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Leaky Forcing in Graphs for
Resilient Controllability in Networks

Waseem Abbas

Abstract—This paper studies resilient strong structural con-
trollability (SSC) in networks with misbehaving agents and edges.
We consider various misbehavior models and identify the set of
input agents offering resilience against such disruptions. Our ap-
proach leverages a graph-based characterization of SSC, utilizing
the concept of zero forcing in graphs. Specifically, we examine
three misbehavior models that disrupt the zero forcing process
and compromise network SSC. We then characterize a leader
set that guarantees SSC despite misbehaving nodes and edges,
utilizing the concept of leaky forcing–a variation of zero forcing
in graphs. Our main finding reveals that resilience against one
misbehavior model inherently provides resilience against others,
thus simplifying the design process. Furthermore, we explore
combining multiple networks by augmenting edges between their
nodes to achieve SSC in the combined network using a reduced
leader set compared to the leader sets of individual networks. We
analyze the trade-off between added edges and leader set size in
the resulting combined graph. Finally, we discuss computational
aspects and provide numerical evaluations to demonstrate the
effectiveness of our approach.

I. INTRODUCTION

Effective control of networked systems relies heavily on
their underlying topology and the choice of leaders, agents
through which control signals are injected into the system [1]–
[5]. A popular approach to the leader selection problem
involves characterizing network controllability from a graph-
theoretic perspective, facilitating the formulation of vertex
selection problems solvable through various combinatorial
methods. Several graph-based characterizations of network
controllability have emerged, including those based on graph
distances, zero forcing, and matching in graphs (e.g., [6]–[13]).
To this end, the notion of zero forcing in graphs is particularly
useful for strong structural controllability (SSC) in networks.
The zero forcing phenomenon, introduced in [14], is a dynamic
coloring of nodes in a graph initiated by a subset of colored
nodes called the zero forcing set in a graph. Interestingly,
a set of leaders makes a given network strong structurally
controllable if the corresponding nodes in the underlying graph
constitute a zero forcing set [6], [15], [16].

In this paper, we consider the resilient strong structural con-
trollability problem, ensuring that a network remains strongly
structurally controllable even in the presence of misbehaving
agents or edges. We examine various misbehavior models for
agents and edges that hinder SSC and characterize the set
of leaders that offer resilience against such disruptions. A
single misbehaving agent or an edge–due to a fault or an
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adversary–can deteriorate the network’s controllability. Given
the susceptibility of networks to adversarial attacks and fail-
ures, achieving resilient SSC poses a significant challenge in
the control of networked systems.

We consider three distinct misbehavior models exhibited by
nodes (agents) and edges, each posing unique challenges to
network SSC. These models include leak nodes, non-forcing
edges, and removable edges, all of which disrupt the zero
forcing process in the underlying network graph. We then
examine the leader set guaranteeing the network SSC despite
a given number of such misbehaving nodes/edges. For this,
we utilize the idea of leaky forcing in graphs, a variant
of zero forcing in graphs, recently introduced in [17], and
further studied in [18]–[21]. Our main result shows that the
resilient leader selection against one misbehavior model ex-
tends resilience against the other two, streamlining the design
process. Furthermore, we explore a design challenge involving
combining multiple networks by adding edges between their
nodes. We aim to maintain the resilient SSC of the resulting
combined graph with a reduced leader set compared to the
combined leader sets of individual networks. This is significant
because adding edges can often deteriorate SSC. Our goal is to
identify edges that not only sustain the network SSC but also
do so with fewer resources–specifically, a reduced number of
leaders. Next, we summarize the main contributions below:

• We examine resilient SSC in networks by introducing
a framework based on the concept of leaky forcing in
graphs. We consider three distinct models of misbehaving
nodes and edges, and characterize the leaders that guar-
antee network SSC despite the presence of ℓ abnormal
nodes/edges (Section III).

• We establish the equivalence of resilience against mis-
behavior across different models. Specifically, we show
that a leader set resilient to ℓ misbehaving nodes/edges
under one model exhibits the same resilience under other
models, streamlining the design process (Section IV).

• We discuss the computational aspects of selecting leaders
for the resilient SSC and present a numerical evaluation
(Section V).

• We examine combining multiple graphs by augmenting
edges between their nodes while maintaining resilient
SSC. We examine the tradeoff between the number of
added edges and the size of the leader set required to
ensure resilient SSC in the resulting combined graph
(Section VI).

There have been works discussing the impact of nodes/edges
addition and deletion on the network’s controllability, for in-
stance, [22]–[27]. Similarly, some researchers have considered
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the effects of actuators/input node failures on the overall
controllability of systems. Some also propose methods to
have a sufficient number of input nodes maintaining network
controllability despite such failures [28]–[31]. Our work
differs from theirs as we consider node/edge misbehavior mod-
els beyond deletion. These misbehaving nodes/edges remain
within the network disrupting the underlying graph-theoretic
process required to ensure SSC. Our goal is to have leader
sets guaranteeing SSC despite the existence of any ℓ such
nodes/edges within the network. For this, we utilize the idea
of leaky forcing in graphs, which is variation of the well-
known zero forcing in graphs. Zero forcing in graphs is
a node coloring process where a small subset of initially
colored nodes, known as the zero forcing set, changes the
colors of other nodes according to a specific rule, eventually
leading to the entire graph being colored. The concept of zero
forcing and its variations in graphs has received significant
attention in recent years, with research focusing on upper and
lower bounds [32]–[34], algorithmic developments [35]–[38],
studies on special graph families [35], [39]–[41], and various
applications [6], [16], [41]–[43].

Leaky forcing is a resilient variation of the zero forcing phe-
nomenon, where some nodes, termed leak nodes, do not adhere
to the color-changing rule. Despite the presence of these leak
nodes, the goal is to ensure that an initially colored set of
nodes, called the leaky forcing set, can still manage to color the
entire graph. This concept of leaky forcing is relatively new,
first introduced in [17], and has since been further explored in
[18]–[21], which characterize leaky forcing sets and establish
bounds on their sizes within specific graph families. The first
part of this article (Section IV) is closely related to [19], which
considers various generalizations of ‘leaks’, or misbehaving
nodes and edges in a graph. Specifically, they examine ‘leak
nodes’ (nodes that do not adhere to the color-changing rule of
the zero forcing process), ‘leak edges’ (edges that exist in a
graph but prevent the application of the zero forcing process),
and ‘specified leaks’ (where the color-changing rule cannot
be applied between a specified pair of nodes). Alameda et al.
[19] demonstrate the equivalence of these misbehavior models
by showing that a forcing set that guarantees the coloring
of the entire node set under one misbehavior model also
guarantees the same under other misbehavior models. This
article extends these concepts to resilient strong structural
controllability in networks. We further demonstrate that a
forcing set resilient to ℓ leak nodes is also resilient to the
removal of ℓ edges from the graph (not just ’leak edges’
but actual edge removal). This distinction emphasizes that the
leaky forcing set is also resilient to structural changes in the
graph due to edge removals.

A subset of results appeared in preliminary form in [44],
but with limited technical details. Specifically, Section IV of
this article provides comprehensive results on the equivalence
of resilient leaders for various misbehavior models, including
complete technical details and proofs. Section V has been
expanded to include numerical evaluations and a discussion
of the computational aspects of leader selection for resilient
SSC. Additionally, Section VI is entirely new to this article and
presents findings on graph combinations and their impact on

leader selection for SSC and resilient SSC. Moreover, several
examples are included to illustrate the main ideas.

II. PRELIMINARIES

We consider a network of agents modeled by an undi-
rected graph G = (V,E). The node set V , and the edge
set E, represent agents and interconnections between agents,
respectively. The edge between nodes i and j is denoted
by an unordered pair (i, j). The neighborhood of node i
is N (i) = {j ∈ V | (i, j) ∈ E}. Similarly, the closed
neighborhood of i is N [i] = N (i)∪{i}. The distance between
nodes i and j, denoted by d(i, j), is the number of edges in
the shortest path between them. For a given graph G = (V,E)
with |V | = n nodes, we define a family of symmetric matrices
M(G) as below:

M(G) = {M ∈ Rn×n | M = M⊤, and for i ̸= j,

Mij ̸= 0 ⇔ (i, j) ∈ E}.
(1)

Note that the location of zero and non-zero entries in every
M ∈ M(G) remains the same, and is entirely described by
the edge set of G.

A. System Model and Graph Controllability

We consider the following leader-follower system defined
over a graph G = (V,E).

ẋ(t) = Mx(t) +Bu(t), (2)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm is the external
input, M ∈ M(G) (as in (1)) is the system matrix, and B ∈
Rn×m is the input matrix describing the leader (input) nodes.
If V = {v1, v2, · · · , vn}, and V ′ = {ℓ1, ℓ2, · · · , ℓm} ⊆ V is
a set of leader nodes, then we define B as follows:

[B]ij =

{
1 if vi = ℓj ,
0 otherwise. (3)

We observe that the family of matrices M(G) also includes
the Laplacian and adjacency matrices of G.

For a given graph G, system matrix M ∈ M(G), and input
matrix B, the system in (2) is called controllable if there exists
an input to drive the system from an arbitrary initial state
x(t0) to an arbitrary final state x(tf ). In this case, we say that
(M,B) is a controllable pair. A pair (M,B) is controllable
if and only if the rank of the controllability matrix Γ(M,B),
defined below, is |V | = n (i.e., full rank).

Γ(M,B) =
[
B MB M2B · · · Mn−1B

]
. (4)

Since leader nodes V ′ define the input matrix B, we some-
times abuse the notation slightly and use (M,V ′) is control-
lable to denote that (M,B) is a controllable pair.

Definition 1. (Network Strong Structural Controllability) A
network G = (V,E) with a leader set V ′ ⊆ V is strong
structurally controllable if and only if (M,V ′) is a control-
lable pair for all M ∈ M(G).

Network strong structural controllability is a stronger no-
tion compared to the (weak) structural controllability, which
requires the existence of at least one matrix M ∈ M(G) for
which (M,V ′) is a controllable pair.
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B. Network Controllability and Zero Forcing in Graphs

A key concern in network controllability is to compute a
minimum leader set V ′ ⊆ V that makes the network strong
structurally controllable (as defined above). The problem is
often referred to as the minimum leader selection for net-
work controllability. A graph-theoretic characterization of the
minimum leader set rendering the network strong structurally
controllable is remarkably useful here. Monshizadeh et al.
characterized the minimum leader set for network SSC in [6]
using the notion of zero forcing in graphs, which is related
to the dynamic coloring of nodes. We introduce zero forcing
ideas below and then state the main result from [6].

Definition 2. (Zero forcing) Given a graph G = (V,E) whose
nodes are initially colored either black or white. Consider the
following node color changing rule: If v ∈ V is colored black
and has exactly one white neighbor u, change the color of u
to black. Zero forcing is the application of the above rule until
no further color changes are possible.

Definition 3. (Force) A force is an application of the color
changing rule due to which the color of a white node u is
changed to black by some black node v. We say that v forced
u and denote it by v → u.

Definition 4. (Input and derived sets) For a graph G = (V,E)
with an initial set of black nodes V ′ ⊆ V , the derived set of
V ′, denoted by D(V ′), is the set of black nodes obtained after
applying the zero forcing rule exhaustively. The initial set of
black nodes V ′ is the set of input nodes.

We note that for a given input set V ′, the derived set D(V ′)
is unique [14].

Definition 5. (Zero forcing set (ZFS) and zero forcing num-
ber) For a graph G = (V,E), an input set V ′ ⊆ V is a
ZFS if D(V ′) = V (i.e., all nodes are colored black after the
exhaustive application of the zero forcing rule). We denote a
ZFS by Z0. The number of nodes in the minimum ZFS is the
zero forcing number of the graph and denoted by z0(G).

Figure 1 illustrates the zero forcing terms defined above.

Fig. 1: V ′ = {v4, v5} is a ZFS of the graph along with a
sequence of forces coloring all nodes black.

A leader set for the strong structural controllability is closely
related to the notion of ZFS of the network graph. A direct
consequence of Theorems IV.4, IV.8, and Proposition IV.9 in
[6] is the following result:

Theorem 2.1. [6] The undirected network G = (V,E) is
strong structurally controllable with a leader set V ′ ⊆ V (as in
Definition 1) if and only if V ′ is a ZFS of G, (i.e., D(V ′) = V ).

Thus, ZFS in graphs is an important idea from the network
controllability perspective and it completely characterizes the
leader set for the strong structural controllability of the net-
work. Theorem 2.1 implies that the minimum number of
leaders needed for the network strong structural controllability
is same as the zero forcing number of the network graph.
We note that computing a minimum ZFS and zero forcing
number are NP-hrad in general [45]. However, there are several
heuristics to compute a small-sized ZFS, for instance, see [36],
[38], [40], [43], [46].

III. RESILIENT STRONG STRUCTURAL CONTROLLABILITY
(SSC) IN NETWORKS

The equivalence between ZFS and leader set for network
SSC is significant. According to [6, Corollary IV.3], a network
G = (V,E) is strong structurally controllable with a leader
set V ′ ⊂ V if and only if G is strong structurally control-
lable with the D(V ′), the derived set of V ′. Furthermore,
[6, Theorem IV.4] indicates that if D(V ′) ̸= V , then the
network is not strong structurally controllable. Consequently,
if the zero forcing process with a leader set V ′ is disrupted
by misbehaving nodes, edges, or edge failures such that
D(V ′) ̸= V , then G is not strong structurally controllable
with V ′ under these misbehaviors. For instance, consider the
network in Figure 2 with the leader set V ′ = {v1, v2, v6}. If
all nodes are normal, the ZF process initiated by the leader
set V ′ will eventually color all nodes in V (i.e., D(V ′) = V ),
and the network will be strong structurally controllable with
V ′. However, if edge (v3, v4) is removed, the ZF process will
be disrupted, causing D(V ′) ̸= V , implying that the network
is not strong structurally controllable with V ′. Similarly, if v5
behaves abnormally in the sense that it does not force any other
node, then the zero forcing process will again be hindered and
D(V ′) ̸= V asserting that the network is not strong structurally
controllable with V ′.

However, if V ′ = {v1, v2, v6, v8}, then the network remains
strong structurally controllable despite any single misbehaving
node (refusing to force other nodes) or an edge. Thus, the
network SSC can be preserved even in the presence of
misbehaving nodes or edges through some redundant leader
nodes selected carefully. Our goal in the paper is to study:

How can we systematically characterize a set of leaders in
a network to ensure its SSC in the face of misbehaving nodes
and edges? Further, how can we leverage this characterization
to compute a resilient set of leaders for the network SSC?

Next, we consider three different misbehaving node and
edge behaviors disrupting the zero forcing process. Subse-
quently, we present leader selections guaranteeing all nodes
in the network get colored due to the zero forcing process
despite a certain number of misbehaving nodes and edges,
thus achieving the resilient network SSC. Our main result (in
Section IV) shows that resilience to one type of misbehaving
nodes/edges implies resilience to the other kinds of misbehav-
ing nodes/edges.
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(a) G

(b) misbehaving edge (c) misbehaving node

Fig. 2: (a) V ′ = {v1, v2, v6} is a ZFS of G. (b) (v3, v4) is a
misbehaving edge. (c) v5 is a misbehaving node not forcing
any other node.

A. Misbehavior Models and Resilience Problems

We consider the following three node and edge misbehav-
iors that can be caused by the adversarial attack or other
abnormality. All of these failures ultimately disrupt the zero
forcing process.

1) Leak (non-forcing) nodes: A leak is a node v ∈ V that
does not force any other node, i.e., considering v to be a leak
node that is colored black and has exactly one white neighbor,
then v does not force its white neighbor (which it should in
case v was normal). A set of all leaks is the leak set, denoted
by L ⊆ V .

The term ‘leak node’ is adapted from [17], where such a
non-forcing behavior of nodes is introduced. Practically, a leak
node can be realized in multiple ways. For instance, if an
additional node α, which is not a part of the original network
and is colored white, becomes adjacent to exactly one node,
say v, in the network G, then v is unable to force any other
node in G. Figure 3 illustrates this situation.

Fig. 3: v is a leak node not forcing any other node. Equiva-
lently, an outside node α becomes adjacent to v and prevents
v from forcing any node.

Now the resilience problem is to have a (minimal) leader set
such that all nodes are colored at the end of the zero forcing
process despite ℓ leak nodes, which are unknown. For a given
ℓ, computing such a leader set is referred to as the ℓ-leaky

forcing set problem [17], [18]. We formally define the leaky
derived set and leaky forcing set below:

Definition 6. (Leaky derived set) Given a graph G = (V,E),
input set V ′, and a leak set L, then the set of black nodes
obtained after applying the zero forcing rule exhaustively while
considering the leaks in L is the leaky derived set, denoted by
DL(V

′).

Definition 7. (ℓ-leaky forcing set (ℓ-LFS)) An input set V ′ ⊆
V is an ℓ-LFS if for any leak set L ⊂ V with ℓ leaks (i.e.,
|L| = ℓ), DL(V

′) = V . In other words, starting with V ′,
all nodes are colored black by iteratively applying the zero
forcing rule with any ℓ leaks. The cardinality of the minimum
ℓ-LFS is the ℓ-forcing number of G, denoted by zℓ(G).

We note that for ℓ = 0, the ℓ-forcing number is same as the
zero forcing number.

2) Non-forcing edges: Here, we explore edge attacks
wherein an edge cannot be utilized by either of its end nodes
to force the other end node, categorizing such an edge as
a non-forcing edge. Specifically, an edge (u, v) is deemed
non-forcing if neither u forces v, nor does v force u. In this
scenario, the resilience problem involves identifying the ℓ-edge
forcing set, as defined below.

Definition 8. (ℓ-Edge forcing set (ℓ-EFS)) For a given G =
(V,E) and a positive integer ℓ, let Eℓ ⊆ E be an arbitrary
subset of at most ℓ non-forcing edges (i.e., |Eℓ| ≤ ℓ). An input
set V ′ ⊆ V is an ℓ-EFS if there is a zero forcing process that
colors all nodes in V without using the edges in Eℓ to force
nodes.

Figure 4 illustrates the non-forcing edge and 1-EFS. V ′ =
{v1, v2} is a ZFS of G in Figure 4(a). If the edge between
v2 and v3 is non-forcing, then the derived set consists of only
three nodes {v1, v2, v4} at the end of the zero forcing process.
However, if the leader set is V ′ = {v1, v2, v7}, then all nodes
are colored as a result of the zero forcing process despite any
single non-forcing edge.

(a) (b)

(c)

Fig. 4: (a) {v1, v2} is a ZFS given all edges are normal.
(b) (v2, v3) is a non-forcing edge. (c) {v1, v2, v7} is a 1-EFS.

3) Removable edges: The third failure model we consider
is the one where a maximum of ℓ edges are removed from the
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graph to disrupt the zero forcing process. The corresponding
resilience problem is to have enough leaders to guarantee
that despite ℓ edge removals, the network remains strong
structurally controllable, or equivalently all nodes are colored
as a result of the zero forcing. In other words, the goal is
to find a minimum size ℓ-forcing set with removable edges
defined below:

Definition 9. (ℓ-forcing set with removable edges (ℓ-FSR))
For a given G = (V,E) and ℓ, consider a subgraph G′ =
(V,E′), where E′ ⊆ E and |E| − |E′| ≤ ℓ. Then, V ′ ⊆ V is
an ℓ-FSR of G if V ′ is a ZFS of every such G′. Note that an
ℓ-FSR must also be a ZFS of G.

We observe that making an edge non-forcing can be differ-
ent from removing the edge. For instance, unlike a non-forcing
edge, removing an edge can sometimes be useful, as Figure 5
illustrates. If edge (v4, v7) in G in Figure 5(a) is removed, then
V ′ = {v1, v2} is a ZFS of the resulting graph (Figure 5(b)),
thus, making the network controllable. However, if (v4, v7) is
a non-forcing edge (Figure 5(c)), then {v1, v2} is no longer a
ZFS of the network.

(a) (b)

(c)

Fig. 5: (a) A graph G. (b) {v1, v2} becomes a ZFS of G after
removing the edge (v4, v7). (c) If (v4, v7) is a non-forcing
edge, then {v1, v2} is a not a ZFS of G.

Next, we show that a leader set resilient to one misbehavior
model is also resilient to the other models.

IV. EQUIVALENCE OF RESILIENCE FOR VARIOUS
MISBEHAVIOR MODELS

Here, for a given G = (V,E) and ℓ, we show the
equivalence between ℓ-LFS, ℓ-EFS and ℓ-FSR. As a result, we
show that a leader set V ′ ⊆ V ensures resilient controllability
against one misbehavior model if and only if it extends
resilience to the other two models (discussed above). For
instance, a leader set V ′ that is resilient to ℓ non-forcing nodes
must also be resilient to ℓ non-forcing edges and ℓ removable
edges simultaneously. We introduce the following terms as in
[18], [42].

Definition 10. Consider a graph G = (V,E), input set V ′ ⊆
V and the corresponding derived set D(V ′), then we define
the following terms:

• A chronological list of forces is a list of forces recorded
in the order in which they are performed to construct the
derived set.

• A forcing process F is a set of forces containing a
chronological ordering of forces through which all nodes
in V are colored black (i.e., D(V ′) = V ).

• A forcing chain is a sequence of forces vi → vi+1, for
i = 1, 2, · · · , k − 1. We denote such a forcing sequence
by v1 → v2 → · · · → vk−1 → vk.

• A maximal forcing chain v1 → v2 → · · · → vk−1 → vk
is a forcing chain such that v1 ∈ V ′ and vk does not force
any other node in G. The terminal node of the maximal
forcing chain vk, is referred to as the free node.

• A total forcing set of V ′, denoted by F(V ′), is a set of all
possible forces given an input V ′, i.e., vi → vj ∈ F(V ′)
if there is a forcing process in G containing vi → vj .

• A total forcing set with leaks L and input set V ′, denoted
by FL(V

′), is a set of all possible forces given an input
set V ′ and leaks L. In other words, if vi → vj ∈ FL(V

′),
then vi /∈ L and there is a forcing process containing the
force vi → vj .

Next, consider G = (V,E), a ZFS V ′ ⊂ V , and a forcing
process F with V ′. Then, for some S ⊆ V , we define the
following notations:

F (S) = {x → y ∈ F : y /∈ S}. (5)

F (S) represents the set of forces in the forcing process F
that do not lead to the forcing of nodes within S. Similarly,

F\F (S) = {x → y ∈ F : y ∈ S}. (6)

F\F (S) consists of the forces within the forcing process F
that result in the nodes within S being forced, or in other
words, colored black.

We now state some results from [18] that will be used later.

Lemma 4.1. [18] Consider G = (V,E) with a ZFS V ′. Let F
and F ′ be forcing processes of G with V ′. Then, (F\F (Ṽ ))∪
F ′(Ṽ ) is a forcing process with V ′ for any Ṽ obtained from
V ′ using F .

Lemma 4.1 explains the process of combining two forc-
ing processes to obtain a new forcing process. For exam-
ple, consider the network G depicted in Figure 6(a), where
V ′ = {v1, v2, v4, v7} forms a ZFS. Figure 6(b) illustrates
two forcing processes, F and F ′, with respect to V ′. Now,
consider Ṽ = {v5, v3}, a subset of black vertices obtained
through F . Note that F\F (Ṽ ) = {v4 → v5, v5 → v3}, and
F ′(Ṽ ) = {v1 → v8, v7 → v6}. By Lemma 4.1, combining
these two subsets of forces, i.e., F\F (Ṽ )) ∪ F ′(Ṽ ), results
into another forcing process, as depicted in the last column of
Figure 6(b).

Lemma 4.2. [18] A set V ′ is a 1-LFS if and only if ∀v ∈
V \ V ′, there exists x → v ∈ F(V ′), y → v ∈ F(V ′), where
y /∈ x.

Theorem 4.3. [18] A set V ′ is an ℓ-LFS if and only if V ′ is
an (ℓ − 1)-LFS for every set of ℓ − 1 leaks L and for every
v ∈ V \ V ′, there exists x → v ∈ FL(V

′), y → v ∈ FL(V
′),

where y /∈ x.
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(a) G

v4 → v5
v5 → v3
v3 → v6

F

v7 → v8

F ′

v1 → v8
v2 → v3
v3 → v5
v7 → v6

v4 → v5
v5 → v3
v1 → v8
v7 → v6

∪(F\F (Ṽ )) F ′(Ṽ )

(b) Zero forcing processes.

Fig. 6: V ′ = {v1, v2, v4, v7} is a ZFS of G. Forcing pro-
cesses F and F ′ are combined into another forcing processes
F\F (Ṽ ) ∪ F ′(Ṽ ), where Ṽ = {v3, v5}.

A. Main Result

Our main result here is to show the following:

Theorem 4.4. Given a graph G = (V,E), input set V ′ ⊆ V ,
and a positive integer ℓ ≤ |V |, the following statements are
equivalent:

1) V ′ is an ℓ-LFS.
2) V ′ is an ℓ-EFS.
3) V ′ is an ℓ-FSR.

We recall that notions of ℓ-LFS, ℓ-EFS, and ℓ-FSR are
explained in Definitions 7, 8, and 9, respectively. To prove
Theorem 4.4, we need some intermediate results.

Lemma 4.5. If V ′ is a 1-LFS of G = (V,E), then for every
edge e = (u, v) ∈ E, there exists a forcing process Fe that
does not use e, i.e., u → v /∈ Fe and v → u /∈ Fe.

Proof. Consider a forcing process F with V ′ containing u →
v. Suppose Ṽ represents the set of black vertices obtained
from F until the point where u → v is a valid force in F ,
but v is not yet included in Ṽ . At this stage, u and all its
neighbors, except for v, are colored black through F , and the
edge (u, v) remains unused by either u or v to force each other.
According to Lemma 4.2, another forcing process F ′ exists
where a different node, denoted as x ̸= u, forces v. Now, let
us introduce another forcing process denoted as Fe, obtained
by combining F and F ′, i.e., Fe = (F\F (Ṽ )) ∪ F ′(Ṽ ). By
Lemma 4.1, Fe constitutes a valid forcing process with input
V ′. Note that node v is forced by a node x ̸= u in Fe, implying
that the edge (u, v) is not utilized by either node u or v in the
forcing process Fe, thereby confirming the desired claim.

Lemma 4.6. Let V ′ be an (ℓ− 1)-EFS, Eℓ be a set of ℓ non-
forcing edges, and D(V ′) be the derived set after forcing. If
e = (u, v) ∈ Eℓ, then u and v can not be white simultaneously.
Moreover, if exactly one end node of e, say u, is black, then
N [u] \ {v} ⊆ D(V ′).

Proof. If both end nodes of e ∈ Eℓ are white, then none of
the end nodes can force the other end node. Thus, zero forcing
behavior of V ′ does not change even if e is not a non-forcing
edge. So, if we consider Eℓ\e as the set of non-forcing edges,
D(V ′) ̸= V , implying that V ′ is not an (ℓ − 1)-EFS, which
is a contradiction. Similarly, let e = (u, v) ∈ Eℓ be such that
u ∈ D(V ′) and v /∈ D(V ′). Assume that x ∈ N(u) is white
and x ̸= v. Since u has two white neighbors, u can not force

any node (including v) even if e is not a non-forcing edge.
Again, considering Eℓ \ e as the set of non-forcing edges will
give D(V ′) ̸= V . It means V ′ is not an (ℓ − 1)-EFS, which
is a contradiction.

Lemma 4.7. Let V ′ be an (ℓ − 1)-LFS and L be a set of ℓ
leaks. Then L ⊆ D(V ′), where D(V ′) is a derived set with
leaks. Also, each v ∈ L has at most one white neighbor.

Proof. Assume v ∈ L is white, i.e., v /∈ D(V ′). A white
leak node does not change the zero forcing behavior of the
black nodes. So, we consider L′ = L \ {v}. Since V ′ is an
(ℓ−1)-LFS, so all nodes should be black for any (ℓ−1) leaks.
However, all nodes are not black, which is a contradiction. For
the second part, assume that there is leak node v ∈ L that is
colored black and has two white neighbors. A black node with
two white neighbors can not force any node, so we consider
L′ = L\{v} as a set of (ℓ−1) leaks. Since V ′ is (ℓ−1)-LFS,
it should color all nodes black with leaks in L′, which is not
the case. Hence, a contradiction, proving the desired claim.

Next, we show the equivalence between ℓ-LFS and ℓ-EFS.

Theorem 4.8. For a given ℓ and G = (V,E), V ′ ⊆ V is an
ℓ-LFS if and only if V ′ is an ℓ-EFS.

Proof. See Appendix.

Lemma 4.9. If V ′ is 1-FSR then it is 1-EFS.

Proof. By contraposition, let V ′ be a ZFS that is not a 1-EFS.
It means there is an edge, say (u, v), such that every forcing
process must use the edge, i.e., (u, v) must be a forcing edge in
any forcing process. Without the loss of generality, we assume
u forces v. It implies that all the black neighbors of v have at
least two white neighbors and u has only one white neighbor
v. Thus, by removing edge (u, v), v can not be forced. Hence,
V ′ is not a 1-FSR, which is the desired claim.

In the following, we show the equivalence of ℓ-EFS and
ℓ-FSR.

Theorem 4.10. V ′ is ℓ-EFS if and only if V ′ is ℓ-FSR.

Proof. (ℓ-EFS → ℓ-FSR) We first note that if F is a ZFP with
V ′ as a ZFS, then there are at most n− 1 edges used in F . If
we remove edges not used in F to get G′, then V ′ will still be
a ZFS of G′. Thus, if V ′ is an ℓ-EFS, it means for any edge
set Eℓ ⊆ E, where |Eℓ| ≤ ℓ, there exist a forcing process with
V ′, say Fℓ, coloring all nodes black without using edges in
Eℓ. Since edges in Eℓ are not used in Fℓ, we can remove them
from G while maintaining V ′ to be a ZFS of G′ = (V,E\Eℓ),
i.e., Fℓ is a forcing process of G′ with V ′, implying V ′ is an
ℓ-FSR of G.

(ℓ-FSR → ℓ-EFS) We will prove using induction on ℓ. For
ℓ = 1, if V ′ is 1-FSR, then it is 1-EFS by Lemma 4.9. Thus,
we make the induction hypothesis, if V ′ is (ℓ− 1)-FSR, then
it is (ℓ−1)-EFS. Assuming V ′ to be ℓ-FSR, we need to show
that V ′ is ℓ-EFS. Let Eℓ be a set of ℓ non-forcing edges.
Since V ′ is (ℓ − 1)-EFS (by the induction hypothesis), we
apply forces such that each edge e = (u, v) ∈ Eℓ satisfies one
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of the two conditions (by Lemma 4.6): (i) Both end nodes
of e are colored black. (ii) If one node, say u, is black, then
all nodes in N [u] \ {v} are also colored black. Note that the
removal of edges in both cases (i) and (ii) will not change the
zero forcing behavior of the black nodes. Thus, we remove
these ℓ edges. Since V ′ is ℓ-FSR, it means that all nodes will
be colored black at the end of the forcing process. Thus, all
nodes are colored black in spite of ℓ non-forcing edges, i.e.,
V ′ is ℓ-EFS, which is the desired result.

A direct corollary of Theorems 4.8 and 4.10 is Theo-
rem 4.4 entailing that resilience to one type of misbehaving
nodes/edges implies resilience to other kinds of misbehaving
nodes/edges. To illustrate the equivalence of the three leaky
forcing variations, consider a graph G = (V,E) in Figure 7(a),
where V ′ = {v1, v2, v3} serves as a 1-LFS, 1-EFS, and 1-
FSR simultaneously. V ′ ensures that all nodes become colored
through some zero forcing process despite the presence of
any single non-forcing node, non-forcing edge, or removable
edge. For instance, if we have a non-forcing node v7, as
in Figure 7(b), the zero forcing process, such as v1 → v4,
v3 → v5, v4 → v6, v6 → v7, guarantees coloring for all nodes.
It is important to note that since v7 is a leak node, it should
not force any other node in this process, which is indeed the
case here. Similarly, in the presence of a removable edge, for
instance, (v4, v6) as in Figure 7(c), the zero forcing process,
v1 → v4, v3 → v5, v5 → v7, v7 → v6, ensures coloring for all
nodes without utilizing the edge (v4, v6). Lastly, if we have
a single non-forcing edge, say (v6, v7), as in Figure 7(d), a
zero forcing process, v1 → v4, v3 → v5, v4 → v6, v5 → v7,
ensures coloring of all the nodes without involving (v6, v7).

v1 v2 v3

v4 v5

v6 v7

(a)

v1 v2 v3

v4 v5

v6 v7

(b)

v1 v2 v3

v4 v5

v6 v7

(c)

v1 v2 v3

v4 v5

v6 v7

(d)

Fig. 7: (a) A graph showing V ′ = {v1, v2, v3}, which serves
as a 1-LFS, 1-EFS, and 1-FSR simultaneously. (b) v7 is a leak
node. (c) (v6, v7) is a removable edge. (d) (v6, v7) is a non-
forcing edge.

We note that [19] considers other variations of ‘leaks’ and
demonstrates their equivalence, including specified leaks and
mixed leaks. A forcing of node v through node u is a specified
leak if u → v is prohibited. Thus, if u is a leak node
(as defined in Section III-A), it represents a set of specified
leaks {u → v : v ∈ N (u)} [19]. Similarly, the notion of

mixed leaks represents scenarios where a network contains a
combination of different leaks, such as a leak node, a non-
forcing edge, and a specified leak. If a set of initially colored
nodes guarantees the forcing of the entire node set despite
one type of leak, it also guarantees the same in the presence
of mixed leaks, i.e., a combination of different leaks [19].

V. COMPUTATION AND NUMERICAL ILLUSTRATION

Computing a minimum ℓ-LFS, and therefore, ℓ-EFS and
ℓ-FSR, are NP hard problems (since minimum ZFS is NP-
hard [38], [45]). Here, we present a greedy algorithm to
compute a small-sized 1-LFS and numerically evaluate it. The
choice of a greedy algorithm stems from its practical effi-
ciency and effectiveness in generating near-optimal solutions.
A greedy algorithm for any ℓ can be designed using a similar
approach and utilizing the characterization in Theorem 4.3.
For a given input set V ′, we define Q(V ′) to be the set of
non-input nodes, each of which can be forced by at least two
distinct nodes. More precisely,

Q(V ′) = {v ∈ V \ V ′ : ∃ x → v ∈ F(V ′) and
y → v ∈ F(V ′), and x ̸= y}.

(7)

By Theorem 4.2, V ′ is 1-LFS if and only if Q(V ′) =
V \ V ′. Figure 10 also provides an illustration, where the set
{v1, v2, v4, v7} is a 1-LFS of G. For each v ∈ V \ V ′, there
exist two zero forcing processes wherein v is forced by distinct
nodes (as depicted in Figure 10(b)).

Algorithm 1 presents a greedy heuristic to compute a 1-LFS.
The main idea is to iteratively include nodes in the leader set
V ′ to maximize the size of Q(V ′) (as in (7)) until Q(V ′) =
V \ V ′. The algorithm initializes V ′ with a ZFS, leveraging
the fact that every 1-LFS is also a ZFS. As a result of the
greedy selection, V ′ might contain some redundant nodes. In
Algorithm 1, lines 9 − 14 remove such redundant nodes to
reduce the size of 1-LFS.

Algorithm 1: Greedy Heuristics for 1-LFS

1 : given: G = (V,E), |V | = n
2 : initialization: V ′ = ∅
3 : Compute ZFS Z0, and assign V ′ = Z0
4 : Compute Q(V ′)
5 : while |Q(V ′)| < n− |V ′|
6 : v∗ = argmax

v∈V \(V ′∪Q(V ′))
Q(V ′ ∪ {v})

7 : V ′ = V ′ ∪ {v∗}
8 : end while

-------- removing redundancies --------
9 : Z = V ′

10 : for all v ∈ Z
11 : if |Q(V ′ \ {v})| = n− |V ′| - 1
12 : V ′ = V ′ \ {v}
13 : end if
14 : end for
15 : return V ′

Figure 8 compares the greedy heuristic with the optimal
solution for Erdös-Rényi (ER) and Barabási-Albert (BA) ran-
dom graphs with n = 20 nodes. In ER graphs, any two nodes
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are adjacent with a probability p. BA graphs are obtained by
attaching a new node (one at a time) to an existing graph
through m edges using a preferential attachment model. For
computing an optimal solution, we employ an exhaustive
search approach. First, we determine the zero forcing number
of the graph, say z0, using the wavefront algorithm [38]. Then,
we exhaustively check subsets of nodes to find a minimum
1-leaky forcing set of the graph. Starting with subsets of
size of i = z0, we iteratively increment i until finding an
optimal 1-leaky forcing set. Each point on the plots averages
15 randomly generated instances. Figures 8(a) and (c) plot
the size of 1-LFS as a function of m in BA graphs, and as
a function of p in ER graphs, respectively. Figures 8(b) and
(d) plot the time taken by the greedy and optimal solutions
to compute 1-LFS in BA and ER graphs, respectively.Our
results indicate that the greedy and optimal solutions closely
align, with differences diminishing as graph density increases.
However, the computational time required for an optimal
solution, using exhaustive search, is orders of magnitude
higher, even for small-sized graphs. Note that in Figure 8(b)
and (d), the time axis is presented on a logarithmic scale. We
can design a similar greedy heuristic to compute an ℓ-LFS for
ℓ > 1; however, the time complexity will increase significantly
with increasing ℓ, and even the greedy heuristic will become
inefficient for higher ℓ. Thus, more efficient heuristics are
needed to compute ℓ-LFS for large ℓ values.

(a) BA (b) BA

(c) ER (d) ER

Fig. 8: Comparison of optimal (exhaustive search) and greedy
heuristic (Algorithm 1) for the computation of 1-LFS in Erdös-
Rényi (ER) and Barabási-Albert (BA) random graphs.

VI. NETWORK DESIGN USING GRAPH COMBINATION

In the previous section, we examined an analysis problem
focused on characterizing leader sets ensuring resilient SSC
in networks. In this section, we focus on a design problem
involving graph composition. Our aim is twofold: to seam-
lessly combine given graphs while guaranteeing SSC in the

combined graph, and to achieve this with fewer leaders. For
this, we must ensure that the leader sets constitute a ZFS for
controllability or ℓ-LFS for resilient controllability. So, we
study the following problem:

How to combine multiple graphs by establishing connec-
tions between their vertices while considering the trade-off
between the number of added edges and the size of the result-
ing combined graph’s leader set, ensuring strong structural
controllability of the combined graph.

In [25], we addressed the problem of densifying a given
graph while preserving its Zero Forcing Set (ZFS). In [40],
we identified edges whose removal not only preserves but also
reduces the size of the ZFS in a given graph. The current work
is distinct as it focuses on the composition of graphs. In the
subsequent subsections, we investigate this graph combination
within the context of ZFS and 1-LFS.

A. Graph Combination and ZFS

First,we explore the impact of adding edges between graphs
on the size of the Zero Forcing Set (ZFS) of the resulting
combined graph. We introduce the concept of a ‘patch,’ which
refers to the set of edges inserted between graphs to create the
combined graph. Our observation reveals that the ZFS size of
the combined graph typically increases with the size of the
patch. In particular, consider two graphs G and H with ZFS
Zg and Zh, respectively. Also, |Zg| = ζg and |Zh| = ζh, where
ζg ≥ ζh (without the loss of generality). For any positive
integer 0 ≤ κ ≤ ζh, we design a maximal patch to combine
G and H to obtain G such that the ZFS of G is of size ζg+κ.
Thus, we attain G with a ZFS of the size of any integer value
in the interval [ζg, (ζg + ζh)]. We note that if ζg is the zero
forcing number of G, then the size of a ZFS of G must be
at least ζg for any patch. For a higher κ, both the ZFS and
patch sizes will be larger, and vice versa. We state the result
in Theorem 6.1 and illustrate in Figure 9. First, we define the
patch formally.

Definition 11. (Patch and Combined Graph) Given graphs
G = (Vg, Eg) and H = (Vh, Eh), a patch is a set of edges
Ep = {(u, v) | u ∈ Vg, v ∈ Vh} combining G and H to get
a combined graph G = (Vg ∪ Vh, Eg ∪ Eh ∪ Ep).

Also, recall the concept of free node, as in Definition 10.
A free node is simply a terminal node of the maximal zero
forcing chain and possesses the property that it does not force
any other node in the graph. If Zg is a ZFS of G of size
ζg , and R(Zg) represents the corresponding set of free nodes,
then |R(Zg)| = ζg . Interestingly, R(Zg) also forms a ZFS of
G [42]. With this understanding, we state the following result.

Theorem 6.1. Let G = (Vg, Eg) and H = (Vh, Eh) be two
graphs with zero forcing sets Zg and Zh, respectively. Let
|Zg| = ζg , |Zh| = ζh, and ζg ≥ ζh (without the loss of
generality). If κ is a positive integer, where 0 ≤ κ ≤ ζh,
then G and H can be combined through a patch Ep to get
G = (Vg ∪ Vh, Eg ∪Eh ∪Ep), such that G has a ZFS of size
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(ζg + κ), and

|Ep| =
(ζh − κ)(ζh − κ+ 1)

2
+κ|Vg|+(ζg−ζh+κ)(|Vh|−κ).

(8)
Moreover, Ep is maximal.

Proof. Let R(Zg) be the set of free nodes
in G corresponding to Zg , and R(Zg) =
{u1, u2, · · · , uζh−κ, uζh−κ+1 · · · , uζh , uζh+1 · · · , uζg}. Also,
let Zh = {v1, v2, · · · , vζh−κ, vζh−κ+1, · · · , vζh} be a ZFS
of H . First, we construct a patch Ep between G and H as
following:
(i) If κ < ζh, then for each i ∈ {1, 2, · · · , ζh − κ}, ui ∈

R(Zg) is adjacent to vj ∈ Vh for all j ≤ i.
(ii) If κ > 0, then for each i ∈ {ζh−κ+1, · · · , ζh}, vi ∈ Vh

is adjacent to all nodes in Vg .
(iii) If κ > 0 or ζg > ζh, then for each i ∈ {ζh − κ +

1, · · · , ζg}, ui ∈ Vg is adjacent to all nodes in Vh.
It is easy to see that the number of edges due to (i) is
(1/2)(ζh − κ)(ζh − κ + 1). Similarly, the number of edges
due to (ii) is κ|Vg|, and due to (iii) is (ζg − ζh+κ)|Vh|. Since
(ζg − ζh + κ)κ of such edges have already been included due
to (ii), we subtract them from the total count. Adding all these
edges results in |Ep| as given in (8).

Next, we show that ZG = Zg ∪ {vζh−κ+1, · · · , vζh} is a
ZFS of the combined graph G = (Vg ∪Vh, Eg ∪Eh∪Ep). For
this, first, we show that if nodes in ZG are initially black, then
nodes Vg in G are also colored black. Since Zg is a ZFS of G,
the only reason for our claim to be not true is that edges in
Ep might prevent nodes in Vg from getting black. There are
three types of edges in Ep, as explained above in (i), (ii), and
(iii). Each edge in Ep has one end node from Vg and the other
end node from Vh. Considering edges in (i) and (iii), the end
nodes of edges from Vg are the free nodes and do not force
any node in Vg . Hence, they do not affect the coloring of Vg

by Zg . For all edges in (ii), the end node from Vh is black. In
a zero forcing process, if a white node becomes black, then
adjoining the white node to a black node does not affect the
color changing of the white node. Thus, edges in (ii) do not
prevent Vg from getting colored black.

Next, we show that nodes in Vh in G are also col-
ored black due to ZG . Note that {v1, v2, · · · , vζh−κ} ⊆
Vh. As a result of edges in (i) above, for every vi ∈
{v1, v2, · · · , vζh−κ}, there is a node uj ∈ R(Zg) such that
vi is the only white neighbor of uj . Thus, each node in
{v1, v2, · · · , vζh−κ} gets colored black. Thus, all nodes in
the set {v1, v2, · · · , vζh−κ, vζh−κ+1, · · · , vζh} are black. Also,
these nodes constitute a ZFS of H , i.e., Zh. Now for every
edge in (ii) and (iii), one of the end nodes that is in Vg

is black. Since adjoining a white node to black node does
not prevent the white node from becoming black in a zero
forcing process, all nodes in Vh gets black due to Zh. Thus,
ZG = Zg ∪ {vζh−κ+1, · · · , vζh} is indeed a ZFS of G.

For illustration, consider G and H in Figure 9. Zg (dark
colored nodes) and Zh = {v1, v2, v3} are zero forcing sets of
G and H , respectively. Also, ζg = 4, ζh = 3, and the free
nodes corresponding to Zg are R(Zg) = {u1, u2, u3, u4}. In

Figure 9(a), κ = 0, thus, ZG = Zg is a ZFS of the combined
graph G obtained by adding a patch (red colored edges) of
size ζh(ζh + 1)/2 + |Vh| = 6 + |Vh|. In Figure 9(b), κ = 1
and ZG = Zg ∪ {v3} is a ZFS of G. In this case, a patch of
larger size is obtained. Similarly, in Figure 9(c), ZG = Zg∪Zh

is a ZFS of G and a patch of size |Ep| = ζh|Vg|+ζg(|Vh|−ζh)
is obtained, which is of the largest size among all the cases.

(a) κ = 0

(b) κ = 1 (c) κ = ζh

Fig. 9: Illustration of Theorem 6.1 for various κ values.

Next, we consider graph combinations in the context of 1-
LFS in graphs ensuring that the input set remains a ZFS despite
a single misbehaving node.

B. Graph Combination and 1-LFS
Our objective in this subsection is to combine two graphs,

denoted as G and H , by introducing edges between their
vertices to minimize the size of the resulting 1-LFS of the
combined graph G. Specifically, if Z ′

g and Z ′
h represent the

1-LFS of graphs G and H respectively, we aim to identify
edges between vertices in G and H such that G possesses a
1-LFS that is a subset of Z ′

g ∪Z ′
h. It is important to note that

the addition of edges typically leads to an increase in the size
of the 1-LFS (and ZFS). We proceed by defining the notion
of 1-free nodes in a graph.

Definition 12. (1-free nodes) Consider Z ′
g to be a 1-LFS of

G = (V,E). Let Fa(vi) and Fb(vi) represent two distinct
forcing processes, where vi ∈ Vg \ V is forced by different
nodes in each process. A node is a 1-free node if it is not a
forcer in any force included in

⋃
vi∈Vg\V

(Fa(vi) ∪ Fb(vi)). We

denote the set of 1-free nodes for Z ′
g by R1(Z

′
g)

In simple words, if Z ′
g is a 1-LFS of G and v is a 1-free

node, then all the nodes in G are colored black despite a single
leak and importantly, this can be achieved without requiring
the free node v to force any other node in the process.
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To illustrate 1-free nodes, consider the example graph G =
(Vg, Eg) in Figure 10. Here, Z ′

g = {v1, v2, v4, v7} is a 1-LFS.
The corresponding 1-free nodes are R1(Z

′
g) = {v6, v8}. To

see this, let us examine the zero forcing processes depicted
in Figure 10(b). For each node v ∈ Vg \ Z ′

g , there exists two
forcing processes (FPs), where v is forced by two distinct
nodes. For instance, node v3 is forced by v2 in the FP 1, and
by v5 in FP 3. Similarly, node v5 is forced by v4 in FP 1 and
by v3 in FP 4. Notably, nodes v6 and v8 do not force any
other nodes in any of the mentioned zero forcing processes,
thereby qualifying as 1-free nodes corresponding to the given
1-LFS.

(a) G

v1 → v8
v2 → v3
v4 → v5
v7 → v6

v1 → v8
v2
v4 → v5 → v3
v7 → v6

v1
v2 → v3 → v6
v4 → v5
v7 → v8

v1 → v8
v2 → v3 → v5
v4
v7 → v6

FP 1 FP 2

FP 3 FP 4

(b) Zero forcing processes.

Fig. 10: Z ′
g = {v1, v2, v4, v7} is a 1-LFS and {v6, v8} are the

corresponding 1-free nodes determined through the analysis
of forcing processes illustrated in (b).

Another interpretation of R1(Z
′
g) is that if v ∈ R1(Z

′
g),

then Z ′
g is a ZFS of G = (Vg, Eg) despite the set of leak

nodes given by L = R1(Z
′
g) ∪ {u}, where u is an arbitrary

node in Vg \ R1(Z
′
g). For instance, consider the leak set

L = {v6, v8} ∪ {v1} in Figure 10(a). Despite this leak set,
Z ′
g = {v1, v2, v4, v7} remains a ZFS of G. In this scenario,

R1(Z
′
g) = {v6, v8} represents the set of 1-free nodes. We also

note that verifying whether a given set of nodes constitutes a
set of 1-free nodes is computationally straightforward. Next,
we state the result in Proposition 6.2 and illustrate in Figure 11.

Proposition 6.2. Let G = (V g,Eg) and H = (Vh, Eh) be
two graphs. Let Z ′

g be a 1-LFS of G and R1(Z
′
g) be the set of

1-free nodes. Similarly, consider Z ′
h to be a 1-LFS of H . If Z ′

h

can be partitioned as X ∪Y such that X ∪ (Y \{y}) is a ZFS
of H , for all y ∈ Y , then G and H can be combined through
a patch Ep to get a graph G = (Vg∪Vh, Eg∪Eh∪Ep) whose
1-LFS is of size |Z ′

g|+ |Z ′
h| −min (|R1(Z

′
g)|, |Y |).

Proof. First, assume that |R1(Z
′
g)| ≤ |Y |, R1(Z

′
g) =

{r1, · · · , rm} and Y = {y1, · · · , ym, · · · , yk}. Combine G
and H to get a graph G by adding edges {(ri, yi) : ri ∈
R1, yi ∈ Y }, ∀i ∈ {1, · · · ,m}. Note that Z ′

G = Z ′
g ∪ X ∪

{ym+1, · · · , yk} is of size |Z ′
g| + |Z ′

h| − min (R1(Z
′
g), |Y |).

We will show that Z ′
G is a 1-LFS of the combined graph G.

Let u be a leak node in G.
Case a: u ∈ Vg . The only nodes in Vg that are adjacent to

any node in Vh are R1(Z
′
g). Also, by the definition of 1-free

nodes, none of the nodes in R1(Z
′
g) force any node in Vg .

Thus, each node in Vg will be forced by Z ′
g , which is a 1-LFS

of G, despite a leak u ∈ Vg . Also, since u ∈ Vg , it means
none of the nodes in Vh can be a leak. Thus, if black nodes

in Vh constitute a ZFS, all nodes in Vh will be forced. Now,
we note that at least m− 1 nodes in {y1, · · · , ym} ⊂ Z ′

h will
be forced by R1(Z

′
g). Since {ym+1, · · · , yk} are colored black

initially. Thus, there is at most one node in Y that is not black
and remaining are colored black. Since Y \ {y} is a ZFS of
Vh for any y ∈ Y (as given), all nodes in Vh will be forced.
As a result all nodes in Vg ∪ Vh will be forced by Z ′

G despite
a leak u.

Case b: u ∈ Vh. It means none of the nodes in Vg is a leak,
and all nodes in Vg will be colored black due to Z ′

g . Thus,
1-free nodes in R1(Z

′
G) will force the nodes in {y1, · · · , ym}.

Since X∪{ym+1, · · · , yk} is initially black, all nodes in X∪Y
will be black. Also, X ∪Y is a 1-LFS of Vh, which means all
nodes in Vh will be forced eventually despite a leak u ∈ Vh.
Thus, all nodes in Vg ∪ Vh will be forced by Z ′

G = Z ′
g ∪X ∪

{ym+1, · · · , yk}, which is the desired result.
The case where |R1(Z

′
g)| > |Y | is proven analogously using

the same details and is omitted.

Fig. 11: Illustration of Proposition 6.2.

As an example, consider graphs G and H in Figures 12(a)
and (b), respectively. In G, the set Z ′

g = {v1, v2, v4, v6} forms
a 1-LFS, with the corresponding set of 1-free nodes R1(Z

′
g) =

{r1, r2}. Similarly, in H , the set Z ′
h = {x1, x2, y1, y2} repre-

sents a 1-LFS. Note that Z ′
h \ {yi}, where yi ∈ Y = {y1, y2},

is a ZFS of H . Using Proposition 6.2, we combine G and
H by adding edges between nodes in R1(Z

′
g) and Y to

get a graph G, as shown in Figure 12(c). The set of nodes
{v1, v2, v4, v6, x1, x2} constitutes a 1-LFS of G and is a proper
subset of Z ′

g ∪ Z ′
h.

VII. CONCLUSION

We studied the problem of maintaining SSC in networks
despite misbehaving nodes and edges. We investigated various
models of misbehavior aimed at disrupting the zero forcing
process in graphs, which in turn impacts the network SSC.
One key finding is the equivalence in resilience across dif-
ferent misbehavior models. We demonstrated that a network’s
resilience to one type of misbehaving node or edge extends
to resilience against other threat types. This insight simplifies
the leader selection process, facilitating the identification of
effective strategies for ensuring SSC in the face of diverse
adversities. Moreover, we discussed leader selection strategies
to guarantee resilient SSC and investigated the integration of
multiple graphs while maintaining SSC with a reduced leader
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(a) G (b) H

(c) G

Fig. 12: Combining G and H to obtain G. The added edges
are highlighted in red. Notably, 1-LFS of G is a proper subset
of the union of the 1-LFS of G and H .

set compared to individual networks. However, we acknowl-
edge the inherent challenge of resilience, as it often demands
a significant number of additional leaders to counteract the
impact of a few misbehaving nodes and edges.

In the future, we aim to enhance network resilience against
faults and adversarial attacks by safeguarding selected nodes
and edges. The selection of ‘trusted’ elements (nodes/links)
within the network and analyzing their impact, especially
on the number of leaders required for resilient SSC, will
be an interesting direction. Additionally, designing efficient
heuristics for computing leaders guaranteeing resilient SSC
remains an important concern for further exploration.
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APPENDIX

Here, we give a proof of Theorem 4.8. First, we present the
following lemma.

Lemma A.1. If V ′ is a 1-EFS, then V ′ is a 1-LFS.

Proof. Let F be a forcing process with V ′ as input nodes.
Consider u ∈ V to be be an arbitrary fixed leak. If u is an
end node of a forcing chain, then u does not force any node.
So, we assume that u → v ∈ F for some v. Since V ′ is 1-EFS,
there exists another forcing process F ′ such that v is not forced
by u. Let x → v, for some x ̸= u. Now, consider F till the
point u → v becomes valid but v is not colored black. Let Ṽ
be the set of black nodes till this point. Note that v /∈ Ṽ . Note
that all nodes in N [u]\{v} are colored black and v is the only
node that u can force. Consider Fu = (F\F (Ṽ ))∪F ′(Ṽ ). By
Lemma 4.1, Fu is a valid forcing process with input nodes V ′

coloring all nodes black. Note that u is not forcing v in Fu,
and hence u is not forcing any node in Fu. Thus, V ′ is a
1-LFS, which is the desired claim.

A. Proof of Theorem 4.8

Proof. (ℓ-LFS → ℓ-EFS) We will prove using induction on
ℓ. From Lemma 4.5, if V ′ is 1-LFS, then it is 1-EFS. So,
our induction hypothesis is, if V ′ is (ℓ − 1)-LFS, then V ′ is
(ℓ − 1)-EFS. Now, assume that V ′ is ℓ-LFS. Thus, V ′ must
be (ℓ − 1)-LFS implying that it is also (ℓ − 1)-EFS (by our
induction hypothesis). Let Eℓ be a set of ℓ non-forcing edges.
By Lemma 4.6, there is a forcing process F such that for
each e = (u, v) ∈ Eℓ, either both end nodes u and v are
black, or one end node, say u, is black with N [u] \ {v} also
colored black. Let Ṽ be the set of black nodes with the forcing
process F . Next, for each e ∈ Eℓ, we consider one of its black
end node as a leak, and denote the set of leaks by L. There
will be at most ℓ leaks. We observe that a black colored leak
node can be ignored and deleted without altering the zero
forcing behavior of the other black nodes. So, we consider
G′ = G\{L}. Since G is ℓ-LFS with V ′, Ṽ \L is a ZFS of G′.
As a result, all nodes in V are colored black while considering
Eℓ as non-forcing edges, implying V ′ is an ℓ-EFS.

(ℓ-EFS → ℓ-LFS) Again, we will use induction on ℓ. For
ℓ = 1, if V ′ is 1-EFS, then it is 1-LFS (by Lemma A.1).
Our induction hypothesis is that V ′ is (ℓ − 1)-EFS implies
it to be (ℓ − 1)-LFS. Now assume V ′ to be ℓ-EFS. It means
V ′ is (ℓ − 1)-EFS and hence, (ℓ − 1)-LFS (by the induction
hypothesis). Consider L to be a set of ℓ leaks. By Lemma 4.7,
these leaks are colored black and each of them has at most
one white neighbor. Next, we consider the edge between the
leak and its white neighbor as a non-forcing edge. There will
be at most ℓ such non-forcing edges, which we denote by Eℓ.
Since one end node (leak) of each non-forcing edge is colored
black and a leak has at most one white neighbor (which is
the other end node of the non-forcing edge), we can safely
delete the non-forcing edge without affecting the zero forcing
behavior of the black node. Thus, we get G′ = G \Eℓ. Since
V ′ is ℓ-EFS, it means V ′ is a ZFS of G′. Thus, all nodes will
be colored black despite ℓ leaks. Hence, V ′ is ℓ-LFS, which
proves the desired claim.
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