software performs the testing. Automated testing can use

various ways to interact with the mobile app, including object recognition,

image-based recognition, using coordinates, and custom test automation APIs

integrated into the app. They may also include generating, or synthesising,

various inputs, which are sent to the app for the app to interpret and process.

There are various perspectives on what automation means in the context of

testing. For some, it means the tests are fully automated software programs

that interact either with small subsets of the source code (commonly called

“unit tests”) or by interacting with the GUI of the mobile app. For others, test

automation is more of a continuum, where aspects of the testing, such as

preparing the configuration and capturing the results are automated, but the

testing is performed interactively.

28 D’Onfro, J.: Facebook will give employees super slow internet speeds every Tuesday to better understand markets like
India; 27 Oct 2015.

43

Current test automation software have limitations in the way(s) they interface

with the device and the app. For instance, most approaches only interact with

the GUI. Few support audio input or input to other sensors, so – for example –

they would not be able to test audio or replicate a shake gesture.

They also have limitations on what they can assess in terms of the behaviour

or outputs of the app running on a mobile device; for instance, the perceived

quality of video playback, or whether the GUI layout is as desired on the

various devices. Later in the book, we introduce the concept of test automation

interfaces, which help us to learn the ways test automation software interfaces

with what it is intended to test.

It is often possible for developers to create specific test automation to exercise

particular aspects of their mobile app. For instance, one of the authors was

part of a team that devised ways to test a “voice search” mobile app using a

custom version of the app. The custom app replaced the standard GUI with

a basic UI that was able to use prerecorded audio files as inputs to the core

application logic. The app needed to send duplicate network packets to

counter various types of packet loss in mobile networks. Testing the app by

hand would have been too slow and would have had undesirable variations in

timing. However, most organisations don’t want to get as involved in crafting

specific test automation.

TESTING DISCIPLINES

Shopping List Considerations

There are various factors to consider in order to pick tools and/or frameworks for

your mobile app. Here are some of the key motivators.

• Where we are willing and able to “spend”. Some of us are willing to dive

in, write code, and implement whatever it takes to use test automation.

Others may not have the technical skills, or may not want to spend time

dealing with the details of getting test automation working and keeping

it working. Some may have restrictions on the amount they can pay

for licenses, external support, etc., and therefore have to find and use

inexpensive or free options. Similarly, for some teams and organisations,

latency may be a major factor where delays in resolving test automation

challenges are very expensive, perhaps more expensive than paying

for premium support. Finally for this topic, the ability to influence the

product’s, or tool’s, direction may be a key consideration. Again the

investment of time, money, and energy are worth considering.

• Technical Aspects:

• Richness of inputs, controls, and interactions.

• Scope or extent by which you can control the devices; for instance, you

may need to test across several apps, and/or control the configuration

of the device. However, these capabilities are not supported by many of

the automated testing frameworks.

• The platforms and technologies that need to be supported: a first

pass is to consider the platform, for instance iOS, Android, Windows

Phone, etc. However, the technologies used to implement the app

are also important, particularly where they use a web browser

as part of the app, such as a WebView in Android or iOS. Some

45

mobile test automation tools do not interact effectively with what’s

happening in the web browser, which could mean major aspects of

your app are not able to be tested with that tool.

• Portability of test scripts across devices, releases, and as aspects of

the GUI change.

• Ability to find bugs you can and want to address.

• Aspects that the tests are intended to address.

Test Automation in the Lab

There are several topics worth considering, including:

• The choice and quality of the Test Automation API (which may be implicit

and informal, or more concrete and formally provided as/for an app.)

• Limits and limitations in the reach and control provided by the Test

Automation tool/framework/API/Interface/etc., e.g., few provide access for

audio input.

• The ability to control the run-time context, both on the device, and

beyond the device’s boundaries. Similarly, the ability for automated

variation of responses29/inputs30 can help improve the quality and value

of the tests. Sometimes we may have automated testing and automated

variations in the context, while other times we may automate one and

perform the other interactively.

TESTING DISCIPLINES

29 For network protocols, API responses, etc.

30 For sensor values, etc.

Test Automation Beyond the Lab

There are at least a couple of ways that automation can help test beyond the

lab. These include data-gathering apps and probes.

Data-Gathering Apps

Apps that explicitly (and with the user’s knowledge and agreement) gather

data in various ways. This data may be across all other apps, for instance

tracking calls and network traffic per app, etc. They can also gather more

detailed information than mobile analytics libraries typically obtain/provide.

An example of a commercial data-gathering app is Shunra’s Network Catcher,31

which explicitly transmits and receives data on the network’s performance

characteristics in order to provide that information to the user. The app also

obtains details of the device’s location and network connection. The data is

then used as a profile that testers can use to configure a virtual network to

enable them to test the app using a fairly realistic profile that resembles real-

life network conditions.

An example of a research-focused app is Device analyzer.32 Users opted-in to

using the app, which collected many facets of data, including location, signal

strength, battery levels, and usage data. They discovered considerable diversity

in behaviour between users and also over time. The app is available for custom

experiments as is the data for people who want to do their own analysis.

31 https://play.google.com/store/apps/details?id=com.shunra.nce&hl=en

32 More information is available in the related academic paper titled: “Device analyzer: Understanding smartphone usage”

47

They have collected over 100 billion records from over 17,000 devices. More

information on the project is available at http://deviceanalyzer.cl.cam.ac.uk/.

Probes

There are various services available to monitor the behaviour of an app (and/

or the underlying internet-based services) where the services are distributed.

The “testing” may be superficial in terms of functionality; instead they focus on

latency and availability of the app and related services.

PLEADING PERFORMANCE IN THE COURT
OF USER EXPERIENCE

Few would argue that we have become the most impatient users of all

time. Slow apps are abandoned and get uninstalled. The speed of an app is

subjectively measured by users using various criteria, including the time taken

for content to be seen on the screen (for example when the app is launched)

and the time taken for the app to respond to inputs from users.

Mobile performance testing is a complex discipline for several reasons. In

particular, performance testing and assessing performance tend to be more in-

depth and technical than the other disciplines.

The overall architecture of both the app and related servers need

appropriate performance requirements for their various aspects.

TESTING DISCIPLINES

• The front-end performance, i.e., the mobile app, needs to include the

right balance of type of device, OS, apps running in the background,

processing power, memory, battery, and storage. (Back to the challenges of

fragmentation!)

• The network has a huge impact on performance. “Consider that a

typical PC takes 30 ms to connect to a server,” explains Todd DeCapua,

TechBeacon’s chief technology evangelist, “whereas it takes a mobile

device typically 300 ms to connect. That is a 10x slower connection. The

result is a 50 percent increase in your back-end infrastructure. If you are

already running at a 65 percent utilization for your PC traffic and then add

just five percent mobile traffic, you will crash your data center”. 33

• Servers that interact with a mobile app also need comprehensive

performance testing. The testing may include a mix of mobile apps on

real devices, mobile apps on virtual devices, and simulated network

traffic from load generators. The location of requests and their network

connection (as mentioned earlier) may also be important factors to

consider in the test plan.

• Some tests involve replicating a series of connected API requests that

clients would make when interacting with server-based APIs, in order

to validate cross-platform performance.

Focusing on the user-centric aspects of mobile performance testing involves

aspects such as responsiveness and ensuring the app is written and able to

multi-task in ways that meet the user’s expectations of responsiveness. When

the app is not yet responding, it’s effectively dormant from a user’s perspective.

33 As quoted in David, M. The essential guide to improving mobile performance, Oct 2015

49

Google has published the RAIL Performance Model34 for Chrome. The concepts

are also relevant for mobile apps. RAIL represents: Response, Animation, Idle,

Load; Google’s model explains each of these in more detail.

In terms of systems and software engineering, mobile performance testing can

include aspects such as threading models, scalability, load balancers, traffic

prioritisation, etc., and as such is often performed by specialists dedicated to

the topic.

Performance Testing in the Lab

For mobile performance testing in the lab, people often use a hybrid where

they use several real devices to collect realistic, end user-oriented timings.

These timings help calibrate timings from generating large volumes of

network requests to load up the various servers and related infrastructure

needed to support the overall user-base and service.

TESTING DISCIPLINES

Google’s RAIL Performance Model34

34 Based on Google’s RAIL Performance Model https://developers.google.com/web/tools/chrome-devtools/profile/evaluate-
performance/rail

Real Devices

For real devices, there are a couple of key considerations. These include:

• The fidelity of the tool in terms of being able to generate desired

performance profiles and capture accurate results.

• Deciding what measurements and observations to use to

assess “performance”.

Virtual Users

For virtual users, the requests aren’t being generated on real devices; instead,

representative network requests are sent in parallel from many “virtual users”.

The tests may be run on a local network or over a mobile network.

Performance Testing Beyond the Lab

The focus here is on ways to gather performance data when the app is being

used beyond the lab. Mobile analytics can be an excellent way to gather

and send data when there’s a suitable low-latency, inexpensive, and reliable

connection to the mobile analytics data collection services/servers.

User-Provided Perceptions and Data

Users could be asked to provide feedback on perceived performance, satisfaction,

etc. There are examples of research in this area, e.g., by Orange.fr for mobile video

streaming as part of their Quality of Experience (QoE) research.35

35 Quantification of YouTube QoE via Crowdsourcing

51

SUMMARY OF THE TESTING DISCIPLINES

We have now covered interactive, automation, and performance testing

disciplines in and beyond the lab. It is time to move on to proven ways to

improve testing of mobile apps.

TESTING DISCIPLINES

53

FOUR PROVEN WAYS TO
BOOST APP TESTING

We have already introduced various concepts and approaches to improve the

testing of mobile apps. Through reviewing several hundred research papers

and the state of the art in the industry, we have identified four well-accepted

and proven ways to boost mobile app testing. They are:

1. Better testing.

2. Test automation and continuous automated testing.

3. Scaling testing.

4. Static analysis.

We will cover these in turn.

1) BETTER TESTING

When testers apply better practices and techniques, they can test more

effectively. Often the concepts seem too simple to work. For instance, using

personas and heuristics are not complex or complicated to try. Nonetheless,

when people aren’t aware of these techniques or do not apply them, their

FOUR PROVEN WAYS TO BOOST APP TESTING

testing can be mediocre. For instance, only 30% of screens and 6% of the code

were exercised by 7 users who tested 28 popular Android apps.36

Also, when testing is limited to the lab it lacks the richness, realism, or variety

of how the apps are actually used. Furthermore, learning how to understand

the information available on the device and the tools that access that

information will enable testers to use these rich seams of data.

We want to find breaks in the system before users do. One way to achieve this is

to introduce volatility into the system and environment. We can embrace “disorder,

randomness, and impermanence to make systems even better”,37 where the system is

the mobile device, the network connection, and other services the app relies on.

The same book makes two key points well worth considering when designing and

performing our tests: “How to use continual experimentation and minor failures to

make critical adjustments – and discover breakthroughs”, and “How an overreliance on

measurement and automation can make systems fragile”.

36 As research discovered: “Relying on end users to conduct the exploration might not be very effective: we performed a
7-user study on popular Android apps, and found that the combined 7-user coverage was 30.08% of the app screens
and 6.46% of the app methods.” People don’t necessarily cover much of the functionality of apps when testing ad-hoc.
(However, we would expect interested and engaged testers to do better than the participants in this study.) (Azim, T.
and Neamtiu, I: Targeted and Depth-first Exploration for Systematic Testing of Android Apps. University of California,
Riverside, 2013)

37 Zwieback, D.: Antifragile Systems and Teams, O’Reilly; Apr 2014

55

FOUR PROVEN WAYS TO BOOST APP TESTING

TBS

Testing software actually consists of at least three primary

activities: Testing, Bug investigation, and Setup (TBS). Time

spent on setup and bug investigation effectively reduces the

time needed for doing the actual testing. As the TBS figure

shows, we want to increase T and reduce the B and the S.

TBS Diagram

TBS is one aspect of Session-Based Test Management (SBTM),

both the work of Jon Bach, a well-recognised guru in

software testing.

Recreating Sufficient Fidelity

Tests don’t necessarily reflect reality, particularly when testing

mobile apps. Our environment, device, conditions, experience,

test design, and many other factors affect the validity of the

results in terms of whether the bugs would be relevant for

end users, and how completely we can capture problems that

would affect these users.

Conversely, as we work to improve the fidelity of our tests and

our testing we risk over-investing in time, effort, and money.

Therefore, it’s useful and important to find ways to test with

sufficient fidelity to find flaws that are particularly relevant to

various stakeholders, including the end users.

Improving the setup time and bug investigation can also indirectly help

improve the testing and the ability to analyse, and reproduce, what happened.

Improving Setup Work

Installing apps and configuring devices can be burdensome and time-

consuming. We can automate the creation and distribution of test releases

of the app, for instance, using the opensource Continuous Integration tool:

Jenkins.38 Another opensource project, Spoon,39 focuses on making automated

tests easy to distribute, observe, and run.

Some smart teams have also created small software utilities that enable

them to change system settings such as the locale, Wi-Fi, etc. Android’s open

architecture enables these apps to be written, installed, and used more easily

than for other mobile platforms which are more “closed” in terms of what

third-party software is permitted to do.

38 https://jenkins-ci.org/

39 https://github.com/square/spoon

57

40 Mason, D.: Usability Testing for Mobile Devices; code7.co.uk; 17 Nov 2014.

Improving Bug Investigation

Chasing bugs can be extremely frustrating and time-consuming. Also, critical

information can be lost in the communication between the finder of the bug

(which may be software) and whomever is trying to understand and possibly

recreate the problem. Improving the bug investigation reduces the latency and

cost of being able to make informed decisions of what to do about the bug.

There is plenty of information written to the central log on mobile devices.

Log gathering, filtering, and processing can enable these logs to be analysed

quickly, accurately, and reliably.

GUI screen recorders, cameras, screenshots, etc. provide useful information on

the GUI aspects of an app. There is a helpful, practical article on using various

camera and recording software for low-cost usability testing.40

We may need to test on several particular devices to hone in on specific bugs.

In the confluence chapter, we will elaborate on effective ways to select a

suitable set of devices to test on.

2) TEST AUTOMATION AND CONTINUOUS
AUTOMATED TESTING

Test automation is one of the most popular ways trying to improve testing

of mobile apps, and there are a plethora of potentially suitable products and

frameworks available. Once the automated tests exist, they can be run more

frequently than human testers could achieve from a practical perspective.

FOUR PROVEN WAYS TO BOOST APP TESTING

Also, they can be run when testers aren’t available; for instance when the app

is updated overnight and the testers have finished work for the day.

Continuous automated testing is where the tests are run automatically when

the source code for an app has been updated and compiled successfully.

The automated tests can provide lower-latency, consistent feedback to the

developers and therefore enable them to investigate problems that, overall,

have been reported sooner than would be practical with interactive testing.

They also provide “some testing” each time the source code is compiled

successfully; therefore, they provide more traceability and early warning of

failures they detect.

There are a couple of additional concepts worth understanding to use test

automation more effectively. These include the test automation interfaces and

test monkeys.

Test Automation Interfaces

Regardless of the choice of test automation, that automation needs to interact

somehow with the app it’s intended to test. There will be at least one test

automation interface, possibly several. These may be officially and publicly

supported, ad hoc, or a custom interface embedded in the app.

The choice of test automation interface can have a massive effect on the ease

and effectiveness of the test automation. For instance, if they are informal and

reverse-engineered by a testing team, then many changes by developers of the

app may require emergency changes to the test automation scripts. Sometimes,

simple techniques such as adding specified labels to key GUI elements can

significantly improve the reliability of the test automation as the underlying

software changes while also reducing the maintenance effort needed to

maintain the current automated tests.

59

41 Harty, J.: Test Automation Interfaces for Mobile Apps. LogiGEAR Magazine, 13 Dec 2012; logigear.com

42 UI/Application Exerciser Monkey.

43 Ravindranath, L. , Nath, S. , Padhye, J. , Balakrishnan, H. “Automatic and Scalable Fault Detection for Mobile Applications.”
ACM, 2014.

Of the development teams who actively support automated tests, many include

a private test automation API built into their mobile app. This API provides

access to internal data and often includes commands to interact with the app.

More information is available in an extended article.41

Test Monkeys

Test monkeys are automated programs that can help test your software.

Monkeys are available to test the GUI. For instance, Android’s Monkey42 has

been available since very early versions of Android and has helped find many

bugs that shouldn’t exist, but do.

Microsoft Research, in particular, has extended the concept of using monkeys

to test mobile apps by creating monkeys to generate various responses to web

requests that help expose flawed assumptions made by developers (that a

web server will always respond without complaint).43 By using these network

monkeys, these flawed assumptions/implementations can be found quickly

so that they can be fixed before the app is shipped, and the app can be made

more robust and resilient. The developer may also be able to improve the user

experience. For instance, they could include a GUI that enables users to log in

to websites that require the user to log in before it will provide the contents.

3) SCALING TESTING

Scaling testing enables more testing to be done than we would be able to

achieve ourselves. There are various approaches including: using remote

FOUR PROVEN WAYS TO BOOST APP TESTING

devices, including other people in the testing, and running tests on device

farms, often in parallel.

Distributed Testing

Testing does not have to be local to the development team. In fact, there

are several approaches where the testing can be distributed. The first is to

remotely access devices elsewhere in the world, often over a web-based

connection, for instance to connect to a hosted device in another country.

These may support interactive testing and/or remote execution of automated

tests depending on what the hosting platform provides. The second approach

is where the testing is delegated to people remotely who test using phones

they have available. There are various crowd-sourced testing services available

where organisations can arrange and pay for remote testing to be performed

by trusted testers who are not employed directly by the organisation.

Device Farms

Device farms were first launched around 2007 with Nokia’s Remote Device

Access service and a commercial offering provided by Mobile Complete. Various

companies also had internal, private device farms. Since then there has been a

steady growth of device farms available for performing remote testing. These

include services from Xamarin,44 Testdroid,45 and SauceLabs,46 that changed

the focus from hands-on remote testing to running automated tests on more

devices in parallel. In 2015 both Amazon and Google launched internet-based

test farms47,48 that may help to make the services less expensive and more

mainstream. Amazon even provides a basic automated test service called fuzz49

as an option (although it appears to be more of a test monkey service).

44 https://xamarin.com/test-cloud
45 http://testdroid.com/
46 https://saucelabs.com/
47 https://aws.amazon.com/device-farm/
48 https://developers.google.com/cloud-test-lab/?hl=en
49 http://docs.aws.amazon.com/devicefarm/latest/developerguide/testtypes-built-in-fuzz.html

61

50 Ravindranath, L. , Nath, S. , Padhye, J. , Balakrishnan, H. Automatic and Scalable Fault Detection for Mobile Applications.
ACM, 2014.

51 As an example, in Summer 2015 Amazon acquired AppThwack (https://appthwack.com/).

Microsoft uses farms of virtual devices to run vast numbers of fully automated

exploratory tests for thousands of apps for their mobile platform. The virtual

devices enable them to run these tests quickly and very inexpensively. Their

tests seek generic bugs that affect the apps rather than bugs related to

specific devices.50

Device farms can help scale your tests and provide you with access to a wider

range of devices than you may have available locally. We predict there will

be further acquisitions and developments so device farms can offer more

comprehensive, integrated automated testing.51

4) STATIC ANALYSIS

Static analysis assesses designs and files rather than running or testing the

code. It is a useful complement to all the other forms of testing and can catch

problems at the source, rather than once the app has been released.

Design reviews are a static analysis technique and remain useful in finding

flaws in mobile apps. Similarly, code reviews, performed by developers who

understand the relevant mobile platforms, can catch many bugs before they

reach the application’s codebase.

Traditionally, when static analysis is applied to the software, static analysis

assesses source code. However, for mobile apps, in particular, static analysis

is also used to assess generated code. The generated code may need to be

extracted and decrypted from the binary application code. The main focus

FOUR PROVEN WAYS TO BOOST APP TESTING

seems to be malware detection, privacy, and other security-related aspects

of the app, something to consider when there is low trust of the developers,

external libraries, or the development process.

The mobile app may include third-party source code and/or libraries. Consider

reviewing them as they will become an inherent part of the app with the same

rights and privileges as the rest of the app. We don’t want the third-party code

to adversely affect the user experience or the qualities of the app. In October

2015, Apple removed several hundred apps that included a rogue third-party

library that breached privacy and Apple policies.52

Facebook provides a free tool called fbinfer53, which is available for iOS and

Android. The development tools (known as SDKs) also include static analysis

capabilities. These can often be automatically run after each code check-in to

help detect potential flaws and provide feedback before the developer has

moved on to something else.

LIMITATIONS OF THESE FOUR PROVEN WAYS

Each of these ways of improving testing helps in isolation, provided the results

are used to actually amend and improve the app they help test. These ways

can also be combined, and done well, they help to complement and multiply

the benefits.

However, even when projects apply static analysis techniques and tools, and

combine them with better interactive testing and brilliant test automation,

52 “Developers need to be aware that when they install an SDK in their app, they’re responsible for how it affects their
users.” From iOS Apps Caught Using Private APIs; sourcedna.com; 18 Oct 2015

53 http://fbinfer.com/

63

where the testing has been scaled across people in various locations and

where the automated tests run on globally distributed farms of devices, the

testing will still miss some of what is relevant and useful. In particular, they

don’t assess how the app is used by the population of end users or how

users perceive the app. These gaps mean the app is at risk of failing for end

users in ways we are not able to predict and ultimately of being rejected and

abandoned by many of the users we desire. Thankfully, new techniques are

emerging to help us fill these gaps by using analytics.

FOUR PROVEN WAYS TO BOOST APP TESTING

65

UNDERSTANDING MOBILE
ANALYTICS AND FEEDBACK

In its September 2015 Market Guide for Mobile App Analytics, Gartner analysts

state, “mobile app analytics tools collect and report on in-app data pertaining to

the operation of the mobile app and the behavior of users within the app, as well

as aggregate market data on apps across public app stores” .54

This chapter includes several related topics. These are analytics in general

(albeit several examples come from the mobile domain), mobile analytics, and

an emerging topic of analysing feedback from users.

Developers would like an easy way to monitor the vital signs of their mobile

app: “A visualization tool such as those hospital monitoring devices with heart

rate, blood pressure, etc., would help to gain a better understanding of an app’s

health and performance”.55 Mobile analytics can finally answer their request. It

can be the real-time surveillance system that continuously monitors all vital

signs. Here, heart rate, SpO2, blood pressure, and cholesterol ratio are user

experience, performance, stability, and usability.

UNDERSTANDING MOBILE ANALYTICS AND FEEDBACK

54 Wong, J. , Haight, Cameron, Leow, Adrian: Market Guide for Mobile App Analytics; Gartner; 15 Sept 2015.

55 Joorabchi, M. E. , Mesbah, A. , and Kruchten, P.: Real Challenges in Mobile App Development; Empirical Software
Engineering and Measurement, IEEE; Oct 2013.

Mobile analytics is like the SEO for mobile apps; however, it helps optimise the

app and the user experience rather than search engine rankings. There are some

general practices that can help the majority of apps; as you gain competence, you

will find ways to also optimise your work and how you use mobile analytics.

Feedback is perhaps the closest means we have, without directly interviewing

users, of getting their impressions on the user experience and their

perceptions of an app. Companies have realised that users have a voice and

they’re willing to speak publicly about their experiences with mobile apps.

MOBILE ANALYTICS CAN IMPROVE MOBILE APPS

Mobile analytics provides additional data from virtually all of the active user

base of a mobile app. Rather than relying solely on our own ideas, thoughts,

and feelings, we now have data we can use and analyse to understand how

the app is being used, where, when, and on what devices, etc. App stores have

started to provide some of the information, including recommendations, such

as to add translations. Nonetheless, they don’t provide the depth or richness of

information that can be obtained with mobile analytics.

The development team can seek confirmation of their earlier predictions and

identify anomalies, for instance on the popularity, the navigation flows, time

taken, etc. for various aspects of the app so they then have the opportunity to

make informed decisions, based on the data they’ve obtained.

From a business perspective, organisations can use the analytics to guide the

product development, even to the extent of creating new apps.

Mobile analytics can provide an “Early Warning System” of live/run-time

issues. It may provide lower latency, in terms of getting relevant feedback

than app store reviews, and it can also be used to cross-check and corroborate

complaints from users.

Conceptual App Feedback Cycles

67

56 “Analytics”, Wikipedia.

AN OVERVIEW OF ANALYTICS

This and the following section cover the general concepts of analytics. They

help set the scene and context for mobile analytics.

According to Wikipedia, analytics is defined as “the discovery and

communication of meaningful patterns in data”.56 Therefore, it’s driven by

data where we apply techniques to glean useful, relevant insights so we can

improve upon things.

UNDERSTANDING MOBILE ANALYTICS AND FEEDBACK

In App Store feedback

Key Questions Addressed by Analytics

In Analytics At Work,57 Davenport identified key questions addressed by

analytics, where most organisations concentrate on the information aspects

rather than seeking the insights that analytics can bring.

In the confluence chapter we reconsider these questions as they may apply to

using mobile analytics to help test mobile apps.

Key Questions Addressed by Analytics, from Analytics At Work

57 Davenport, T. , Harris, J. , and Morison, R.: “Analytics at Work.” Harvard Business Publishing, Boston, MA;
ISBN 978-1-422-17769-3, 2010.

69

Tracking Three Key Aspects:
Business, Social, and Technology

There are three broad purposes for using analytics: business, social, and

technological. Here are some examples of each aspect.

• Business (ways to measure and grow the business, for instance

revenues, reach, and traffic volumes are commonly used). The business

aspect concentrates on viability and achieving the organisation’s

objectives. Viability often includes financial aspects, particularly for

commercial organisations.

• Social (ways users communicate about the app, what’s happening in their

lives, and through their use of the app). Social focuses on the human

elements; how users perceive the software, whether they feel sufficiently

strongly to try to influence others, positively or negatively; and even

potentially their mood.

• Technological (how the software is performing on the various computers

and devices, including reporting potential and actual problems). The

technological aspects include the app and related systems, they can affect

the costs, constrain growth, and lead to user dissatisfaction. They can

include operational analytics, including deployment of updates and all

the backend servers and services. While they’re seldom in the limelight,

they underpin everything else. And as many companies are discovering,

flaws and problems in the technological aspects can really sting when

failures occur.

UNDERSTANDING MOBILE ANALYTICS AND FEEDBACK

Here is a possible mapping between various forms of analytics related to mobile

apps and the three primary purposes of using analytics from the perspective of an

organisation or team.

PROCESSING FEEDBACK

Here we discuss a related topic to mobile analytics, that of processing

feedback, particularly feedback that’s been provided on app stores. Other

sources include social media websites, video websites, etc.

Forms of Analytics

Feedback Paths

71

App Store Feedback

App stores provide a key source of feedback as they’re a well-known

rendezvous, influential, and relatively easy to mine in order to obtain usable

data. App store feedback can include recommendations and requests from

users worth considering and reports of problems that might otherwise go

unnoticed by the development team. We will use examples for an Android app

called Kiwix, one which Julian Harty co-develops and supports.

One of the first activities one can do is compare the ratings with the

comments, as some common patterns may emerge. These patterns may

unearth feature requests, including ones where the user offers to increase

their rating once the feature has been implemented. The confluence chapter

includes several worked examples of analysing feedback where we discovered

several feature requests in the process.

UNDERSTANDING MOBILE ANALYTICS AND FEEDBACK

Reviews of Kiwix Android App

If you would like to know more about working with feedback on apps, here are

some useful resources.

• A very readable book on ways to improve app quality, including analysis

of feedback in app stores, is App Quality, Secrets of Agile App Teams (ISBN

978-1-499-75127-7) by Jason Arbon.

• There are various interesting academic papers investigating app store

ratings and reviews. Here are a couple well worth reading:

 • “Why People Hate Your App – Making Sense of User Feedback in a Mobile

App Store” (http://chbrown.github.io/kdd-2013-usb/kdd/p1276.pdf).

 • “What Do Mobile App Users Complain About?” (http://dx.doi.org/10.1109/

MS.2014.50). One of the key insights here is that, overall, 2-star reviews

identify more serious issues than those reported in 1-star reviews.

Challenges Working with App Store Data

There are various challenges related to working with app store data, with

regard to the feedback posted online about a particular app. These include

the volume of feedback, where popular apps from Google and Facebook

may receive several thousand items of feedback per day, spam and unethical

feedback (including paid-for ratings to skew the overall rating), coping with

multiple languages, and interpreting what people write. Some feedback may

be misinterpreted. For instance, sentiment analysis can have problems correctly

interpreting negatives, sarcasm, and slang.

A related consideration is realising that customers may have very different

perceptions of “quality”. According to the research on customer-perceived

73

quality by Mockus et al: 58 “Some measures of customer perceived quality

can vary by up to 30 times … This indicates the profound importance …

in managing customer perceived quality, especially when a customer’s

expectations are high”. The authors also discussed the impossibility of being

able to replicate all the customer environments during system verification.

The data may be hard to obtain and only available briefly, so it may need to be

retrieved often and stored locally (while upholding privacy aspects of hosting

personally identifiable information).

Inconsistent Feedback

Another challenge related to working with app store data is when feedback

contains internal inconsistencies. For example, Kiwix received 5 stars even

though links were broken in that release. These inconsistencies hint at some of

the challenges of analysing user-provided feedback, especially automatically.

UNDERSTANDING MOBILE ANALYTICS AND FEEDBACK

58 Predictors of customer perceived software quality

Inconsistent Feedback

We will now move on to two related topics: sentiment analytics and emotional

analytics. Both can be usefully applied to analysing user-provided feedback. In

addition, they offer the potential to gather passive information (where the user

doesn’t explicitly provide feedback) albeit with potential privacy implications.

Sentiment Analytics

Understanding what users think, or at least write, about our apps can help us

find aspects worth improving in the app, and provide additional sources of

testing ideas.

Sentiment analytics process a user’s communication about the app to

determine the emotions the user intends to communicate to other people.

Satisfied and happy users may recommend and promote an app, while unhappy

and dissatisfied users may try to dissuade people from using an app, business,

or service. Organisations may need to be able to react quickly, appropriately,

and positively in response to both positive and negative sentiments.

As users often use social media, app store feedback, and other online forums,

their written communication is often easy to access and analyse. App store

feedback was covered in more detail earlier in this chapter.

If you are interested in evaluating sentiment analysis, there are various freely

available projects available, including an opensource Android app,59 and

LingPipe, which has a tutorial60 on sentiment analysis. Be prepared to work

directly with code as you will learn by doing. Another software project from

Stanford61 includes some interesting comments about the accuracy of the

sentiment analysis in various circumstances.

59 Tweentiment

60 LingPipe tutorial

61 http://nlp.stanford.edu/sentiment/code.html

75

There are numerous research papers, including two aptly named papers, “How

Do Users Like This Feature? A Fine Grained Sentiment Analysis of App Reviews,” 62

and “Why People Hate Your App – Making Sense of User Feedback in a Mobile App

Store” .63 Both these papers are well worth reading.

There’s also an online book available, called Opinion mining and sentiment

analysis,64 that covers many of the core concepts.

UNDERSTANDING MOBILE ANALYTICS AND FEEDBACK

62 https://mobis.informatik.uni-hamburg.de/wp-content/uploads/2014/06/FeatureSentiments.pdf

63 http://chbrown.github.io/kdd-2013-usb/kdd/p1276.pdf

64 Pang, B. and Lee, L.: Opinion mining and sentiment analysis; Cornell; 2008.

Using Real User Sentiment
Analysis to Improve Application
Testing and Customer Support

Provided by:

Matt Johnson, Chief Marketing Strategy Officer, Applause

Here is a real-life example of how sentiment analysis helped

improve the testing of a mobile app. They were similarly able

to help improve customer support.

A leading U.S.-based retailer uses mobile sentiment analysis

to measure and monitor how effectively their apps satisfy

users’ wishes. Beyond this voice of the customer (VOC) use

case, however, this retailer has found two novel uses for this

treasure trove of user sentiment data.

• User sentiment data is used to help define and refine

the quality assurance investments that are made.

This is done via a collaboration between a Business

Intelligence (BI) team and the Quality Assurance (QA)

team. QA departments tend to define their test coverage

requirements (across use cases, devices, OSes, browsers,

carriers, etc.) based on what they’ve done in the past.

By bringing a BI mindset to defining what needs to be

tested, this retailer has expanded testing efforts where

they can make the greatest impact, and decreased them

where they have the least effect on real-world users.

• User sentiment data is used to help improve product

documentation and customer support. This same

retailer is mining mobile user sentiment data to

help identify and correct gaps in their product

documentation – and in the training and materials used

by their customer support team. By ensuring that assets

(help documentation and trained support reps) are in

place for the most common user issues – and keeping

up with these changing patterns as an application

evolves – this retailer is using real customer data to

deliver greater customer delight.

77

Emotional Analytics

Software is now available that claims to measure a user’s emotions, using

visual65 and auditory66 sources of data. They provide their results within a

few seconds, almost in real time. However, based on one of the author’s tests,

the results were not very accurate; nonetheless, these apps provide early

indications of the concepts. Researchers are even able to detect boredom from

mobile phone usage67 by analysing data from devices over extended periods of

days or more.

Some of these measurements involve collecting additional data that may

not be appropriate for your application. However, it’s also worth considering

how relevant a user’s emotions are in terms of them using your app and how

relevant mood is in terms of testing the app.

APPLYING ANALYTICS

By themselves, analytics do little good. They need to be applied productively.

In the industry there are three main ways they are applied – descriptively,

predictively, and prescriptively. We will cover each briefly in turn.

UNDERSTANDING MOBILE ANALYTICS AND FEEDBACK

65 http://www.affectiva.com/solutions/mobile/

66 http://www.beyondverbal.com/

67 When Attention is not Scarce - Detecting Boredom from Mobile Phone Usage

Descriptive Analytics

Descriptive analytics are able to describe what has happened, thereby

allowing us to gain insights such as the causes of how and why something

happened. These insights may help us to improve our work in the future, for

instance by avoiding similar problems. Most organisations use analytics for

descriptive purposes.

Predictive Analytics

Predictive analytics can tell us what is likely to happen. Historical data is

processed and machine learning provides the predictions. They do not

predict what will happen, they predict what may happen. They may offer

several alternatives.

We can then use the predictions to make decisions before the predictions

take effect, for instance to increase capacity of servers in the cloud so that

the system can cope with predicted increases in traffic volumes. They may

conversely predict when the system may have spare capacity where we can

schedule data processing on otherwise idle equipment, perform maintenance

and upgrades, etc.

Eric Siegel’s book Predictive Analytics68 is an extremely readable introduction

to the topic. And as Davenport identified, analytical insights can help predict

aspects of the future.69

68 Siegel, E.: Predictive Analytics. Wiley; ISBN 978-1-118-35685-2, 2013.

69 Davenport, T. , Harris, J. , and Morison, R.: “Analytics at Work.” Harvard Business Publishing, Boston, MA;
ISBN 978-1-422-17769-3, 2010.

79

Prescriptive Analytics

One step beyond predictive analytics is where the analytics recommends

an action. In the confluence chapter we discuss some of the risks associated

with computers making recommendations. Nonetheless, prescriptive

analytics can provide insights that can help us make informed decisions. As

machine-learning improves, the prescriptions may include clear explanations

that people can understand correctly so they can decide whether they

disagree with any of the reasons why the software is prescribing a particular

course or action.

ANALYTICS FOR MOBILE APPS

In the previous sections we provided the context for the rest of this chapter

where we turn to the world of mobile apps. For the authors, mobile analytics

refers to analytics incorporated into a mobile app, what could be described as

in-app analytics. We will expand the context so you can learn about similar

and complementary analytics.

An Overview of Mobile Analytics

The mobile app needs a way to report data about the device and what the

app is doing. In most cases this involves adding a software library to the app,

which does much of the hard work. However, some projects have written their

own software to do similar stuff. The library may include an API, a way that the

mobile app can provide additional information, which will be reported by the

analytics library.

UNDERSTANDING MOBILE ANALYTICS AND FEEDBACK

The data needs to be sent to servers which will collect, store, and process

it. Most mobile apps use commercial analytics services where a company

provides the service, including the servers, so the app development team can

focus on the app, rather than the analytics infrastructure.

As you probably know, first-hand, internet connections are not always

freely available so the mobile app’s analytics library needs to cope with

interruptions in network connectivity and only send the data when the

connection is available.

The following figure provides an overview of how mobile analytics sends and

processes the raw data.

Overview of Mobile Analytics
(Each step may be delayed)

Mobile Apps Sending
Analytics Data

81

What is Special About Mobile Analytics?

There are several reasons why mobile analytics are special and distinct

from other technologies such as traditional web analytics used by websites.

Intriguingly, web apps, particularly when used on mobile devices, can borrow

some of the design and architectural aspects of mobile analytics when they

use local storage, and rich client-side processing, to provide functionality

regardless of the current state of the internet connection.

The Library is a First-Class Citizen

Software libraries, when incorporated into a mobile app, have the same rights

and privileges as the overall app. Libraries can use the same resources and

access the same personal data as the app. If the app has access to the user’s

contacts, so does the library. By comparison, for web content, the libraries are

distinct and separate – they are third-party software. They can be blocked by

the user in their web browser, they have more restricted access to user data,

and legislation such as the EU Cookie Law70 applies. There is a helpful privacy

guide71 that directly discusses mobile analytics. It also describes various good

practices your users may appreciate you following online, published by the

Information Commissioner’s Office in the UK.

UNDERSTANDING MOBILE ANALYTICS AND FEEDBACK

70 EU Cookie Law: A readable guide on the implications of the legislation is available at https://ico.org.uk/for-
organisations/guide-to-pecr/cookiesand- similar-technologies/

71 Privacy in mobile apps, Guidance for app developers; ico.org.uk; 2013.

Data Connections Aren’t Guaranteed

For users of personal computers in static locations, the connection to the

internet tends to be reliable and “always on”. Web analytics and other software

can assume the connection will be reliable and available. For mobile apps,

particularly when the user is mobile, it would be unwise to assume the

connection is available and reliable. There are many reasons why an app may

not currently have a viable network connection, for instance if the device is in

flight-mode, or when there is no network coverage currently. As most mobile

analytics is designed to send the data using the internet, part of the design

needs to consider how the library will behave when there is no viable internet

connection. Some libraries discard the data, others may save and forward

some, or all, of the interim data. It’s important you know how the library is

intended to behave and to test its behaviour so you know what it actually does

in the circumstances.

What to Measure in a Mobile App

Mobile apps include screens in the GUI, events and actions within the UI, and

business-specific events and actions. To measure these, the mobile analytics

library needs to provide appropriate features and capabilities. There are also

device-specific details, such as the model, operating system version, available

resources, and how hard the device is working, which may be relevant and

useful. Again, the library needs to be able to collect and send the relevant data.

83

Differences from Web Analytics

Forrester found that nearly half of companies that use mobile

analytics to deliver their mobile analytics trends use ones

originally designed for websites.72 Analytics designed for the web

does not reflect various aspects of a mobile app, such as services,

transactions, or the run-time environment. Also, the libraries may

not cope well when a connection is not available. Will they store

events and forward them when the network is next available?

Analytics Throughout the Mobile App Ecosystem

There is more to mobile analytics than mobile analytics! Here we briefly cover

various sources of analytics in the overall ecosystem.

• Software Development Analytics focuses on the software development

(and testing) aspects of our work, as we use computers and software

inherently when working on mobile apps. There are rich veins of data

about what we are doing, including: the bugs that are found, time to

investigate and triage, time to fix, effectiveness of the testing, latency of

the testing, etc.

• Analytics about how the app is being used (usage.)

• Analytics about the conditions the app is being used in both within the

device – e.g., available memory, CPU load, sensor values – and beyond the

device – e.g., network characteristics, responses from remote servers, etc.

(technical and sensors.)

UNDERSTANDING MOBILE ANALYTICS AND FEEDBACK

72 Use Analytics To Create Mobile Best Practices, Forrester, May 2015.

• Analytics of detected failures (crash-analytics.)

• Analytics of processing user-provided feedback (e.g., processing of app

store feedback.)

Finally for this section, as we start to apply analytics, we can use analytics to

gain insights into the effectiveness and value of how we are using the other

analytics.

This meta-analytics can help inform us about the value of feedback paths

and what we do with the data received through specific feedback paths. One

way to measure the value is the concept of signal-to-noise ratio of each

feedback path. Another relevant measure is the latency – how long it takes for

information to flow through the particular path, and then how long it takes us

to act on the information when we have received it.

Software Development Analytics

Microsoft Research has been investigating how to apply analytics to improve

software development, as software development is a data-rich environment

awash with data about development, bugs, automated tests, and lots more. A

good introduction is one of their papers,73 where they modified Davenport’s

matrix to apply it to software development. Another research project,

called SAMOA,74 provides visual analytics specifically for mobile apps. They

discovered mobile apps have specific development characteristics, for instance

minimal use of inheritance in the codebase. Subsequent work discovered that

code tends to have more bugs when it uses platform-specific dependencies. As

73 Buse, R. P. L. and Zimmermann, T.: Analytics for Software Development. 2010

74 A readable introduction to the SAMOA project including the goals and rationale is available online: Minelli, R.:
Software Analytics for Mobile Applications. Master’s Thesis; June 2012.

85

the authors of the research say, “platform dependence may be used to prioritize

the most defect-prone source code for code reviews and unit testing by the

software quality assurance team”.75

Causes of Mobile Analytics

There are two main causes, or triggers, for mobile analytics. They are broadly

user-centric or app-centric triggers.

Event-Based Causes (App-Centric)

Event-based causes include transitions in the app’s lifecycle at run-time, for

instance when an app is started, paused, or killed. Timers, network requests

and responses, device-wide broadcasts, etc. can also be considered events

which may be relevant in terms of mobile analytics.

User Interaction-Based Causes (User-Centric)

User interactions are inherently related to the user, and therefore we may wish

to collect analytics related to these user-centric actions and interactions.

Examples of user-centric analytics include:

• GUI inputs (gestures, touches, text input)

• heatmaps (these will be covered shortly)

• haptics

• audio

• visual

UNDERSTANDING MOBILE ANALYTICS AND FEEDBACK

75 Syer, M. Nagappan, M. Adams, B. and Hassan, A. E.: Studying the Relationship Between Source Code Quality and Mobile
Platform Dependence; 2014

Complementary Analytics, Techniques, and Tools

Various software tools can provide different perspectives on the behaviour of a

mobile app or how it is being used in practice.

• Heatmaps collect data on interactions between users and the GUI. There

are at least ten vendors offering competing products. We will mention

some interesting examples here and Philippe Dumont, the CEO of Azetone,

has provided his perspective on using heatmaps for mobile apps.

• Profiling involves instrumenting an app to collect detailed run-time

information of the inner workings of the software. For practical reasons

this is done on a local device rather than in the field. Profiling can help

identify potential performance issues either with specific parts of the

software or on particular devices or operating system versions.

Layers of an App

87

• Virtual networks enable the development team to reproduce various

network conditions so they can test their impact and effects on software,

and in our case on mobile apps that use the network. Hewlett Packard

Enterprise offers their Network Virtualization76 product, which has

sophisticated algorithms to provide quite accurate reproduction of realistic

network behaviours. There are various free offerings, including those

provided with development tools for most of the major mobile platforms.

• Injecting faults into an environment can help expose flaws in how mobile

apps cope and behave. Several people, including Microsoft Research in

particular, have established ways to inject legitimate fault conditions,

such as HTTP response error codes, to determine how mobile apps cope

and behave. Sadly, they discovered many apps were not designed to

handle these legitimate, and realistic, responses and some even crashed.

Analytics, such as heatmaps, record inputs such as touches and gestures

which are inherently GUI orientated. These can be described as “touch-

streams”. GUI-based data capture can capture significantly more data, and

potentially much more frequently, than those reported by basic mobile

analytics. They may be reported similarly to the way mobile analytics events

are sent. Appsee provide some useful e-books on visual analytics.77

UNDERSTANDING MOBILE ANALYTICS AND FEEDBACK

76 https://www8.hp.com/us/en/software-solutions/network-virtualization/

77 https://www.appsee.com/ebooks

A Perspective on Heatmaps

This section is contributed by Philippe Dumont, CEO and

founder of Azetone.¥

Heatmaps track and aggregate all touch gestures into visual

heatmaps. They can help answer the following questions.

• Which areas of each screen do users use the most?

• Which features are used and which should be changed

or removed?

• Which UI elements are being ignored?

Delivering an outstanding Mobile User Experience

(a.k.a. UX) is arguably the #1 Key Success Factor to achieve

the best retention, engagement, and conversion rates with

your app. But if you want to get a comprehensive view of user

behaviour and interactions with your app, you will need to

go beyond the traditional analytics solutions. Why? Because

app analytics focus on providing you with data on the “what”

(What are the typical user paths? What is the performance of

the app like? What is the data on customer retention?) rather

than the “how” (How do users really interact with your

app and its user interface? How do you assess their

user experience?).

¥ http://azetone.com/

89

UNDERSTANDING MOBILE ANALYTICS AND FEEDBACK

Mobile UX is a tricky subject. It differs from app performance

or stability, it is harder to measure, and you may often not

even realize that your app has some major UX flaws! These

will not necessarily surface in negative app ratings (Hey,

your App doesn’t crash after all!) or result in angry customer

feedback (Who would really bother writing up something

about this?). They will just translate into limited app usage,

high user drop-off rates, and disappointing app monetization.

To address these issues, there is a new generation of tools

called Mobile Heatmaps or Mobile UX Analytics. These tools

allow you to obtain insights into how users respond to your

app design and UI and how to improve their overall

user experience.

Why is this really important for your mobile app? Well,

unlike a traditional website where you have full control and

decision-making power when designing the user experience,

a mobile app UX is subject to various external constraints.

App stores dictate UI guidelines which become the de facto

standard for apps as soon as they are released.

Your app will be compared with many other apps, including

those of your competitors, and the apps your users most often

use (for instance, Facebook, Yahoo Weather, or Airbnb).

Your users are constantly out there rating your app in public.

You can’t really afford a poor UX unless you are willing to

take the risk of lower app reviews and therefore lower organic

user acquisition rates.

To keep your app in the race and stand out from the crowd,

you need to take control of your mobile user experience, and

this is where mobile heatmaps can be of great help.

 Understand How Your Mobile App is Being
Used with Mobile Heatmaps

Mobile heatmaps are designed to provide a comprehensive

mapping of all the gestures performed by users in your app.

This is done by enabling a “finger tracking” feature in every

screen of your app. It will record every touch on the screen, its

type, and position. Heatmap analytics will process every tap,

swipe, zoom, pinch, etc., and map them as an overlay on top of

each screen of your app.

Example of a Heatmap

91

UNDERSTANDING MOBILE ANALYTICS AND FEEDBACK

By analysing the reports, you will discover useful insights

about your app usage and how to improve the user experience.

• For instance, you will be able to visualise whether some

users are trying to interact with parts of your UI which

are completely static.

• By analysing the time between two gestures on a given

screen, you may surface some difficulties or hesitations

in completing a task.

• By realising that users are scrolling a lot up and down

your screens, you may realise that they might be looking

for a next step that just seemed obvious to you.

Advanced Heatmap solutions enable you to collect and

compare different heatmaps based on various criteria. If they

are based on device information, you will be able to find out

user behaviour based on type of smartphone, screen size

or version of OS. If they include customer data, you will be

able to surface differences of app usage between new and

recurrent users, free and paying customers, or any other

relevant user dimensions.

The additional information will help you target precisely

where and for whom you may want to improve the user

experience for your app.

 Examples of How Heatmaps
 Can Help Improve the UX

If a lot of taps are recorded just around an active touch zone,

your button is probably just too small or not well positioned.

If you have several important elements below the fold

(especially on certain devices) but your page is rarely scrolled

on those screens, your users are missing out and you should

probably reorganise your page design.

Alternatively, in the heatmap example, we can see many

users trying to zoom on the bag. However, the picture is not

an active touch zone and cannot be expanded, resulting in

a disappointing user experience. This learning can be easily

captured using heatmaps.

Multimodal Communications

In the figure App in Context we can see the app in the context of the overall

device with the main inputs and outputs. These physical inputs and outputs

map to several of our senses – sight, touch, and hearing – together with our

mediums of communication – touch, audio, and, indirectly, vision – where the

device and the app can use one or more of the cameras to (a) “see” the user or

(b) “see” what the user sees.

93

As an example of one form of mobile analytics, heatmaps record touch inputs

(or touch interactions, gestures, etc.) overlaid on visual outputs (what the app

displays on the screen). It’s also possible, of course, to record the software to

software (or machine to machine) interactions. These interactions include network

communications, File IO,78 and system messages. Software events (such as timers

firing) may also be relevant. Similarly, behaviour within the app, particularly

“Exceptions” can, and often are, recorded.

UNDERSTANDING MOBILE ANALYTICS AND FEEDBACK

78 File IO is common shorthand for interactions between apps and various computer files. The files read by the app are
inputs and those written are outputs. Some files are both read and written.

App in Context

 Why Does Our Welcome Page Have Such a High Quit Rate?
Zahi Boussiba, CEO and Co-Founder, Appsee

A mobile app company faced a very serious issue. One in

three users were abandoning the app during the sign-up

process. The users had to accept the Terms and Conditions

by ticking an “I agree” checkbox, then tap the “agree and

continue” button.

The company discovered the impediments after analysing

their app’s sign-up screen using Appsee’s heatmap analytics.

Appsee Screen Heatmaps for the Problematic Screen

95

UNDERSTANDING MOBILE ANALYTICS AND FEEDBACK

 • The first issue was related to the flow: users were trying to

fast-track the process by tapping the “agree and continue”

button at the bottom of the screen. Users were stuck with

an unresponsive button, thought the app was buggy, and

left the app.

 • The second one was related to the design: The “I agree”

checkbox was too small to be interacted with and frustration

led users to quit the app.

The mobile development team resolved the issue by enlarging

the checkbox. They also added a simple notification to advise

users to tick the checkbox if they pressed the “agree and

continue” button before ticking the checkbox.

These 2 very minor changes helped increase the conversion

by almost 27%.

Recording Progress

There are various ways progress can be recorded. At the most detailed level,

all significant IOs (Inputs and Outputs) can be captured and reported under

relevant circumstances. Appsee,79 for instance, creates “video” recording

(which seem more like frequent screenshots at 1 Hz) and transmits these,

together with the touch-stream, when crashes occur. The recordings are

likely to be limited to a subset of devices, by using sampling techniques to

reduce the impact on users and the network.

79 https://www.appsee.com/

Screenshots are quite detailed and may consume significant bandwidth.

Mobile analytics libraries, such as AppPulse Mobile, generate and send an

event on each screen transition. It may be possible and practical to match, or

pair, these with a visual representation of each of the screens to approximate

the GUI flows displayed, and presumably seen, by the user. Much less data

needs to be transmitted for an event-based recording. However, some fidelity

is lost, particularly how the UI is presented (the layout) on particular devices.

And similarly, the details of the touch-stream aren’t recorded so they aren’t

available for analysis.

The screens may extend beyond input forms, etc.; for instance, they may

include maps, games, emails, videos, etc. In some cases, for example, maps, the

coordinates, zoom, and other mapping settings could be captured and provided

to enable the GUI to be reproduced for analysis.

Similarly, other forms of inputs and outputs could be captured and sent for

analysis, for instance pictures of a person’s face, recordings of their voice (and

other sounds), etc. Settings, configurations, and their changes may also be

relevant and germane to analysis.

For Now We See Through a Glass, Darkly…80

None of the various techniques capture or provide “everything”. They are

based on recording “some” and perhaps “enough” information to be useful.

Later on we will cover some of the problems and risks of gathering too

much information. For now, we’ll assume we’re trying to establish how much

information is enough to be useful.

80 Taken from Corinthians 13:12; https://www.biblegateway.com/passage/?search=1%20Corinthians%20
13:11-13&version=KJ21

97

One of the reasons why “everything” won’t be available is that the behaviour of

an app is seldom purely a factor of touch gestures on the GUI; often, there are

several factors which (in combination) generate the resulting behaviour. Some

factors are likely to be more relevant than others. However, the relevance of

particular factors may vary from one aspect of the app to another. For instance,

would background light be relevant for a face recognition algorithm used in an

unlock screen app used on various Android apps? If so, how does the relevance

vary? What about network conditions, other sensor inputs, etc.?

By analogy, we are able to recognise objects even when they’re not as high a

quality as we might wish or prefer. The example of increasing the resolution

of an image containing the letter “R” shown in this figure taken from

Wikipedia may be a useful illustration – we can start to recognise the letter

once the resolution reaches 10x10, it’s clearer at 20x20, and easy to discern

at 50x50 pixels.

Similarly, we may be able to glean useful information using mobile analytics

once a certain minimum resolution has been reached. In this case, resolution may

be a factor of the types, frequency, and details contained in the various discrete

messages sent by the mobile analytics libraries.

UNDERSTANDING MOBILE ANALYTICS AND FEEDBACK

81 “Resolution illustration”. Licensed under Public Domain via Commons -
https://commons.wikimedia.org/wiki/File:Resolution_illustration.png# /media/File:Resolution_illustration.png

Resolution Illustration81

Even seemingly basic information may help us improve our testing; for

instance, the device model and available resources (CPU, storage, RAM, etc.)

can help us decide which devices to test on. The device’s locale can help us

decide which languages to test the UI in, etc.

We’re unlikely to obtain all the information needed to reproduce situations,

contexts of use, etc. despite any claims to the contrary. Instead, we can decide

on what information would be most relevant and useful, and then determine

how well and how completely a particular mobile analytics library supports

these requirements. We’ll go into more detail later on about testing and

selecting mobile analytics libraries.

Once we start receiving results from mobile analytics, we can use a technique

called interpolation, “filling in the gaps or blanks” to connect events in order

to establish sufficiently useful and realistic materials we can use for future

testing of the app.

Gaps in the Data

There are inherently gaps in the data, where some details are not recorded.

This holds for any inputs and outputs of the app and device. As we will

discover, the answer is not simply to demand and gather more data more

frequently; rather, the skill is to find ways to both fill the gaps and connect

individual events into a related set of events that “tell a story” about what was

happening. These stories can include user “journeys” as they are using the app,

or working out causality where one event or action led to another which led

eventually to something sufficiently important (such as a serious crash) where

we want to know what happened.

99

What happens in the gaps may be relevant from an analysis and testing

perspective. One of our challenges is to determine the relevance of data that’s

been recorded (some of it may not be relevant) and what is relevant from

the data that has not been recorded or is not available. We need to ask and

understand whether what happens in the gaps matters, e.g., the values, the

interactions performed by the user, the run-time conditions and context, etc.

Determining Relevance of Inputs and Events

From a testing perspective as well as from performance-efficiency and user-

privacy perspectives, it’s important to determine the relevance of inputs and

events and the sufficiency: how much information is just enough to enable us

to materially improve our work and the end product, incorporating the app. It’s

wise and healthy to avoid collecting significantly more, or excessive, amounts

of information. Ask yourself (and the project sponsors) the following:

• What do we need in the contents of events to enable us to understand

what’s germane?

• What are the effects of what we don’t know or see?

• When do the details matter? Under what circumstances or conditions?

• How well and how accurately, do we need to reproduce the missing

information?

• What and how do we need to safeguard the data?

• How could we make do with less information?

• How can we design tests that determine and exercise the variety of

contexts, situations, and inputs the app (and user) need(s) to cope with?

UNDERSTANDING MOBILE ANALYTICS AND FEEDBACK

One of the key skills and success factors of our work will be being able to

determine the relevance of the many potential details that could affect the

use of the app and its behaviours. We also need to be able to determine and

decide the:

• Relevance, or irrelevance of details.

• Whether there is a coincidence, a correlation, or causation between the

inputs (and context, etc.) and exposed flaws in the app.

COMPLEMENTARY DATA

Although we focus on mobile analytics, and it’s a very rich source of

information, it’s useful to use complementary sources of data to cross-check

data you obtain from mobile analytics. These sources can provide enough

basic information to help you improve your testing locally, even without

using mobile analytics.

Crash Reports

Crash reports capture and forward technical information about crashes that

happened in your mobile app. They can be forwarded using a library that’s

integrated into the app (similar to the integration of mobile analytics, but

typically simpler and with a tiny footprint in comparison), or the app store

provider may automatically capture the crashes as part of their service.

We need to be able to understand what could have caused the crash – either

our app didn’t provide something that was expected by the code that crashed

or our code wasn’t designed to cope with a response it received. There are a

couple of ways to do this. One way is to look at the source code of the app and

work backwards to the possible inputs. Similarly, we may identify flaws in how

101

the code handles the full set of responses, including malformatted ones and/

or timeouts, etc. Another possible approach uses a concept called breadcrumbs

(where developers preemptively add code to record a trace of what is

happening). Yet another approach is where the app incorporates a recording

of what happened before. Through these approaches we may be have enough

clues to understand and possibly reproduce the crash so the development

team can then modify the code so the app provides the correct inputs and is

able to cope with the full set of responses.

Log Files

Log files are used by all the main mobile operating systems, and virtually all

apps write messages to the log file. These messages often contain useful clues

on what’s happening and when problems occur. Log files are easy to access if

you have direct access to the device; otherwise, they are private unless your

app has permission to access them. In practice, they’re useful for local analysis

and debugging on local devices. There may be privacy issues reading them

from user’s devices.

The data in the log files can be filtered to remove irrelevant entries, e.g., from

unrelated apps, and to reduce the volume of data to analyse. Mobile platforms

(such as Android and iOS) automatically record errors that occur in apps in

addition to messages reported by the various apps, so there may be enough clues

(similar to those provided when using application-generated breadcrumbs) to

work out possible causes for problems. In a similar way to using mobile analytics

events, log messages can provide an indication of how the app is being used,

which may be useful for testing and analysis.

Log data from mobile devices is seldom used as a source for analytics as they

are private to the device and there may be significant privacy and other legal

implications of “mining” the log data, particularly where the data is from

other apps.

UNDERSTANDING MOBILE ANALYTICS AND FEEDBACK

Comparing Log Messages and Analytics Events

The following figure presents a couple of the main informational outputs of an

app: log messages and analytics events.

Analytics messages are externally oriented (they will be sent away for analysis

and reporting). They communicate something of what the user is doing, or what’s

happening oriented around the user or the app. Their contents tend to be at a

higher level than log messages, aimed at answering "what is the app doing?".

Log messages are internally oriented, relatively short lived (they are

automatically overwritten as more log messages arrive), detail oriented, and

intended to primarily help the developer understand what their code is doing.

Examples of Recording Information

103

They may include an indicator of importance or severity of the message. They

are intended to remain on the device, rather than being exported; however,

apps can request permission to read the log on Android, and there is a similar

way for iOS apps to read the system logs.82

Neither log messages nor analytics events are intended to provide every detail;

instead, they report what’s deemed key at that point in the running code. Their

format and properties are consistent for that point in the code; however, the

values may change from one message to the next based on the run-time

conditions and inputs to the app.

Profiling

Profiling is a technique used by developers where the code is modified to

record, in detail, how the code is running. Often it includes timing

information and is therefore used particularly to identify areas where the

performance of the code is poor. Developers can then tune the code to

improve the performance.

Like log data, profiling is developer oriented and seldom collected from

user’s devices.

SUMMARY OF MOBILE ANALYTICS

We have covered many topics related to what mobile analytics is and some of

the ways it can be useful independently of software testing. Now it’s time to

move on to the next topic: how mobile analytics can help improve testing of

mobile apps.

UNDERSTANDING MOBILE ANALYTICS AND FEEDBACK

82 Here are examples of an article (https://www.cocoanetics.com/2011/ 03/accessing-the-ios-system-log/) and an
opensource project (https:// github.com/billgarrison/SOLogger) for accessing iOS logs.

105

CONFLUENCE BETWEEN
MOBILE ANALYTICS AND
SOFTWARE TESTING

“Connect the tester with the customer...using data. ”

- Alan Page, Microsoft.83

INTRODUCTION

Mobile testing and mobile analytics are both independently valuable. However,

the value increases significantly when they are combined effectively. The

confluence represents the “coming together” of the two topics. Mobile analytics

can help improve the testing. Also, testing the mobile analytics can help

improve how it works and reduce the likelihood that the mobile analytics will

produce undesirable and/or erroneous results.

Applying mobile analytics to improve testing is an emerging topic, one that’s likely

to rank as one of the most capable and powerful approaches to improve testing

as the field becomes more established. As the “Feedback Cycles” figure indicates,

mobile analytics can also complement other sources of feedback, including test

CONFLUENCE BETWEEN MOBILE ANALYTICS AND SOFTWARE TESTING

83 Page, A.: “The Mobile Application Compatibility Challenge,” Mobile Deep Dive conference, 06 Nov 2015.

results, feedback from users, and crash analytics. Later in this chapter we provide

examples of how user-provided feedback can also help improve testing of mobile apps.

The two sources (mobile analytics and user feedback) can complement each

other to help improve our testing. They take different paths, and reflect different

perspectives. Mobile analytics only records what the instrumented app has been

configured to provide; users don’t need to do anything specific to provide the data

– the data records aspects of what the app is doing, and reflects how the app is

being used. Feedback from users is initiated by them and they choose what to say,

and how and where to say it. The data may contain fresh insights and ideas that

the app developers haven’t considered before.

Before we dive into the details, let’s briefly consider the value of combining

mobile analytics and testing from three perspectives: the business, the end

users, and in terms of testing the apps.

Feedback Cycles between Testing and Mobile Analytics for the App

107

Value to Business

For the business, the confluence can reduce the cost and latency in getting

apps and updates to the market. They also reduce the risk of adverse problems

in production, and enable testers to be engaged sooner if things are going

awry in production. Decisions can be made based on rich, live data, rather than

being limited to what the team thinks and is capable of.

Value to Users

For end users, they are likely to get higher-quality apps. In return, they “pay” in

terms of the costs of the data traffic and by providing background information

when the app is being used. Users are likely to appreciate the higher quality

and therefore (a) use the app more, and for longer, and (b) rate the app

positively and recommend it to more potential users.

Value to Testing

For testers, they have rich veins of additional data they can use to guide their

work and the testing they do. They may be able to reduce low-value and low-

grade work. Also, their work can be more rewarding as they can see the effects

of the results of their work in a near real-time, ongoing basis. We will go into

more detail in the next section.

Value of the Confluence for Testing and Testers

Inherently mobile analytics data provides access to insights into the app’s

behaviour in the wild. We can use the information to create tests based on

realistic examples of how the app is being used by end users. Applying the

information helps reduces guesswork in the tests we design and execute.

Mobile analytics can capture performance data, both for individual actions

and for overall processes such as registering an account. The data can help

calibrate and corroborate mobile performance test results.

CONFLUENCE BETWEEN MOBILE ANALYTICS AND SOFTWARE TESTING

The figure Analytics for Testing of Mobile Apps refines the questions raised

by Davenport84 (and reproduced in the section Key Questions Addressed by

Analytics) so we can identify ways mobile analytics can inform the testing of

the respective mobile app.

Mobile analytics may help us to test more smartly; for instance, the data may

make some of our previous tests redundant, where equivalent data is available

online. We may also be able to identify low-priority or low-value tests, for

instance, of features that aren’t really being used.

We can also use our testing skills to help design appropriate measures

to be implemented using mobile analytics. Once these are implemented

and incorporated into the app, we will start to collect information that can

help validate our quality-in-use requirements, and gather feedback on the

effectiveness of the tests we did and didn’t do for that release. Ideally, there

won’t be any crashes or flaws reported if our testing was “fit-for-purpose”

(assuming any related issues were fixed prior to release). Furthermore, as we

gather data from mobile analytics, we can then design better tests for future

releases of the app.

84 Davenport, T. , Harris, J. , and Morison, R.: “Analytics at Work.” Harvard Business Publishing, Boston, MA; ISBN 978-1-422-
17769-3, 2010.

Analytics for Testing of Mobile Apps

109

EXAMPLES OF HOW USING MOBILE ANALYTICS
CAN HELP USERS AND THE BUSINESS

One of our goals is to help remove impediments that cause users to stop using

the mobile app. Impediments can include problems installing the app on their

device, confusion, or a lacklustre experience when they first try using the app.

Analytical insights into how new users navigate through the app, and where

they seem to flounder or abandon aspects of the app, can help us to design

tests based on these user experiences.

Usability testing techniques, including interviews, can be based on live data

from the field. Furthermore, we can prioritise finding, addressing, and fixing

bugs and significant flaws, particularly in the commonly used areas of the apps

that people initially encounter.

EXAMPLES OF HOW MOBILE ANALYTICS
HELPS WITH TESTING

Here are various examples of how mobile analytics can help improve the

testing of mobile apps.

• A tester discovered a large group of users of the app were in Paris, using

the app in French. The team had enough information to change the types

of tests and include testing the app in French. Similarly, you may discover

regions where your apps are popular and model your testing to increase

the chances of satisfying these users with future releases of your app.

• We can discover more about the power consumption while an app is

running on various devices and find ways to improve the behaviour of

our app. Battery drain varied by a factor of three for similar hardware

CONFLUENCE BETWEEN MOBILE ANALYTICS AND SOFTWARE TESTING

specifications.85 The developers were able to reduce battery drain by

40% for the Kindle Fire by reducing screen brightness when the app was

running. As a result, the session lengths increased significantly on these

devices. Users tend to use apps for longer when the apps use less power.

• We can model usage based on different network connections. Users

preferred Wi-Fi and used apps more when they are connected with

Wi-Fi. Conversely, higher network latencies reduced interaction by 40%.85

Knowing these details can help us make sure we test under more realistic

conditions and focus on tuning how the app uses the network so that we

optimise it to keep the latencies low even on slower network connections.

• We can obtain detailed data on how the app is being used on various

current and new devices. Research85 found there was twice the usage

of an app on tablets than smartphones. We can adapt our testing to

reflect the usage on various devices, for instance, by performing some

longer-running tests to reflect how users use the app. We may also detect

anomalies where the usage on particular devices (such as the Kindle

Fire example earlier) doesn’t fit the trend compared to seemingly similar

devices. We can then focus our analysis and testing on the devices where

anomalies occur as we may discover and be able to fix problems that

reduce the usage. Conversely, we may find ways to increase and extend

usage from understanding the performance characteristics of devices

where usage is above average. Another way mobile analytics can help

is by providing early evidence of the app being used on new devices,

perhaps ones we’ve not even heard of until now.

• We can protect and potentially enhance revenue through new releases

of an app. A project discovered returning users provided over twice the

revenue of new users, and when the app was updated to appeal to new

users, they realised there was greater value in focusing on returning users

and maintaining a continuity of features that those users value.85

85 “Capturing Mobile Experience in the Wild: A Tale of Two Apps.”

111

• Our tests can become more relevant, based on evidence and reducing

the need for guesswork. Mobile analytics identifies usage patterns, user

journeys, etc. of the app so we can reflect usage more accurately in our tests.

Mobile analytics can also make usage easier to reproduce, and may make

crashes easier to identify, understand, and therefore fix.

OPTIMISE YOUR TESTING

There are many ways mobile analytics can help optimise aspects of your

testing. These include:

• Selecting the devices to test the app on.

• Creating tests based on mobile analytics (various examples throughout this

chapter) and user feedback.

• Prioritising the tests to run, and when to run them. This topic is introduced

in the Test Recommendation Engine section.

Selecting Devices

There are a multitude of distinct mobile devices, and as many of us know,

apps can behave very differently on different models. So it may be prudent

to test on more than one device model. Some teams simply use a subset of

the devices they have accumulated, while others select devices based on

popularity of the device or of their app on those devices.

Recent research86 discovered a better strategy for Android apps: tests are run

on the devices where users write most of the reviews, thereby increasing the

86 Khalid, H., Nagappan, M., Shihab, E. , and Hassan, A.E.: “Prioritizing the devices to test your app on: A case study of
android game apps” http://sail. cs.queensu.ca/publications/pubs/FSE2014-Khalid.pdf.

CONFLUENCE BETWEEN MOBILE ANALYTICS AND SOFTWARE TESTING

perceived quality of the app as improving. The app for these devices is more

likely to increase the app store ratings. Also, the reviews can help pinpoint

problematic devices so teams can focus their testing and bug fixing to make

the app work better on these devices (leading to better customer satisfaction

and, hopefully, better ratings). TestDroid87 also discovered some devices are

more likely to be problematic (or expose more bugs depending on how you

look at it).

When considering how to select devices, for Android, at least, using a mix

of devices with different operating system versions is more important than

covering other device characteristics when using a “practical” number of

devices, around 4 or 5.88

How Many? Diminishing Returns

There is a tradeoff between the number of devices on which we test an app

compared to the cost and time taken to do so. Furthermore, unless we have

a honed, effective method of selecting additional devices that increase the

variations, we may simply be wasting our resources. We recommend you

gather data on which bugs are reported on various devices and which bugs

you find subsequently during your testing on particular devices so that as

you continue to test, you can create your own model to decide how many

devices are sufficient.

You may also be able to decide the priority order for your testing, for

instance smoke testing on one of your faster, more capable devices (so you

get speedy feedback of any major issues), followed by testing on the most

popular relevant devices, and finally some of the additional devices to

maximise the diversity.

87 Testdroid: Automated Remote UI testing on Android

88 Vilkomir, S. , Marszalkowski, K. , Perry, C. , and Mahendrakar, S.: “Effectiveness of Multi-device Testing Mobile
Applications.” 2nd ACM International Conference on Mobile Software Engineering and Systems, 2015.

113

Using Virtual Devices

Virtual devices seldom have the fidelity to be high-fidelity substitutes for

physical devices in terms of performance, sensors, or – of course – device-

specific flaws or bugs. However, they are very useful when they complement

physical devices, and when we want to focus on general flaws that may affect

an app or the underlying codebase. Later in the book, in the Test Monkeys

section, we provided some examples of how Microsoft Research used

automated test monkeys, which were run on a large array of virtual devices.

By doing so they were able to reduce costs and scale the testing massively,

compared to testing on physical devices.

Virtual devices can also help test facets not yet available to you (for instance a

custom screen resolution) or where you’d like to easily fake some of the sensor

values (for instance for the GPS) and when there are new releases of the operating

system not yet available for use on devices.

An Epiphany

Yan Auerbach, Co-founder and COO Speechtrans Inc.

I had an epiphany when a friend of mine raised $1,000,000

USD funding. In his words: “I just showed the investors the

Analytics which explained that our app was being used more

than the calendar app which was pre-loaded on their device,

and that was all they needed to see it was a binary decision to

invest or not invest, and based on the analytics it pointed to their

decision to invest”. I had become laser focused on utilising

analytics within our own app since it was not something we

have done in the past other than as an afterthought. I became

CONFLUENCE BETWEEN MOBILE ANALYTICS AND SOFTWARE TESTING

obsessed with analytics and wanted to be able to understand

our customers better than they knew themselves. My co-

founder had told me for years to add a Currency Converter in

our translation app, but I fought back stating it’s not our core

competency. As it turns out, our currency converter is the third

most utilized function of our app now.

Prior to AppPulse Mobile there was a constant conflict with

my programmers. Each time I would tell them to add analytics,

they refused because it would slow their primary job, which

was development of the app, and for four years it didn’t

happen. They claimed that as we have 44 language pairs, the

implementation would require several thousand lines of code

to properly log which language pair was selected the most

often, and by which device, and how well it worked, etc.

It was not until I was in Barcelona at HP Discover in 2014

when I heard a magic word called “tagless” which changed

the way that I thought about software development moving

forward. I ended up meeting the reps of AppPulse Mobile.

From what I saw I thought it was possibly the silver bullet for

analytics for mobile apps, however I wanted to see for myself

because I believe if something sounds too good to be true, it

typically is.

I managed to sign up for the beta program and within 15

minutes, I had our app instrumented using this tool. I started

collecting analytics like I never imagined possible. Within the

first 24 hours I discovered our end users were spending 44

seconds on the registration screen. I immediately instructed

115

my developers to stop all the work that they were doing

and focus solely on adding single sign on to the registration

page. The next day we released an update that got us 5-star

reviews in the app stores and brought the registration time

down to 7 seconds. Without the analytics tools we might have

continued for 4 more years without understanding that it’s

not what we want to add to our software that’s important.

It’s what the end users want.

The tagless approach means we don’t need to write code

to generate the mobile analytics data. As a small team this

made a tremendous difference. Prior to learning about this

tool we estimated we would require a dedicated developer

to maintain the analytics module within the application and

generate reports.

MOBILE ANALYTICS AS THE SPICE TO HPE’S
SUGGESTED TEST PLAN

Before HP split into two independent organisations they published a proposed

test plan for mobile apps. Their test plan helps illuminate various relevant

topics. Therefore, the test plan forms the basis for the rest of this section. We

will consider how mobile analytics might relate to each of these topics.

CONFLUENCE BETWEEN MOBILE ANALYTICS AND SOFTWARE TESTING

We’ll identify primary and secondary sources where we believe particular

mobile analytics tools are relevant.

Design

In-app mobile analytics may not help directly in terms of the GUI. Instead,

good sources of analytics include sentiment and social analytics to help

designers improve the design of the GUI. Mobile analytics provides data on

usage, which can help inform designers of the effects of their designs.

Usability

Mobile analytics helps identify funnels for processes supported by the app

(e.g., placing an order), and establish user flows and popularity of various

aspects of the app, etc. It can also help record aspects of learnability and task

completion (including where the task is completed correctly).

Mobile analytics can help detect where users are confused, e.g., where they

seem to loop without making progress, where they stall, where they bypass

Optimise Your Test Plan

117

things we consider relevant/useful/helpful/germane, etc.

The primary source is in-app analytics; various other forms of analytics,

including social and sentiment analysis help us to interpret and obtain

insights from what the end users are saying about their perceptions of the

usability of the app. The App Quality book contains an interesting chapter on

gleaning usability-related feedback from reviews on app stores.

Functional

Mobile analytics helps capture that users are able to complete various

functional aspects correctly (including ideally without error). The app usage

from the field can be used to help devise automated tests of user flows,

provide more realistic timing data for the tests (“think time”), and help create

automated scripts that ease the reproduction of crashes.

The recommended primary sources of data are mobile analytics and crash

analytics. A useful secondary source is mining feedback from users.

Backend

Mobile analytics of user flows can be used as an input to performance

and load testing scripts. Activities using the app can cause API load on the

backend system(s).

Note: Mobile analytics traffic increases the load on the mobile analytics

backend servers – something to consider when devising how to use mobile

analytics in a mobile app.

Exploratory

Mobile analytics provides lots of usage information and meta-data on the

context/settings of the mobile device that may help testers devise better

CONFLUENCE BETWEEN MOBILE ANALYTICS AND SOFTWARE TESTING

interactive tests. Furthermore, the feedback is available quickly and contains

lots of information so testers can adapt their testing much sooner than relying

on other sources of data (or on their educated guesses, etc.)

The two primary sources of data are mobile analytics and mining feedback

from users.

Smoke and Regression

Bugs should ideally live and die once and once only. However, some creep back

in future releases. We can mine crash logs, as well as crashes caught by crash-

reporting libraries.

Multi-Channel

Multi-channel recognises that many users expect to be able to use a mix of

devices seamlessly, for instance when watching a video, composing an email,

and many other tasks. Therefore, multi-channel testing for mobile apps would

involve performing single, conceptual activities where the activities include at

least one mobile app running on at least one mobile device.

Potentially the task could be spread across several heterogeneous devices,

for instance starting on a Windows phone, continuing in turn on a BlackBerry

device, an iPad, and then an Android smartphone before being completed on a

laptop computer using a web app. The tests should consider latency of updates,

loss of state, and other information, and the ease of being able to continue

seamlessly across the various devices and implementations of the apps.

Localisation

Mobile analytics can gather information on where the app is being used

and the language settings of the device and app. These various pieces of

information can help devise appropriate active testing and can be used as

119

filters to group other usage data to determine whether the app is (a) being

used differently in some locales or (b) whether the app is behaving in ways

that impact its use for particular locales.

The primary source would be mobile analytics if it records locale-related data;

otherwise, look at app store analytics. A good secondary source is the feedback

provided by users.

Offline/Online

We are not aware of mobile analytics libraries that report when the app was

being used in Offline mode; however they could. The mobile analytics library

would need to store and forward the relevant message(s). We might be able

to infer usage if we used more sophisticated algorithms (based on calculating

differences in location, for instance, between event messages received at the

analytics servers).

Capacity Planning

Mobile analytics trend data (based on user flows, activities, time of day

traffic, time zones, etc.) can help with capacity planning. At a macro level,

usage reported in mobile analytics reports can be correlated with analysis

of server-side utilisation and performance data, which may help us fine tune

our capacity planning and scaling of the servers. Organisations including the

Computer Measurement Group (CMG)89 focus on capacity planning, albeit

mobile apps don’t seem to feature strongly.

Interaction

Users can tell us how they interact, e.g., through feedback on social media

and in app store reviews. We can also use GUI-related analytics such as

89 https://www.cmg.org/

CONFLUENCE BETWEEN MOBILE ANALYTICS AND SOFTWARE TESTING

heatmaps to capture interactions. Mobile analytics can be used to record other

interactions, e.g., audio (voice) and movements (e.g., tilt, rotate, etc.) when

suitable events are incorporated into the app.

Another form of interaction is interaction between the app and other devices,

for instance with a car’s electronics, wearables, and even internet-enabled

coffee machines, etc.

Interruption

Android apps can register BroadcastReceivers, which receive notifications

of what will become interruptions, e.g., an incoming call. Potentially, mobile

analytics could report these incoming interruptions and/or relevant Android

lifecycle events. With iOS it seems the OS does not allow the app the

opportunity to know of, or handle, interruptions, which would make such

information hard for mobile analytics to glean. Perhaps it may be possible to

infer when gaps in usage could be attributed to interruptions, even on mobile

platforms that don’t provide the information.

Interoperability

Unless apps are using a private API (where the endpoints are known in terms

of which apps are interoperating), at best we may be able to report that

the app was able to interoperate with an anonymous partner. With more

sophisticated detection (traffic and timing analyses) and additional testing, one

might be able to identify interoperability partners though signature analysis of

the protocol interactions.

In some cases, e.g., on iOS when interacting with a system service, API, etc., an

app can accurately record and report interoperability with those services’ APIs.

For Android, by querying the device’s installed apps, their registered listeners,

etc., apps could potentially identify their “trading-partner”.

121

Services and API Integrations

Services seldom have a GUI; instead, they operate in the background, albeit

sometimes triggered by GUI actions and events, other times to provide

ongoing capabilities. (For example, StackOverflow has various code discussions

for a file download service on Android90.) Potentially, Services may not have

any GUI (e.g., Android Content Providers91.) Instead they may serve other apps,

services, and/or the system.

Network

Where network interactions are recorded and reported using mobile analytics,

then the data can be mined to create suitable tests for the network aspects of

mobile apps. Network analysis is unlikely to be a primary use case for mobile

analytics. However, Flight Recorder has an interesting concept of recording the

HTTP requests and response codes,92 which can help us model real network

traffic to make our tests more complete and more realistic.

App Store

Various services enable developers to pre-release apps to a subset of users.

For those integrated into an app store we can test aspects of working with

the app store framework without affecting mainstream releases. We could

add additional mobile analytics into Beta releases to increase the volume and

depth of the feedback that might be impractical for a full release.

Questions to consider include: How can analytics serve to get app approval?

What are the top reasons why apps get rejected? How might mobile analytics

help address or mitigate some of the reasons?

90 There are several discussions on the programmer-oriented stackoverflow.com website. For instance, http://stackoverflow.
com/ questions/11932473/how-to-handle-interruptions-during-downloadinglarge-file-in-android; http://stackoverflow.
com/questions/21948131/howcan-i-make-a-download-service-on-android-that-can-be-stopped-midprocess; and http://
stackoverflow.com/questions/2635786/androiddownload-large-file.

91 http://developer.android.com/guide/topics/providers/contentproviders.html

92 https://www.flightrecorder.io/feature/http-requests-and-responselogging

CONFLUENCE BETWEEN MOBILE ANALYTICS AND SOFTWARE TESTING

Installation

Google Analytics makes it possible to record installations, and automatically

tracks installations on Android (unsurprisingly), and can be enabled on iOS;

see: https://support.google.com/analytics/answer/3389142?hl=en.

For Android, here are a couple of references to get started:

• http://help.tune.com/marketing-console/how-google-play-install-

referrer-works/

• http://developers.mobileapptracking.com/testing-the-google-play-

install-referrer/

Java ME93 seems to provide the most detailed and prescriptive support for

tracking installations. Java ME (which is more often used on simpler, almost-

smart phones, has support for Installation and Deletion notification URLs. JSR-

118 MIDP Documentation94 goes into some detail on what’s involved.

Note: If we’re specifically tracking installations, rather than post-

installation first-use of an installed app, we need to be careful not

to rely (directly) on any analytics incorporated into the app.

The world of installation analytics is likely to be best understood by the

app store and SDK providers (Google Play, Apple’s App Store, and Windows

Phone’s Marketplace). One might expect each of these app stores to track

installations (including errors); however, they may not share the data about

failed installations externally. As developers and testers of the apps, we may

therefore only learn of the successful installations.

93 https://en.wikipedia.org/wiki/Java_Platform,_Micro_Edition

94 http://download.oracle.com/otn-pub/jcp/midp-2.1-mreloth- JSpec/midp-2_1-mrel-spec.pdf?AuthParam=1444058557_
c11bbe5f1fb64cac4116061e167b7d27

123

Security Analysis

Security of mobile apps is already important and is likely to become much

more important in the next few years as we realise how prevalent mobile apps

have become. For instance, at a European airport the automated passport gates

can be remotely controlled by a mobile phone app, and – of course – mobile

banking is now commonplace and widespread.

Security analysis can apply existing techniques, such as static analysis. In terms

of using mobile analytics, the mobile analytics libraries are worth assessing

and testing for security flaws. Apps can be configured to report various

security-related information, such as when back-off algorithms are activated to

protect the app from potential attackers.

Mining security vulnerability reports can help savvy teams by providing

examples of how other software was vulnerable so they can fix apps the team

are responsible for.

Examples of Using Feedback to Improve Testing

We have taken several examples of genuine feedback for the offline Wikipedia

Reader, Kiwix.95

95 http://kiwix.org

Screenshot of Kiwix for Android

CONFLUENCE BETWEEN MOBILE ANALYTICS AND SOFTWARE TESTING

Kiwix enables people to interact with rich web contents,

including embedded videos. It reads contents from special

files, called ZIM files, where the contents are compressed to

make them much smaller than the source materials.

The Android app includes an embedded web browser,

a WebView, which dominates the user interface, and

various capabilities and menus that resize according to

the screen dimensions. The app is backwards compatible

with early versions of Android, including 2.3, and is fully

internationalised, to help as many users as is globally

practical. The project is opensource, and can, therefore, be

studied and enhanced easily.

Feedback: Cannot Copy the Content

The full comment is: “Nice but I can’t copy the content”. The feedback is short

and clear.

As copying is a feature expected by users in many apps, and one that can be

immensely frustrating when it doesn’t work, we could consider this a bug and

one worth fixing. From a testing perspective, once we have agreed the app

should support copying of content in the GUI, we can add tests for copying

from Kiwix and pasting. As the content is intended to be read-only, the main

place paste could be tested is using the search feature. Additional tests to

paste content to other apps would be useful to help determine whether Kiwix

meets the user’s expectations.

125

Feedback: Cannot Find “World War One”!

The full comment is “Very bad. When I typed many titles for ex ‘world war one’ it

does not show any informations”.

The comment is a little harder to parse, for instance “for ex” instead of the

full “for example”, and using “informations” as the plural form, rather than

“information”. Nonetheless, there is a key usability issue here – the user does

not expect to have to search using the exact case of the text in the contents.

In terms of the usability issue, the app is intended to help people read

contents and find content they search for. The app used exact matching, and

limits this to topic searches rather than full text searches. (For technical

and space reasons the app is unlikely to support full text searches in the

near future.) These characteristics make the app much harder to use. The

app is working as designed, but not as some users wish. Therefore, once the

development team agrees to implement case-insensitive searches, tests can be

added for case-insensitive searches against known content. These tests could

probably be automated.

Potentially, the search could be further enhanced using fuzzy matching, for

instance to accept “world war 1” as a synonym for “world war one”. Search

engine design and implementation are quite involved and sometimes

complex topics.

“Curate’s Egg” Feedback

The full comment is quite detailed and contains several overlapping pieces

of feedback. “Finally zooms properly in KitKat! However, need to [Clear Data] to

resolve Force Close problem after update. When my Samsung tablet got updated

to KitKat last year, I was not able to use Kiwix properly because of the incorrect

CONFLUENCE BETWEEN MOBILE ANALYTICS AND SOFTWARE TESTING

zooming. Have been waiting for this fix since. However, after the 1.94 update,

the app keeps force-closing. Discovered that if you go to Settings > Applications

> Kiwix and then click the [Clear Cache] and [Clear Data] buttons, that fixes the

crash problem”.

This is a rich source of information, including advice for other users of the

Kiwix app. They have raised issues of usability and accessibility (zooming),

upgrades, and the effects of an operating system update to Android KitKat

(version 4.4). Android KitKat included a significant change to the embedded

WebView that many apps use.96 The revised WebView no longer reflowed text

and other contents when zoomed. Although there were good reasons why

Google removed this feature, the change adversely affected users who wanted

or needed (in terms of accessibility) to resize contents on the screen. There

was no simple fix from a programmer’s perspective.

In terms of testing, there are numerous tests available, including the following:

• Pinch and Zoom on each version of Android, particularly KitKat where the

embedded WebView changed technologies.

• Testing the app’s functionality when the platform is upgraded. Include tests

that upgrade between non-contiguous updates, for instance, where a user

upgrades from 1.8 to 2.0.

• Testing the preservation of user preferences on deinstallation and

reinstallation.

Strategically, it may be worth analysing crash logs to determine whether we

could detect the problem from that data alone.

96 A useful discussion on the security implications is http://www.androidcentral.com/android-webview-security.

127

Feedback: User Settings Lost on Reinstallation

A user reported that “After uninstall/install again, it works (I just lose my favorites)”.

Again, there are a couple of spelling mistakes that may complicate automated

analysis of the feedback. Users might reasonably expect that their favourites

would be preserved if they uninstall and reinstall an app. After all, we might

do likewise if we have problems applying an update. However, there may be

limitations on how the platform (operating system installed on the device)

deals with app-specific data when an app is uninstalled. Potentially, the app

could store user settings and favourites in a way that would preserve them

through uninstall/reinstall cycles.

Analytics might be able to provide insights into how often users follow the

uninstall/reinstall cycle rather than an in-situ upgrade.

In terms of testing: Did we test if uninstalling and reinstalling preserved

the favourites? Perhaps there’s a latent problem, or perhaps we should set

expectations if there is no workaround, etc.?

Feedback can help us understand different usage patterns, scenarios, etc. For

instance, with Kiwix, several users asked questions about using data files of up

to 40GB: Does the testing include tests with single large files (where a single

file is around 40GB) and sharded files, where the content is split into a set of

several 2GB files (used to cope with limitations in FAT32 file systems)?

We can summarise how feedback can help us improve our testing as two

main aspects:

• Stuff we missed that we could and perhaps should have “caught”

during testing.

CONFLUENCE BETWEEN MOBILE ANALYTICS AND SOFTWARE TESTING

• New discoveries on ways the app is being used that can enrich and

tune our testing.

Driving Testing from App Store Feedback

We can start sampling by reading daily reviews for our app, and possibly also

for some similar apps if we think the feedback would be relevant to help us

devise tests. To scale the work we may want or need to automate the data

collection. Sentiment analysis, categorisation, and mining for information of

devices, etc. can all be used to provide skeletal models for us to create some

appropriate tests.

• Antony Marcano proposed a novel concept of creating failing acceptance

tests where practical, rather than writing a bug report.97

• Where usability issues are reported, consider whether running usability-

evaluations would help uncover additional areas where usability can

be improved.

• You may notice some devices become notorious for poor user experiences;

if so, it’s worth adding these models to your pool of devices to use when

testing new releases.

There are several relevant research papers on mining online reviews,

including: “Retrieving and Analyzing Mobile Apps Feature Requests from Online

Reviews”98 and “AR-Miner: Mining Informative Reviews for Developers from Mobile

App Marketplace”99 where researchers provide various examples of how they

were able to discover relevant information including unmet performance

requirements, feature requests, etc.

97 Described in a topic called “The Hidden Backlog” pp. 426-427 in Agile Testing, ISBN 978-0-321-53446-0.

98 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6624001

99 Ravindranath, L., Nath, S., Padhye, J., Balakrishnan, H. “Automatic and ScalableFault Detection for Mobile Applications.” ACM, 2014.

129

MINING DATA HELPS IDENTIFY
INNOVATIVE WAYS TO TEST
Microsoft mined crash reports collected by the Windows Phone app store and

they discovered that many apps suffered from common flaws. Over 90% of

the crashes were caused by only 10% of the root causes. They then created

a testbed where they used various virtual “monkeys” that were able to cause

mischief for the apps to test whether the app coped well under realistic,

adverse conditions. They found over 1,000 new bugs, and therefore the app

developers were now able to quickly hone in on the areas worth improving in

their code.100

Sources of data to mine include:

• Mobile analytics data (structured)

• Crash data (structured)

• Feedback (unstructured, free-form text)

Structured data is often easier to process and tends to be more data oriented.

In comparison, and as examples in this chapter show, unstructured, free form

text is significantly harder to process and the results are more likely to have

errors of interpretation.

TEST RECOMMENDATION ENGINE

Two of the perennial challenges for software testing are (a) deciding which

tests to perform from an existing pool of tests, and (b) identifying additional

tests to help complement the existing tests. Research, back in 2010,

considered a concept described as “Recommendation Systems for Software

CONFLUENCE BETWEEN MOBILE ANALYTICS AND SOFTWARE TESTING

100 Ravindranath, L., Nath, S., Padhye, J., Balakrishnan, H. “Automatic and Scalable Fault Detection for Mobile Applications.” ACM, 2014.

Engineering” (RSSE) and how it might help software developers by making

recommendations.101 The first chapter of a book,102 on RSSE, is a good place to

learn more about the concepts involved.

Mobile analytics is able to provide a rich, ongoing source of data about how an

app is being used, and as such it’s worth exploring how the data could be used as

part of a Test Recommendation Engine (TRE). Similarly, user feedback and crash

analytics can also be incorporated to help provide recommendations of tests. The

following figure indicates the main sources of information when using mobile

analytics as the main source.

101 Robillard, M. P., Walker, R. J., and Zimmermann, T.: “Recommendation Systems for Software Engineering.” IEEE Software; 2010

102 Robillard, P. R. and Walker, R.J.: “An Introduction to Recommendation Systems in Software Engineering.” Springer, 2014.

Test Recommendation Engine

Our decisions can be based on events, for instance when a new release of

the app has been built successfully, or when someone reports a problem

with an installed version of the app. Mobile analytics can be used as an

131

CONFLUENCE BETWEEN MOBILE ANALYTICS AND SOFTWARE TESTING

103 Linares-Vásquez, M., et al. “Mining Android App Usages for Generating Actionable GUI-based Execution Scenarios.” cs.wm.edu.

104 White, M., et al. “Generating Reproducible and Replayable Bug Reports from Android Application Crashes,” 23rd IEEE
International Conference on Program Comprehension (ICPC), 2015.

additional source of data to augment and enhance our current decisions.

The concept is of a Test Recommendation Engine (TRE), which combines

information gleaned from mobile analytics with the body of known tests and

inputs from various events.

The TRE could be fully automated, for instance by using machine learning, or it

could involve knowledgeable “experts” such as a skilled analyst-tester.

Simple recommendations can be based on characteristics of the devices,

for instance when the app starts being used on a new, previously unused,

model. The importance of the new model may increase on factors such as

whether it has a previously untested screen resolution or screen aspect, etc.

Similarly, if there are higher error rates (as indicated by crash analytics), slower

performance, or higher abandonment rates, specific testing of the app on those

devices may help us determine whether there is a relationship between the

model and whatever aspects are providing cause for concern.

Higher than average rates of change to data may also be worth investigating,

both when the values are increasing and when they are decreasing. For

instance, if a device loses popularity, that might be a valid cause for concern

and – as experienced performance testers know – if performance seems to

improve markedly, there may be a bug that’s surfaced somewhere in the app or

the supporting systems.

In terms of identifying new tests, there are several research projects where

usage data and crash data have been successfully used to create new tests103

and ways of reproducing bugs automatically.104 These projects show some of

the potential of how mobile analytics (with the usage data it can provide) and

crash analytics can be used to create highly relevant automated tests.

THRESHOLDS AND ALERTS

Once we use mobile analytics as a source of information about the usage of a

mobile app we should be able to find ways to process that data on an ongoing

basis to generate alerts when thresholds are crossed, for instance if the error

rate exceeds a threshold, or conversely a previously popular device drops

below a threshold. These alerts could provide something akin to a news feed

and be used to overlay some of the charts and graphs in the reports.

We may want the alerting system to:

• Wake me when …, and ...

• Tell me when a trend changes significantly (for instance if usage

changes exponentially.)

THINGS TO CONSIDER

Mobile analytics is not a panacea, although it can help significantly, and

materially, it will not “solve” our testing challenges. Here are a couple of topics

worth considering.

Necessary but Not Sufficient105

There’s more to do. For instance, we have to learn how to understand and

apply the analytics to get effective results, and continually seek ways to

improve the analytics.

Mobile analytics does not tell us everything, and may not even be the ideal

source of information. There are other similar and complementary techniques,

105 Necessary but not sufficient is a philosophical concept that can help us realise there’s more needed. An interesting
online resource is a video from Khan Academy.

133

CONFLUENCE BETWEEN MOBILE ANALYTICS AND SOFTWARE TESTING

for instance interviewing users, using heatmaps, and even using performance

profiling tools.

Mobile analytics complements crash reporting, and both have a broad reach

across most of the running instances of an app. They’re both able to report on

usage in development and testing as well as in the field. Users can volunteer

additional feedback, for instance through an app store or on social media.

Notes for “Where Mobile Analytics Fits” Diagram

1. The entire user population are those who’ve used the app at least once

and haven’t deinstalled the software. Some may not have internet access,

others may block the ability for the app to send feedback, while others

aren’t using the app currently.

2. Social feedback is also relevant to the team, including dev and test.

3. Crowd-sourced testing tends to provide some relevant information to

the test team, little to the rest of the team, and the crowd testing team/

company probably know more than they’ve explained to the test team, etc.

Where Mobile Analytics Fits

Mobile analytics does not report lack of use when the app is stopped. However,

we may be able to infer the periods when it’s not been used when events

are reported each time the app is started and stopped cleanly. In some cases

the stop event may not be reported (for instance, when the operating system

forces the app to stop, perhaps after a crash or when the device is working too

hard). If so, we may be able to infer when the app stopped. We may be able to

combine crash data gathered and reported by the platform through the app

store to fill in otherwise missing data. In-app analytics doesn’t report when

an app has been uninstalled, or removed from a device, or when a device

has been wiped and reset. Again, we may be able to use industry data and

guesstimates to infer when an app stopped being used.

Unknown-Unknowns and Known-Unknowns

Mobile analytics only reports the information it’s designed to capture and

where it has a viable connection to send the data. There will be data it does

not capture and situations where it doesn’t send the data. We need to keep

in mind the data that isn’t captured. Also, the data that is captured and

resulting reports may be flawed and have bugs in them. It is worth calibrating

the reports by running some internal tests. We will cover testing of mobile

analytics in the next chapter.

Automation Can Degrade Outcomes

Over a decade ago, Cummings wrote a key paper106 on ways people’s

performance can degrade to the detriment of the decision and the outcome

as systems become more automated. We may over-trust information from

analytics and over-rely on recommendations from those systems. We need

to consciously guard against these biases and instincts, and perhaps there’s

106 Cummings, M. L.: “Automation Bias in Intelligent Time Critical Decision Support Systems,” MIT, 2004; http://web.mit.
edu/aeroastro/labs/ halab/papers/CummingsAIAAbias.pdf

135

CONFLUENCE BETWEEN MOBILE ANALYTICS AND SOFTWARE TESTING

work for us to do to find ways to compensate and adapt both the systems

and our interactions with them in order to improve the decision making

and outcomes.

Let’s finish this chapter with another quote from Alan Page, of Microsoft: “You

are not the customer. Data helps you learn about the customer. Measure often,

learn often” .107

107 Page, A.: “The Mobile Application Compatibility Challenge, Mobile Deep Dive Conference,” 06 Nov 2015.

137

YOUR FUTURE

Perhaps the time has come for you to decide what you’d like to do next?

Your app may already use mobile analytics; if so, then a good first step

would be to review the outputs and reports and see what insights you glean

to help you improve your testing. It might also be worth verifying that the

implementation is accurate and trustworthy – we’ll cover some testing aspects

later in this chapter. Once you’ve established your baseline, then it’ll be worth

considering how to improve, tune, and refine the data that’s being collected

and reported on. Perhaps another library or technique would be worth

investing in?

For apps that don’t include mobile analytics, there are various options. Perhaps

one of the free-to-use options would be worth considering, or HP’s AppPulse

Mobile, with its auto-integration, might also be worth trying. Technically, you

can experiment and evaluate with pre-release versions of your app, rather than

immediately having to incorporate mobile analytics and launch the app to end

users through the app store. We’ll provide tips for evaluating libraries later in

this chapter.

Alternatively, if you’re willing to work with source code, and have more

flexibility, you might consider experimenting with adding mobile analytics to

YOUR FUTURE

one or two opensource or example apps (most mobile SDKs include sample

apps that demonstrate the capabilities of the tools and the platform).

For enterprise mobile apps, it may be worth working with the current

distribution channels and customer support to find ways to improve the

communication and information gathering from your enterprise customers.

There may be various commercial and practical limitations to what data can

be collected and how the data would be processed and made available for you

to analyse.

EXAMPLES OF MOBILE ANALYTICS LIBRARIES

There are a plethora of choices available, ranging from free fully opensource

offerings such as Countly108, where both the client and server libraries are

freely available, to high-end paid-for commercial offerings.

If you would like to compare several libraries, a good strategy might be

to seek diversity in the product offerings. For instance, a market leader, an

opensource project, one that does heatmapping, an innovative offering, and

one that focuses on the user. Here are three examples we have picked to

illustrate this book.

AppPulse Mobile

AppPulse Mobile109 could be considered innovative, particularly for the

way it can be easily added to mobile apps without any additional software

needing to be written to integrate the library. Here is a brief summary of

various characteristics.

108 https://count.ly/

109 https://saas.hpe.com/software/AppPulse-mobile

139

• Innovative black-box approach to integrating the library that automatically

identifies and generates analytics events. Supports tracking actions in

embedded WebViews.

• The reports include a “FunDex score”, provide trends, and enable easy

filtering of the data.

• AppPulse Mobile supports iOS and Android, and the development tools are

supported on Windows and OS X.

• There is good support for privacy. For instance, to prevent tracking of

sensitive information, and it enables developers to easily offer an opt-in for

the end users.

AppPulse Mobile FunDex Score

YOUR FUTURE

AppPulse Mobile takes a user-centric approach, for instance FunDex captures

various aspects of the Quality of Experience as experienced by users.

Mixpanel

Mixpanel110 is a popular product that includes both mobile analytics and an

A/B experimentation platform. While it needs to be manually integrated into

an app, once it’s been integrated it offers a visual way to tag events without

needing to write more code. The following screenshot shows the visual editor

after adding several tags to the Kiwix app.

110 https://mixpanel.com/

Mixpanel Visual Tags Added

AppPulse UI Actions

141

However, there seem to be various limitations of the visual tagging. For

instance, the dropdown menu, which was actually showing on the device,

wasn’t recognised. Here’s what was on the device:

Also, interactions with the WebView, where the contents are displayed, did not

seem to be recognised.

Timestamps in the reports are based on the device’s date and time rather than

on a common system time. This may make comparisons based on local time

easier; for instance, do users in different timezones all start using the app

around 8am? However, if the device’s clock is materially incorrect, for instance

a day, then the events may be allocated to the wrong date. Modelling the load

on the servers may be problematic as the device timestamps would need to be

mapped to a common time, such as UTC.

Overall, Mixpanel provides a rich and mature set of features with specific

integrations for web, BlackBerry 10, iOS, and Android apps. The clients are

available as opensource projects (https://github.com/mixpanel/) which makes

them easy to customise, for instance to preserve analytics data on the device

for extended periods.

YOUR FUTURE

Dropdown Menu Not Recognised

Countly

Countly108 is unusual for several reasons: it’s fully opensource, and you can

easily host the service privately111 so you have complete control of the

environment and data. Of course, you’ll then be responsible for maintaining

and protecting the servers and the service in terms of security, performance,

and availability. Hardcore projects can choose to extend the analytics so it

collects precisely the data that’s relevant.

Countly supports many more platforms, including Android, BlackBerry, iOS,

and Windows Phone, so it may be on the shortlist for apps that need to be

supported across these platforms. Countly is also designed with rich server

APIs, both to post and retrieve data, allowing for custom clients and automated

data extraction.

Getting started is a little more cumbersome, as the documentation for Android

missed some key configuration details needed to build the app. The example

project was hard to find and also failed to compile. However, for people who

would like the flexibility, and are willing to spend some more time dealing

with technical intricacies, Countly may suit their needs.

108 https://count.ly/

111 Free for non-commercial, personal or in-company use: https://count.ly/community-edition/.

143

TIPS AND TRAPS

Like most things in life, there are tradeoffs and complications to consider

when incorporating mobile analytics into your app.

Our Responsibilities

We have various responsibilities. Some may be implicit, such as being good

custodians and trusted guardians on behalf of the end users and other

stakeholders. Can users trust us in terms of their privacy and data costs?

Consider how we can involve the users in decisions about their data. Do we

give them the ability to make informed consent?

As testers and software engineers we need to establish whether the library

and service are sufficiently trustworthy in terms of providing accurate, timely,

and complete results. What happens when things go wrong, for instance, if data

is lost, a service fails, etc.? Do we have mitigation plans, and how well have they

been tested?

From our organisation’s perspective, we may bind the organisation to various

responsibilities by the time we’ve clicked-though a licence agreement to

download the “free trial” software. Part of due diligence includes the legal

aspects. We cover due diligence later in this chapter.

Lean Selection Criteria

We may start with little idea of how to select the most appropriate library (or libraries)

for our context. Rushing to pick a library is likely to be counterproductive later

on (“buy in haste, repent at leisure”). Conversely, taking a long time might also

be counterproductive and cause the initiative to atrophy. Instead, aim to find

ways to maximise your learning and discovery while avoiding some of the

“gotchas” (we will cover these later on).

YOUR FUTURE

Principles from lean software development can help us to experiment and

learn quickly and iteratively. Aim to craft mini experiments that minimise

your effort to maximise your learning and discovery, quickly. For instance,

you may be able to integrate a library in a test build of an existing app

(either one of ours or an opensource one). Ask questions and do some initial

research online, including on websites such as http://stackoverflow.com/, to

learn what developers’ experiences are. For instance, http://stackoverflow.

com/search?q=mixpanel+android currently has 99 results, including several

technical challenges. Also, SourceDNA provides statistics on which apps use

various ad112 and analytics libraries (https://sourcedna.com/stats/), and SafeDK

provides complementary information. Again, here’s the example for mixpanel:

http://www.safedk.com/sdks/mixpanel-mixpanel.

At this stage, try not to get bogged down with complex or time-consuming

evaluations. Also, if the sign-up conditions are onerous, there are plenty of

other competing options you can try as part of your initial experiments. Once

you’ve learned more, you’ll have a better perspective on whether or not to

invest the time with the more involved options.

Don’t Get Trapped

Although evaluating and selecting a mobile analytics library may be involved,

there’s a risk that separating from a provider will be at least as time-

consuming and involved, especially if you’ve not considered the “divorce” when

selecting the library. There are various facets to consider, including technical,

business, and legal.

Technically, the API provided by each library tends to be unique, and each

offers different features, so replacing one with another is likely to involve both

112 Ad is a common term for Advertising.

145

code changes and changes to the data that’s reported. Segment113 provides

a common API that integrates with over 40 analytics libraries at the time of

writing. They remove much of the technical headache, and may enable you to

find workable solutions for maintaining key data provided you are willing to

pick a set of libraries that can capture the data you want to preserve.

Quite often organisations establish internal business measures and objectives

based on the analytics, for instance sales and marketing targets where

removing or replacing the library may cause significant problems and even

affect senior people’s bonuses – when people’s income is at risk they may

become very defensive! We recommend you consider aspects such as data

ownership: Who owns the data generated by your app? How much of the data

and results would you have access to when you’re using the service114 and post

termination? How easily can you access and archive the data? What are your

backout plans so you can stop using a library cleanly and without regret?

From a legal perspective, there may be contractual issues to consider and data

privacy aspects for the data a provider has captured. Perhaps the equivalent

of a prenuptial agreement, even if it’s only written for internal use, would help

reduce any regrets if you decide to stop using a service in the future.

Tips to Get Started

Testers and testing can help from the initial stages of an evaluation through

to testing a full implementation. We will cover this topic in more detail later in

this chapter, in the Testing Mobile Analytics section.

Start by evaluating the claims of the vendors. From evaluating their claims

you’ll obtain a good overview of features and be able to use these to

YOUR FUTURE

113 https://segment.com/

114 Some analytics services include an API to query and obtain data from the analytics servers. These include Countly and
HP AppPulse Mobile.

consider which of these features suit the needs of your project. Consider

the trustworthiness of the vendor and their products. Other “desk research”

can include skimming reading the entire licence agreement for problematic

clauses and applying the lean selection criteria mentioned earlier.

Next, establish a small pilot where you incorporate various libraries into one

of your apps, and try using the app to observe the behaviours of the app with

the libraries. You could also try incorporating libraries into example apps and/

or opensource apps.

Finally, use a timeline to consider the suitability of potential libraries over

various periods, ranging from 1 day, 1 month, 1 year, and 5 years.

TAKE YOUR PICK

When you’re aware of what the various offerings provide, their strengths, and

weaknesses, you should be able to shortlist candidates to incorporate into your

mobile apps.

Considerations for evaluating libraries include the following:

• Richness of events and the data they provide.

• Ability to generate custom events and send custom data.

• Support for your app types (native, composite, hybrid, web) and platforms.

• First, consider the platform(s) you expect you will need to support, for

instance iOS, Android, Windows Phone, etc.

• In addition, the technologies used to implement the app are also

important, particularly where they use a web browser as part of the

147

app, such as a WebView in Android or iOS. Some mobile analytics

tools do not capture key aspects of what’s happening in the web

browser, which could mean major aspects of your app go unrecorded

and unreported.

• Behaviours, including what happens when no internet connection is

available. What does the library do? Does it store and forward the data once

the connection is available? Does it report summary data instead, or are the

events discarded and unreported?

• Security hygiene: How does the provider address the security of the app, the

data and the service?

• Popularity of the library and related product. There may be significantly

more information available about more popular offerings, which reduce the

risk of facing problems “on your own”.

TESTING MOBILE ANALYTICS

As we mentioned earlier in this chapter, testing the mobile analytics is very

important, particularly if the team and organisation want to rely on the

data and insights. As an organisation, we also need to comply with legal and

contractual details and implement a trustworthy system. Also, to maximise

the return on our investment of time, money, trust, resources, and network

bandwidth, etc., it’s worth investing the time to test as part of our acceptance

criteria of the potential libraries and our integration.

To follow are some common core tests worth considering. More detailed testing

guidelines to help assess and test mobile analytics libraries are freely available

online at https://github.com/julianharty/testing-mobile-analytics.

YOUR FUTURE

Numbers

Can the overall service count correctly? Can we trust the numbers it

provides? (At least one commercial product had multiple failures for this

straightforward test.)

• Do the reports accurately reflect 0, 1, 2, several, and many concurrent

sessions? Before the library is active, the counts should all be zero, and

when the system is idle, the load should show as zero.

• When does it count a new session? For instance, when the app is suspended

and resumed? After idle periods? And, when is the session deemed to

be over? Does the behaviour and the algorithm they use vary from one

platform to another? Consider, there’s no guarantee the behaviour will be

identical across their implementations.

Do the Messages Get Delivered, and, If So, When?

Ultimately, mobile analytics needs to forward data from the app to where it can

be processed and used. However, libraries vary in their behaviours, particularly

when there isn’t a direct, reliable connection from the app to the collection point.

Perhaps you don’t mind if some data doesn’t arrive. However, it’s at least worth

understanding the circumstances where you can trust the library to deliver the

data, when you know it will not do so, and any areas where the behaviour is

unpredictable. Try to run tests for the following networks:

• No network: the device may be in flight mode, or simply without a data

connection. Access may be disabled by policy, for instance if the device

is roaming in another country and the user doesn’t want to pay for any

additional data service.

• A closed network: the device can be on a local network that doesn’t have

access to the internet. Perhaps access to the analytics server is blocked by a

proxy server or firewall.

149

• With a proxy server in the loop: Does the library (and your app) honour

proxy server settings on the device? (Android apps were known for not

doing so, for various reasons.)

• An open network: The device is connected with access to the internet.

What’s the latency and how quickly and completely does it catch up if the

library has a backlog of events waiting to be sent?

Latency is important, both in terms of forwarding the data and in the

reporting aspects.

Completeness

For libraries that are added automatically, how completely do they cover the

functionality of the app? Is the data sufficiently rich and distinct to be useful?

When libraries are added explicitly, review the completeness of the API and

determine how well the library can communicate the data you want to know.

Virtually all libraries also capture and report data about the device and its

settings, for instance the model, locale setting, and active language on the

device. This data can help improve the quality of analysis and testing, so it’s

important to check if it’s also complete and accurate.

Efficiency

Efficiency of the transmissions is an important acceptance criteria; after all,

some popular apps can send over 10 billion events per day from active user

sessions. Therefore, measure the data volumes, the number, and frequency of

the events to assess the aggregate load. Some providers either can’t support

these volumes or charge significant fees to do so.

There are debates on whether sampling by the provider would be adequate

and acceptable in terms of the accuracy of the analysis and reporting.

YOUR FUTURE

Therefore, you’d be wise to do some research and make a considered decision

on whether to use a library that uses sampling.

Remember that individual users may be paying for the costs of the data in

some cases, and they are also more likely to reduce or stop using apps that

consume excessive resources. Network traffic also uses battery power, so there

may be sweetspots in terms of the bundling algorithm(s) used by the mobile

library (which decide tradeoffs such as efficiency, batching, and latency).

In summary, we could use the concept of an environmental impact of each

library in terms of the resources it uses, and how efficiently it uses them.

Security, Privacy, and Confidentiality

We make no apology for mentioning confidentiality and privacy explicitly,

although some may consider them part of security. Both topics are important

from a user’s perspective and possibly for other stakeholders involved in the

app. We recommend doing a security review of the service, the library, and the

product offering.

Read the legal terms and be willing to challenge or question what they say,

their software, and what they do. Are they trying to hide or avoid aspects

that would be material to you? Your trustworthiness is based on their

trustworthiness. Too many companies have had security failures for us to rely

on a “trust us” model. We particularly need to consider data that might identify

a person, data leakage, what third parties do and don’t commit to doing with

the data they gather from the app, etc. A very helpful book is Ethics of Big

Data115 as it covers these and other related topics in a clear, readable manner.

115 Davis, K. with Patterson, D.: Ethics of Big Data, O’Reilly, 2012. ISBN 978-1-449-31179-7.

151

Paradoxically, openness of the product offering is important. Several providers

have made their client libraries available as opensource to make it easier for

developers and their organisations to ascertain the behaviours and to reduce

the likelihood of unknown, undesirable behaviours in a library.

Globalisation

Many mobile apps are used by geographically and linguistically diverse

populations of users so mobile analytics needs to be capable of supporting

both these aspects of the usage; otherwise the data will be less complete and

possibly less accurate – therefore less valuable.

There are two main considerations:

• Timezones and

• Languages and locales. These include Right-To-Left (RTL) and the more

commonplace Left-To-Right (LTR) languages.

RTL languages are extremely likely to expose limitations and flaws, particularly

for teams who are new to implementing support for them in their mobile apps.

Summary of the Testing

We can summarise the aims of testing to establish the truth, the whole truth,

and nothing but the truth.116

Qualities of the App with the Additional Libraries and Integration Code

We can, and probably should, assess the qualities of the integrated app. After

all, from the user’s perspective, we are ultimately responsible for the overall

YOUR FUTURE

116 A subset of the oaths sworn in various courts of law; https://en. wikipedia.org/wiki/Sworn_testimony.

quality regardless of whose software we’re using in the app. SafeDK117 have

several relevant blog posts118 on this topic.

For any source code, including opensource code if provided (as some mobile

analytics do) we can assess qualities such as maintainability and portability.

It’s also worth considering how you will manage and incorporate updates to

the libraries (a) in terms of the code integration and (b) when the reported

data changes.

INTEGRATING MOBILE ANALYTICS

There are several stages to integrating mobile analytics into an app. These

include assessing and testing the library, and understanding the effects of

incorporating it. In parallel, we need to design events and map relevant

screens to capture the information we want to report on.

Designing Events

One of the key implementation challenges is designing the events to maximise

the fit between the data we would like to obtain and how much we are able to

capture.

We will often use existing API calls, where practical, as these are likely to be

supported in the longer term, and are also available in the standard reports

offered by the analytics service (the website where we can view the reports).

However, we will often want to record data that isn’t handled by specific API calls.

117 http://www.safedk.com/

118 SafeDK blog posts cover performance (http://blog.safedk.com/technology/what-you-should-know-about-your-sdks-and-
your-app-starttime/), and security (http://blog.safedk.com/sdk-economy/do-you-knowwhat- your-sdks-did-last-summer/).

153

Many of the analytics frameworks provide a way to report custom events,

in some products, they treat everything as a custom event, which at least

makes the decision of what to use easier. JSON is a popular data structure

supported by the respective “custom” API call. Thankfully, there are a wide

range of software tools to both generate and work with JSON formatted data.

Consider how to report the contents of the custom events, and evaluate their

effectiveness and usefulness throughout the reporting and analysis processes.

As a tip, make sure each event is distinct and easy to recognise correctly in

the recorded data and reports. Don’t use localised text in the event name,

otherwise you can end up with reconciliation problems trying to map these

events to common events such as the “Registration Screen”. Instead, record the

locale of an app at startup and if it’s changed while the app is being used.

A/B Testing

In addition to investigating mobile analytics, an orthogonal approach is to

consider A/B testing frameworks for mobile apps. They enable lighter-weight

experiments in the field. Mobile analytics helps to capture various effects of

the experiments.

One of the most prominent products for A/B testing is Optimizely.119 They

provide a wide range of resources online, for instance https://www.optimizely.

com/resources/, and are worth studying to provide additional perspective on

ways mobile analytics fit into the overall ecosystem. Optimizely also integrates

with various mobile analytics product offerings.

YOUR FUTURE

119 https://www.optimizely.com/

WORDS TO THE WISE

Here are some topics to ponder when considering how to integrate and

implement mobile analytics:

• Do no harm. To varying degrees, mobile apps can affect people’s lives.

When implementing mobile analytics, we need to consider the risk of

doing harm. There may also be unintended consequences or side effects

worth mitigating.

• Do as you would be done by, protect people’s privacy, and keep the costs

down. One way to protect privacy is to minimise the data that is collected,

and to consider ways to delete it as soon as practical. There may be legal

and commercial factors to consider where specialist advice is necessary.

Furthermore, if the analytics are provided by a third party, you may have

lost control of what happens with the data. Ethics of Big Data115 discusses

this topic in depth.

• Minimise footprint of using mobile analytics: in the app and in use.

• Act in haste, repent at leisure. Divorce is hard and messy, even when you

want to stop using a provider of mobile analytics.

• Be willing to question absurd decisions. “Misunderstanding caused by

silence.… In the course of the teleconference during which the final

decision to launch the shuttle was taken, several people, who were aware

of the malfunction of the joints, remained silent”.120

115 Davis, K. with Patterson, D.: Ethics of Big Data, O’Reilly, 2012. ISBN 978-1-449-31179-7.

120 http://christian.morel5.perso.sfr.fr/English%20report.pdf

155

Due Diligence

Due diligence enables us to investigate what does and doesn’t exist and the

state of affairs in terms of the software we release and the related services

used to support the apps. When we perform due diligence, we are likely to find

areas worth improving, including the development process, the product, the

testing, and how the app, and related systems, behave in use.

One of the longer term aspects of due diligence is related to the legal aspects.

Software is an unusual domain where license agreements are created to

minimise risk exposure for providers, yet they are often ignored by users who

find the fastest way to ignore them despite the long-term consequences of

doing so. Today, many apps are buggy; new releases acknowledge bug fixes,

and the testing is known to be inadequate by the development teams. The

legal environment of who is responsible for what is unclear in terms of

liability, ownership of data, permissions to do stuff, etc., especially where apps

are available and used internationally.

The law eventually catches up with novel industries as they start to mature.

This happened with websites, music sharing, cookies, and reporting of security

breaches. Data collection by mobile apps, including mobile analytics, is a

relatively new area in terms of the legal aspects and implications. Some recent

discussions on the implications of software for robots may illuminate some

of the concepts and concerns. For instance, who would be liable for leakage

of data gathered by a mobile analytics library, or where tracking data was

abused? Professor Ryan Calo, professor of law at the University of Washington,

was recently interviewed on BBC Radio121, where he grappled with similar

questions, such as: Who is to blame when robots go wrong? He also explained

about app stores for robots.122

YOUR FUTURE

121 http://www.bbc.co.uk/programmes/p0325fb6

122 Jobs for Robots

OVER TO YOU

We hope you have enjoyed reading this book and found at least a couple of

interesting ideas worth considering and applying for your mobile apps. Please

tell us about your experiences and progress. Also, we appreciate feedback on

this book, which is still incomplete even though it grew to be over three times

the size we first envisaged.

Contact Us:
http://www.themobileanalyticsplaybook.com/

157

APPENDIX:
FURTHER READING

There is much more information available that can help you test your mobile

apps more effectively and efficiently.

ACADEMIC RESEARCH

Here are various research papers to get you started. These papers are written

in what may be an unfamiliar style. However, once you learn to decode them,

they provide lots of clues and evidence.

• Revisiting Prior Empirical Findings For Mobile Apps. An Empirical Case Study

on the 15 Most Popular Open-Source Android Apps.123 (For instance, 11 of

the 15 projects had no automated tests.)

• Understanding the Test Automation Culture of App Developers.124 (As an

example, they found over 85% of the Android apps they reviewed had no

automated test cases at all.)

APPENDIX: FURTHER READING

123 http://sailhome.cs.queensu.ca/~mdsyer/wp-content/uploads/2013/ 09/Revisiting-Prior-Empirical-Findings-For-Mobile-
Apps-An-Empirical- Case-Study-on-the-15-Most-Popular-Open-Source-Android-Apps.pdf

124 http://thomas-zimmermann.com/publications/files/kochhar-icst-2015.pdf

• App Quality Alliance125 provides useful sources of testing ideas for various

platforms, and for testing Accessibility.

• Effectiveness of Multi-device Testing Mobile Applications.126 (5 devices are

enough to find at least 4 out of 5 detected bugs. The variations in OS

version had the largest chance of finding the bugs.)

• How to Smash the Next Billion Mobile App Bugs? 127 (A good overview of

Microsoft Research’s work using various test monkeys to automatically find

various types of bugs quickly and inexpensively.)

Finding Academic Papers

Google Scholar is able to find legitimate, freely available copies of many

academic papers: https://scholar.google.com/.

BOOKS

All these books are very readable and provide thought-provoking ideas we may

be able to apply to what we do.

• How to measure anything, 3rd ed. ISBN 978-1-118-53927-9 (The book has a

supporting website http://www.howtomeasureanything.com/.)

There are several good books on analytics, including:

• Analytics at Work, ISBN 978-1422177693

• Predictive Analytics, ISBN 978-1118356852

125 http://www.appqualityalliance.org/resources

126 http://core.ecu.edu/STRG/publications/Vilkomir-MobileSoft-2015-proceedings.pdf

127 http://niclane.org/pubs/getmobile_smash.pdf

159

O’Reilly publishes numerous free, short books including at least 20 on Big

Data. You need to register online to read these books. They are available at

http://www.oreilly.com/data/free/. They also have several relevant short books

for purchase including:

• Ethics of Big Data, ISBN 978-1-449-31179-7

• Thinking with Data, ISBN 978-1-449-36293-5

ARTICLES

• Good advice to focus your attention on the purpose of app analytics (http://

info.localytics.com/blog/purpose-powered-app-analytics) and focus on

increasing engagement (http://techcrunch.com/2011/03/15/mobile-app-

users-are-both-fickle-and-loyal-study/).

• Michael Wu writes a very relevant and readable blog on various topics

including Big Data and Analytics. Here are some examples:

• Descriptive Analytics.128

• Predictive Analytics.129

• From Descriptive to Prescriptive Analytics.130

• Finding Signal in the Noise.131

128 http://community.lithium.com/t5/Science-of-Social-blog/Big-Data- Reduction-1-Descriptive-Analytics/ba-p/77766

129 http://community.lithium.com/t5/Science-of-Social-blog/Big-Data- Reduction-2-Understanding-Predictive-Analytics/ba-p/79616

130 http://community.lithium.com/t5/Science-of-Social-blog/Big-Data- Reduction-3-From-Descriptive-to-Prescriptive/ba-p/81556 1

131 http://community.lithium.com/t5/Science-of-Social-blog/The-Key-to- Insight-Discovery-Where-to-Look-in-Big-Data-to-Find/ba-
p/70116

APPENDIX: FURTHER READING

“You are not the customer. Data helps you learn about the customer.

Measure often, learn often. Connect the tester with the customer...using data.”

Alan Page, Microsoft.

“Reading the Book was a good investment of my rare spare time.

I learned a lot, even when I’m currently working in a totally different domain.”

Domink Dary, creator of the Selendroid
test automation software for Android.

