Calc 1 - Some Standard Formula's

Areas

$$
\begin{aligned}
\text { circle } A & =\pi r^{2} \\
\text { rectangle } A & =l w \\
\text { triangle } A & =\frac{1}{2} b h \\
\text { box } A & =2 l w+2 l h+2 w h \\
\text { sphere } A & =4 \pi r^{2} \\
\text { cylinder } A & =2 \pi r^{2}+2 \pi r h
\end{aligned}
$$

Volumes

$$
\begin{aligned}
\text { cylinder } V & =\pi r^{2} h \\
\text { box } V & =l w h \\
\text { sphere } V & =\frac{4}{3} \pi r^{3} \\
\text { cone } V & =\frac{1}{3} \pi r^{2} h
\end{aligned}
$$

where l - length, w - width, h - height, r - radius and b - base.

Pythagorean Thm.
If x is the base, y the height, and s the hypotenuse of a right angled triangle, then

$$
x^{2}+y^{2}=s^{2} .
$$

If θ is the angle between the adjacent side and hypotenuse, we also have

$$
\tan \theta=\frac{y}{x}, \quad \sin \theta=\frac{y}{s}, \quad \cos \theta=\frac{x}{s}
$$

Similar triangles
If l_{1} and h_{1} are the base and height of the small triangle and l_{2} and h_{2} are the base and height of the large triangle, then

$$
\frac{l_{1}}{h_{1}}=\frac{l_{2}}{h_{2}}
$$

