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Abstract 27 
Chromosomal copy number changes are frequently associated with harmful 28 
consequences and thought of as an underlying mechanism for the development of 29 
diseases. However, changes in copy number are observed during development and 30 
occur during normal biological processes. In this review, we will highlight the causes and 31 
consequences of copy number changes in normal physiologic processes as well as 32 
cover the association with cancer and acquired drug resistance. We will discuss the 33 
permanent and transient nature of copy number gains and relate these observations to a 34 
new mechanism driving transient site-specific copy gains (TSSGs). Finally, we will 35 
discuss implications of TSSGs in generating intra-tumoral heterogeneity and tumor 36 
evolution and how TSSGs can influence therapeutic response in cancer.  37 
 38 
 39 
  40 
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Introduction 41 
It was long been thought that the DNA sequences of healthy individuals were 99.9% 42 
identical to each other (1).  However, genome-wide sequencing efforts in individuals 43 
from multiple ethnicities have revealed more variations in the genetic architecture than 44 
was previously appreciated (2-4).  45 
 46 
These genomic alterations have been termed “structural variants”, which are further 47 
classified as being microscopic or sub-microscopic depending on the size of DNA 48 
involved (5). The microscopic variations have historically been identified through 49 
chromosome banding techniques (6) and comprise at least 500 kilobases (kb) of DNA 50 
(7).  Examples of these variants are whole-chromosome gains or losses [referred to as 51 
aneuploidy; (7, 8)], translocations [change in location of a chromosomal segment; (9)], 52 
deletions [deletion of a DNA segment compared to the rest of the chromosome; (10)], 53 
duplications [a chromosomal segment that occurs as two or more copies per haploid 54 
genome; (11)] and inversions [reversal in orientation of a DNA segment compared to the 55 
rest of the chromosome; (12, 13)]. A schematic of structural variants resulting in copy 56 
number changes are shown in Figure 1. With the development of more sophisticated 57 
tools such as array-based comparative genomic hybridization [array CGH; (14-16)], 58 
smaller variants (sub-microscopic alterations) in the size range of 1kb-500kb can be 59 
detected (5). Genome sequencing has further revealed small insertions and deletions 60 
(INDELs) spanning from 1 to 10,000 base pairs across the human genome, which could 61 
cause considerable variability in the human population (17, 18).  62 
 63 
The most common variant identified under sub-microscopic alterations is copy number 64 
variation (CNV). CNV is defined as a genomic segment of more than 1kb present at a 65 
variable copy number in comparison to a reference genome (19-22). The first studies 66 



 4

documenting the genome-wide presence of CNVs in normal human genome came from 67 
the work of Lee (23) and Wigler laboratories (24). These studies described more than 68 
200 large-scale CNVs (LCVs; about 100kb or greater) in normal individuals. These 69 
studies also paved the way for the creation of Database of Genomic Variants (DGV) in 70 
2004, which catalogues all the human CNVs and structural variations present in healthy 71 
individuals.  72 
 73 
The sequencing efforts from the International HapMap Consortium (25) and 1000 74 
Genomes project (26) have led to the identification and frequency determination of novel 75 
CNVs in the human genome. CNVs are now known to contribute to 4.8%-9.5% of the 76 
variability in the human genome (27, 28), which is more than what is accounted for by 77 
single nucleotide polymorphisms (SNPs; accounting for 0.1% of the variations) (29). 78 
Recently, the CNV map for the human genome was constructed (28), which documented 79 
all the small and large-scale CNVs present in normal healthy individuals. CNVs can 80 
either have no phenotypic consequences in individuals (4, 23, 24), or can lead to 81 
adaptive benefits that have been observed in a wide range of species (5).  82 
 83 
One of the major challenges in the field is to distinguish benign CNVs (events that do not 84 
lead to phenotypic consequences) from pathogenic CNVs that underlie diseases (30). 85 
Pathogenic CNVs are often associated with deleterious consequences because of 86 
imbalance in gene dosage (31) and/or aberrant chromosomal structure (5, 7, 32, 33). 87 
Pathogenic CNVs have been associated with several disorders: obesity (34), diabetes 88 
(35), developmental disorders (36), psychiatric diseases (37) such as autism spectrum 89 
disorder (38), schizophrenia (39) and Alzheimer’s disease (40, 41) and cancer (42-44). 90 
In this review, we will focus mainly on copy number alterations observed in cancer and 91 
their functional implications. 92 
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CNVs can either be present in the germline or can arise in phenotypically normal tissues 93 
and organs, which are then referred to as somatic CNVs (45, 46). Instead of being 94 
randomly present in the genome, CNVs are preferentially found to occur in regions that 95 
are rich in low copy repeats (segmental duplications) (47-50), heterochromatic areas 96 
(e.g., telomeres and centromeres), replication origins and palindromic regions (28).  97 
There are several proposed mechanisms that underlie the generation of somatic CNVs: 98 
non-allelic homologous recombination (NAHR), non-homologous end joining (NHEJ), 99 
defects in DNA replication, DNA damage response and repair pathways. These 100 
mechanisms have been extensively discussed elsewhere, therefore we refer our readers 101 
to these reviews (32, 33, 51).   102 
 103 
In this review, we explore the relationship between copy number changes and biological 104 
consequences, with a particular focus on development and tissue homeostasis under 105 
physiological as well as pathological conditions. This review will focus on these 106 
relationships especially in the context of cancer. We will further discuss a recently 107 
discovered process driving transient site-specific copy number gains (TSSGs) in cancer 108 
cells and its implications during adaptive responses such as stress and 109 
chemotherapeutic sensitivity. 110  111  112 
Copy Number Changes In Development and Physiology  113 
Chromosomal copy number changes and the associated gene amplifications and losses 114 
are observed during development in both lower and higher eukaryotes [reviewed in (7)]. 115 
The appearance of CNVs during normal biology suggests that copy number changes 116 
can have important functional consequences. A common hypothesis is that increased 117 
gene dosages during development provides an advantage during selective pressures 118 
and environmental conditions (7). Here, we will discuss examples from developmental 119 
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biology and their relationship to functional impact. We will also highlight the relationship 120 
between somatic CNVs and tissue homeostasis.  121 
 122 
Several lower and higher eukaryotes use gene amplification to respond to cellular 123 
signals (Figure 2). Electron microscopy studies in the early 1970s demonstrated that 124 
ribosomal genes are amplified for the production of large amounts of ribosomes required 125 
during early embryogenesis (52) . Ribosomal DNA (rDNA) amplifications were observed 126 
during oocyte formation in amphibians Xenopus leavis (53-55), insects such as water 127 
beetles (56), molluscs (55) and in the macronuclear rDNA in Paramecium (57) and 128 
Tetrahymena (58). Thus, increase in ribosomal DNA synthesis to meet higher protein 129 
synthesis demands in different tissues, highlights gene amplification as a common 130 
principle in developmental biology. 131 
 132 
Besides rDNA, specific chromosomal regions identified as “DNA puffs” are amplified and 133 
expressed to form structural proteins required for cocoon formation in the salivary gland 134 
of Sciarid flies (59, 60). Amplification of the DNA puffs occurs in response to the 135 
hormone ecdysone, which is required during larval development (60). Another example 136 
of gene amplification triggered by developmental signals can be observed during 137 
eggshell formation in Drosophila (61). Eggshells require amplification of chorion genes in 138 
the follicle cells of the ovary and these genes are expressed late in differentiation (61, 139 
62). The amplifications of only specific chromosomal regions and genes and not the 140 
whole genome highlights the specific response that can occur across organisms.  These 141 
examples suggest the ability of cellular cues to trigger these site-specific amplifications, 142 
which raises a question about what molecular mechanisms underpin this selective 143 
amplification across species. 144 
 145 
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Examples of copy number variations are reported in various tissues in mammals. Using 146 
techniques such as SKY, FISH and single cell sequencing approaches, various groups 147 
have reported both small and large-scale changes in chromosomal copy number in 148 
mouse and human tissues, particularly in neurons, liver and skin fibroblasts (Figure 2). 149 
For example, approximately 33% of the neuroblasts in the embryonic mouse brain and 150 
20% of neurons in the adult mouse cerebral cortex showed aneuploidy (63). The 151 
reduction in aneuploidy in the adult brain was hypothesized to be due to a neuroblast 152 
programmed cell death mechanism during brain development (64). Westra and 153 
colleagues also uncovered that 15-20% of neural progenitor cells in both mouse and 154 
human cerebellum exhibited aneuploidy (65) (Figure 2).  155 
 156 
Additionally, high levels of sub-chromosomal CNVs (deletion and duplication events) 157 
were observed in the human frontal cortex neurons. Multiple copy number changes were 158 
noted within a small set of neurons, suggesting that CNVs might be restricted to either 159 
individual cells or specific neural lineages (66). These data suggest that the generation 160 
of copy number changes is an important process for achieving diversity in the neuronal 161 
populations during central nervous system development. However, this possibility has 162 
yet to be proven. It was reported that the transcripts arising from CNVs in the mouse 163 
brain are more tightly regulated when compared to other tissues such as lung, liver, 164 
heart, kidney and testis (67). It would be important to determine the rate of correlation 165 
between CNVs and expression changes in the human brain and whether there are 166 
underlying functional consequences of the affected transcripts in generating neural 167 
diversity and plasticity.  168 
 169 
Somatic CNVs are also observed in mammalian hepatocytes and skin. A study by 170 
Duncan and colleagues suggests that approximately 50% of normal adult hepatocytes 171 
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have changes in chromosomal numbers (gains or losses) such that genetically diverse 172 
sets of cells are present in the liver (68, 69). However, single cell next generation 173 
sequencing has reported a lower level of aneuploidy (<5%) in liver, skin and human 174 
neurons (70). The differences in the reported levels of aneuploidies could reflect the 175 
different types of assays employed to follow copy number changes (i.e., FISH and SKY 176 
versus single cell sequencing, respectively).  177 
 178 
The genetic variation resulting from the changes in copy number could be a mechanism 179 
employed during tissue development in order to achieve diversity in cell populations. 180 
Copy number variations may allow developing tissues to adapt to cellular and growth 181 
requirements during tissue expansion and organ development. Another advantage for 182 
the observed CNVs could be to adapt to encountered metabolic or toxic challenges, 183 
especially by hepatocytes (see discussion in the following section under Mammals). By 184 
identifying the regulatory features for regions undergoing CNV and the affected genes in 185 
different tissues, we would be able to understand tissue-specific gene expression and 186 
underlying diversity within tissues.  187 
 188 
Copy Number Changes as an Adaptive Response 189 
Many studies in bacteria, yeast and mammals have shown that copy number changes 190 
can arise as a consequence of selection, which may allow cells to exhibit an increased 191 
fitness and/or survival advantage. In this section, we discuss the relationship between 192 
different cellular conditions and the emergence of CNVs from different species (Figure 193 
2).  194 
 195 
Bacteria. Acquisition of antibiotic resistance can occur through the uptake of foreign 196 
DNA harboring resistance genes through the bacterial competence pathway (71).  A 197 
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recent study by Slager et al. demonstrated that different species of bacteria could 198 
increase the copy number of genes involved in the competence pathway (com genes) in 199 
response to antibiotics causing replication stress (72). These genes are located closer to 200 
the origin of replication (OriC) and their amplification occurs through multiple origin firing 201 
events at the OriC, which increases their copy number and transcription rates. In 202 
Salmonella typhimurium, gene amplification aids in the development of antibiotic 203 
resistance. Adaptation to the antibiotic cephalosporin occurred through amplification and 204 
increased gene dosage/expression of the β-lactamase gene [blaTEM-1; (73)]. The enzyme 205 
β-lactamase results in the hydrolysis of cephalosporin (74, 75), which results in reduced 206 
drug response.  207 
 208 
These highlighted examples illustrate the impact selective pressure can have on DNA 209 
amplification and gene expression in bacteria (Figure 2). Additional examples have been 210 
observed and are discussed in a review by Sandegren et al. (76).  Taken together, the 211 
existing data illustrate the relationship between input signals and changes at distinct 212 
regions of the bacterial genome. In the future, it will be interesting to know if this 213 
selection is based on fitness or the result of targeted DNA replication in prokaryotes. 214 
 215 
Yeast. Similar to bacteria, yeast also exhibit changes in DNA content based on selective 216 
pressure.  For example, gene rearrangements and copy number changes have been 217 
observed in Candida albicans when passaged through a murine host (77). It has been 218 
hypothesized that these changes in ploidy could generate genetic and phenotypic 219 
diversity required for adaptation in the new host environment. Consistent with these 220 
observations, CNV has been associated with anti-fungal drug resistance and adaptive 221 
benefits (78, 79). For example, fluconazole treatment in C. albicans results in the 222 
development of whole chromosome gains and aneuploidy (80).  Upon CGH analyses for 223 
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the copy number changes in 70 azole-resistant and -sensitive strains, Selmecki et al. 224 
found increased levels of aneuploidy in resistant strains (50%) compared to the sensitive 225 
ones [7.14%; (81, 82)]. Trisomies of chromosome 5, including a segmental aneuploidy 226 
consisting of an isochromosome (formed here by the attachment of two left arms of 227 
chromosome 5 around a single centromere) were also associated with azole-resistance. 228 
Gains of this isochromosome were associated with an increased expression of genes 229 
involved in drug resistance (82). Some of these genes encoded efflux pump proteins 230 
involved in resistance: an ATP-binding cassette transporter (ABC) and a multi-drug 231 
resistance transporter (83).  Other genes were ERG11 [a target of fluconazole; (84)] and 232 
TAC1 [a transcription factor that upregulates ABC gene expression; (82)]. There is a 233 
need to identify other structural variations and affected genes conferring 234 
survival/adaptive advantage to antibiotics and whether these changes are conserved 235 
across other fungal species. 236 
 237 
Consistent with gene amplification conferring a selective advantage, budding yeast 238 
exposed to nutrient deprivation exhibited gene amplifications that provided a cellular 239 
benefit (85). For example, glucose limitation in cultures resulted in the amplification of 240 
genes encoding glucose transporters (HXT6 and HXT7), while sulfate-limitation resulted 241 
in the amplifications of SUL1, a gene that encodes for a high affinity sulfate transporter 242 
(Figure 2).  The question remains as to whether these physiological input signals are 243 
able to drive selective DNA gains through a hardwired mechanism as observed in 244 
mammalian cells [discussed in section: Cancer and Transient Site-Specific Copy Gains 245 
(TSSGs)] or are the result of random selection. Resolving this issue could have a 246 
profound impact on our understanding of cellular fitness and antibiotics responses. 247 
 248 
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Mammals. Mammals are no exception to selective pressures promoting copy number 249 
changes or copy number alterations impacting biological consequences.  For example, 250 
copy number of the human salivary amylase gene AMY1, which aids in the hydrolysis of 251 
starch, is increased in populations that have a higher starch-content in their diets when 252 
compared to low-starch consuming populations (86). The increased copy number of 253 
AMY1 also correlated with increased salivary amylase protein levels. This illustrates how 254 
diet induced selective pressures could be influencing copy number polymorphism in 255 
mammals. Other examples and the role of copy number polymorphism in human 256 
adaptation have been reviewed elsewhere (33, 87, 88).  While these studies are 257 
correlative and suggest that environment impacts selection, they have yet to be shown 258 
as causal. 259 
 260 
Increased or decreased copy number of certain genes can predispose an individual to 261 
diseases.  For example, susceptibility of individuals to HIV/AIDS infection is increased in 262 
populations with a decreased copy number of the chemokine gene CCL3L1. This 263 
chemokine serves as a ligand for HIV co-receptor CCR5, which inhibits viral entry by 264 
binding to CCR5.  However, HIV resistant individuals show duplications of the CCL3L1 265 
locus (17q21.1) with increased CCL3L1 copies imparting resistance to HIV infections 266 
(89).  Other examples of CNVs promoting susceptibility to diseases can be found in the 267 
case of psoriasis [associated with a copy number gain of β-defensin gene (90, 91)]; 268 
pancreatitis [copy number gain of PRSS1; (92)] and Crohn’s disease [copy number loss 269 
of HBD-2; (93)], among others (20, 94). The question still remains as to whether there 270 
are mechanisms that would allow such changes to occur immediately in response to the 271 
stimuli in the population or whether this reflects some mutation that was selected for 272 
over time. 273 
 274 
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Somatic mosaicism for CNVs within tissues can provide an adaptive response as well. 275 
CNVs within the liver can provide protection against tissue injury. Duncan et al. 276 
demonstrated in a chronic liver injury model that selective gene loss could provide 277 
resistance to liver injury (95). Deficiency of fumaryl acetoacetate hydrolase (FAH; an 278 
enzyme required in tyrosine catabolism) causes a build up of fatty acids and toxic 279 
metabolites that result in liver failure, which is known as Tyrosinemia. Conversely, 280 
deletion of the genes encoding enzymes that function upstream of FAH (e.g., 281 
homogentisic acid dioxygenase, HGD) is found to be protective for Tyrosinemia. Mice 282 
deficient for FAH and heterozygous for a mutation in HGD can generate healthy normal 283 
hepatocytes.  These injury resistant, aneuploid hepatocytes (characterized by the loss of 284 
chromosome 16) are present in the liver and undergo expansion only when the liver is 285 
exposed to injury, demonstrating an adaptive response of cells to metabolic or toxic 286 
challenges.   287 
 288 
Taken together, these few examples illustrate the CNVs present within populations and 289 
individual tissues and how these are associated with phenotypes. These data also 290 
emphasize the variation in the genome and how the environment and selective 291 
pressures can impact genetics. However, the question remains as to whether these 292 
genetic events occur after random selection or are the result of unidentified mechanisms 293 
that selectively alter the genetic landscape in response to external stimuli, and in turn, 294 
drive targeted de novo genetic changes.  295 
 296 
Copy Number Alterations in Cancer and their Implications in Acquired Drug 297 
Resistance 298 
Copy number alterations involving whole chromosomes and/or specific chromosomal 299 
segments are frequently observed in cancer (96, 97). Gains/amplifications of oncogenes 300 
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and loss/deletion of tumor suppressor genes have been historically found to be major 301 
drivers of tumor development. For example, amplifications of EGFR in gliomas (98), 302 
MYCN in neuroblastoma (99), MYC in acute myeloid leukemia (100), ERBB2 in breast 303 
(101), ovarian (102) and lung cancers (103). Similarly, loss/deletions in tumor 304 
suppressor genes such as PTEN (104), TP53 (105) and VHL (106) are observed in a 305 
variety of tumors. The dependence of tumors on specific oncogenes for their proliferation 306 
and survival is referred to as oncogene addiction (107). By targeting these oncogenes, 307 
tumor cell growth becomes limiting or abrogated. For example, clinical success has been 308 
observed with the ERBB2 antibody Herceptin in the treatment of ERBB2 amplified breast 309 
cancer (108), Crizotinib in the treatment of MET amplified non-small cell lung cancer 310 
(109), and the EGFR inhibitors Gefitinib and Erlotinib (these block the catalytic activity of 311 
EGFR) in lung cancer patients with EGFR mutations (110).  312 
 313 
In addition to oncogene amplifications, copy number alterations of different chromosomal 314 
regions have been observed in cancer. A genome-wide analysis of copy number 315 
alterations in cancer has demonstrated a total of 76,000 gains and 55,000 losses across 316 
the 3,131 cancer samples analyzed (96).  A typical tumor type was comprised of 17% 317 
amplifications and 16% deletions compared to less than 0.5% in normal samples (96). 318 
This data suggests that somatic copy number alterations are a frequent feature in cancer 319 
cells.  Analyses across 17 tumor types demonstrated that 25% of the genome is affected 320 
by whole chromosome alterations and 10% of the genome by short chromosomal 321 
changes (focal events) in a typical tumor (96). Interestingly, the focally amplified regions 322 
often harbored known oncogenes (e.g., MYC, CCND1, EGFR, NKX2-1 and KRAS), 323 
while the focally deleted genomic loci contained tumor suppressor genes (TP53, 324 
CDKN2A/B and Rb1). These observations suggest that the selective pressures 325 
associated with tumorigenesis might influence targeted amplification or deletion of 326 
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specific regions within tumor cells instead of occurring randomly, which would be 327 
reminiscent of the observations seen in bacteria and yeasts (Figure 2). 328 
 329 
Focal amplifications can also harbor oncogenes or pro-survival genes that can influence 330 
drug response. For example, ~10% of cancers have a focal amplification of chromosome 331 
1q21.2 that contains the anti-apoptotic gene MCL1 (96). Another focally amplified anti-332 
apoptotic gene that is observed in cancer is BCL2L1 on chromosome 20q11.21 (96). 333 
Both of these genes are important for cell survival, hence their amplification within 334 
tumors could confer a distinct survival advantage. Consistent with this notion, Beroukhim 335 
et al. demonstrated that increased expression of these genes protected tumor cells from 336 
chemotherapy (96).   337 
 338 
Chromosomal alterations in several distinct regions also influences pathogenesis in 339 
different tumor types. For example, in multiple myeloma (MM) disease progression is 340 
characterized partly by the focal amplifications of a proximal region of chromosome 1q 341 
(chr 1q). Several studies have identified a region of 10-15Mb corresponding to a chr 342 
1q12-23 amplicon in MM. This region contains a large number of genes with 343 
amplifications or deregulated expression involved in myeloma pathogenesis, including 344 
CKS1B (111, 112), MUC1 (113), MCL1 (114), PDZK1 (115), IL-6R (116), BCL9 (117) 345 
and UBE2Q1 (118). The amplification of a drug resistant oncogene CKS1B and the 346 
proximal chr 1q21 region has been reported in ~40% of newly diagnosed MM cases and 347 
in 70% of patients with tumor relapse (119, 120). The gains observed in CKS1B are in 348 
the range of one to three copies (111, 112). These focal amplifications are associated 349 
with poor prognosis and reduced response to cisplatin therapy (111). (Table I). Studies 350 
in cell culture further demonstrate that overexpression of CKS1B confers a reduced 351 
response to cancer chemotherapeutics (121). Similarly, amplification of the PDZK1 gene 352 
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within the chr 1q12-q22 region has been observed in primary cases of MM, and the 353 
overexpression of PDZK1 in cells conferred resistance to melphalan, vincristine and 354 
cisplatin induced cell deaths (115) (Table I). 355 
 356 
Gene amplifications are associated with drug resistance in several tumors (122-141) 357 
(Table I). For example, ovarian cancer patients with chr 1q12-21 amplification are more 358 
resistant to cisplatin treatment (142, 143). Amplifications of cyclin E1 (CCNE1) are 359 
present in 25% of high-grade serous ovarian cancer and are associated with poor 360 
survival and impart resistance to CDK2 inhibitors (144) (Table I). In the case of non-361 
small cell lung cancer cells, an 11- to 13-fold higher copy number of chr 7q21.12 was 362 
detected by CGH in an acquired paclitaxel-resistant lung cancer model (NCI-363 
H460/PTX250) compared with the parental cell line (NCI-H460). Most of the genes 364 
within this region were also highly expressed, including a multidrug transporter gene 365 
MDR1/ABCB1 (131). These examples highlight how distinct regions in the genome are 366 
focally amplified and relate to altered patient outcome and cancer cell drug response. 367 
Whether, selective chromosomal alterations and gene amplifications in cells is a 368 
stochastic process or occurs in a directed manner in consequence to therapeutic 369 
pressure is yet to be determined. 370 
 371 
DNA Amplification and Cancer Chemotherapeutic Resistance 372 
Gene amplification serves as a biochemical basis for drug resistance in mammalian 373 
cells. This relationship to resistance was first documented in seminal work by Hakala 374 
(145-147) and Fischer (148) in the 1950s. They isolated highly resistant tumor cells 375 
under the presence of increasing concentrations of the drug methotrexate (MTX). MTX 376 
competitively inhibits the enzyme dihydrofolate reductase (DHFR), which catalyzes the 377 
conversion of dihydrofolate to active tetrahydrofolate, which is required for the de novo 378 
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synthesis of thymidine.  They found that the drug resistant cells had around 155 times 379 
the level of DHFR. They also found that the drug-resistant phenotype was unstable in 380 
murine sarcoma 180 cells, which coincided with the reduced DHFR enzymatic activity. 381 
Schimke’s laboratory further characterized the mechanistic basis for the increased 382 
DHFR levels (149). It was shown that the cells developed resistance to MTX by 383 
overproduction of DHFR protein as a result of selective gene amplification (150). It was 384 
from the work of the Biedler and Spengler (151, 152) and Schimke laboratories in 1970s 385 
(150, 153) that showed the presence of cytogenetic structures associated with MTX-386 
resistant cells. They found that the gene amplification accounts for the overproduction of 387 
DHFR in stable and unstable drug-resistant cells (Figure 3A).  388 
 389 
Gene amplification forms two common structures: extrachromosomal double minutes 390 
(DM) and intra-chromosomal homogenously staining regions (HSRs). DMs were first 391 
observed in lung cancer cells in 1962 (154). They are defined as chromatin bodies that 392 
lack centromeres and telomeres that are not transmitted to 100% of daughter cells 393 
during mitosis (155) (Figure 1D). HSRs are chromosomal structures containing 394 
permanently integrated genes (Figure 1D). These were first described by Biedler and 395 
Spengler in 1976 (152) in drug-resistant cells. DHFR was found to reside on HSRs in 396 
highly methotrexate-resistant CHO cells (156) and murine leukemia cells (157). 397 
Kauffmann et al. further showed that the amplified DHFR genes were associated with 398 
DMs in unstable MTX-resistant cells (158).  399 
 400 
A large body of work has contributed to our understanding of the generation of DMs and 401 
HSRs (159-162). For example, Storlazzi et al. investigated the structures of MYCN 402 
amplifications using eight neuroblastoma and two small cell carcinoma cell lines (162). 403 
The study provided evidence of generation of HSRs from DMs by an episome model 404 
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wherein DNA segments are excised from a chromosome and then circularized and 405 
amplified to form DMs and chromosomally integrated to form HSRs. DMs are unstable 406 
and can be eliminated after drug treatment (163, 164), however HSRs are more stable 407 
(165) (Figure 1D and 3A). Amplified genes present on extrachromosomal DNA have 408 
been frequently observed in different tumor types (159, 166-168). The reversion of a 409 
malignant phenotype and cellular differentiation by the elimination of DMs has been 410 
shown extensively in a variety of tumors and cancer cell lines (167, 169, 170). Taken 411 
together, these observations demonstrate that transient gene amplifications can be an 412 
effective strategy for quick adaptation to selective pressures in tumor cells (Figure 3A).   413 
 414 
In a recent study by Nathanson et al., another example of drug induced transient gene 415 
selection was demonstrated (Figure 3B). In this study, oncogenes maintained on 416 
extrachromosomal DNA were transiently gained/lost in response to drug treatment (171). 417 
Glioblastoma patients harbor a constitutively active oncogenic variant of epidermal 418 
growth factor receptor (EGFR-vIII) that is formed by the in-frame deletion of exon2-7 in 419 
the EGFR gene and found on extrachromosomal DNA (171, 172). The presence of 420 
EGFR-vIII makes tumor cells more sensitive to EGFR tyrosine kinase inhibitors (TKIs; 421 
(173)). The continued treatment with EGFR TKIs (e.g., Erlotinib) resulted in a loss of 422 
extrachromosomal EGFR-vIII, thus conferring resistance to the TKI. When the drug was 423 
withdrawn for a short period of time, there was an increase in EGFR-vIII on 424 
extrachromosomal DNA, and in turn, the cells were re-sensitized to Erlotinib treatment 425 
(Figure 3B). These data reiterate the reversibility of copy number gains and how 426 
transient copy number changes could impact chemotherapeutic response.  427 
 428 
Furthermore, Nathanson and colleagues suggest that instead of a continuous 429 
therapeutic regimen, drug holiday during therapy might be a more effective mechanism 430 
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to restore the sensitivity of tumor cells to drugs. These studies raise the possibility that 431 
chemotherapy could result in the selection of cells with gene amplifications, which allow 432 
them to survive under this drug-induced stress (Figure 3). Therefore, understanding the 433 
mechanisms that result in transient or non-permanent amplifications of DHFR, EGFR 434 
and alike in cancer (Table I) will have a profound impact on how we view copy number 435 
control as well as how we identify novel biomarkers and therapeutic targets for treating 436 
drug resistant cancers. 437 
 438 
Transient Site-Specific Copy Gains (TSSGs), Tumor Heterogeneity and Cancer 439 
Evolution 440 
There are frequent gains/amplifications observed across cancer genomes, which are 441 
often thought to be permanent events (33, 160). However, a recent discovery from our 442 
laboratory (174, 175) suggests a possible mechanism for the observed intra-tumoral 443 
heterogeneity of copy number alterations observed in tumors. This recent discovery 444 
could also provide a molecular basis for the emergence of amplified drug resistant genes 445 
and enhanced cancer cell survival.  446 
 447 
Chromatin modulation plays an important role in replication fidelity (176, 177).  A recent 448 
study demonstrated that alterations in chromatin states could modulate copy number 449 
gains at distinct regions in the genome (175). KDM4A/JMJD2A demethylates tri-450 
methylated histone H3 lysine 9 and 36 (H3K9/36me3) to a di-methylated state (K3K9/36 451 
me2) (178-182). KDM4A overexpression promoted faster S-phase progression and 452 
altered replication timing at specific regions in the genome in a catalytically-dependent 453 
manner (175, 183). The faster S phase and regulation of replication timing was 454 
conserved from C. elegans to human cells and was the result of dysregulating specific 455 
HP1 members in the genome (HPL-2 in C. elegans and HP1γ in human cells) (183).   456 
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Even though the S phase was faster in mammalian cells, the rate of cell proliferation was 457 
the same, which was consistent with the observed slowing into the G2/M phase. This 458 
delayed G2/M was not associated with major genome instability. However, KDM4A 459 
overexpression directly generated site-specific copy gains of regions affiliated with drug 460 
resistance (e.g., chr 1q21-22) by altering methylation states and heterochromatin 461 
association. KDM4A was enriched at these sites and promoted their re-replication. 462 
Furthermore, direct H3K9/36me3 interference promoted site-specific copy number gain 463 
events. This study demonstrated for the first time that an enzyme has the ability to 464 
directly regulate copy number gain at specific regions in the genome and that the 465 
chromatin/methylation states play an essential role in the process (175) (Figure 3C).   466 
 467 
Since the copy number gained regions were not permanent and are only generated and 468 
present during S phase, they have been termed as transient site-specific copy gains 469 
(TSSGs) (174, 175, 184). Currently, we do not know the exact sizes of the re-replicated 470 
fragments and whether there are cellular checkpoints/machinery involved in their 471 
clearance. In fact, different cells in a population have differentially amplified regions and 472 
certain regions are mutually exclusive. Furthermore, the rate that these fragments are 473 
removed as cells move through S phases is different (174). It is important to determine 474 
the molecular features (e.g., presence of repetitive elements, insulators, and other 475 
regulatory machinery) at and surrounding the re-replicated and copy gained regions. 476 
These molecular details will help establish whether unique sequence features or 477 
chromatin states have a predilection for re-replication and whether site-specific copy 478 
gains can be integrated in the genome.  479 
 480 
Stabilization of KDM4A as a result of exposure to cellular triggers such as hypoxia also 481 
resulted in TSSGs in cell lines, tumors and normal primary cells (Figure 2; T cells) (174). 482 
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In fact, these copy number gains were found to be conserved at a syntenic region in 483 
zebrafish cells subjected to hypoxia. The return of cells to normoxia resulted in the 484 
reversion of copy number gains to the baseline levels (Figure 3C). Hence, generation of 485 
transient copy number gains could be an adaptive cellular response of cells to external 486 
stresses or stimuli.  These data provide a mechanism for heterogeneity within a cell 487 
population even though the same genetic event occurred in the population.  488 
 489 
The stabilization of KDM4A upon hypoxic exposure promoted copy number gains of the 490 
drug resistant oncogene CKS1B (111, 112, 121, 185), which had a concomitant increase 491 
in transcripts (174). When cells were returned to normoxia, both copy number and 492 
transcripts of CKS1B returned to normal levels. Finally, we demonstrated that succinate 493 
[a natural inhibitor for KDM4 class of demethylases (186)] or chemical inhibition of 494 
KDM4A blocked the copy number gains upon hypoxic exposure. These data emphasize 495 
the impact that metabolites could have on copy number gain, but most importantly, 496 
identify a mechanism for blocking their generation (Figure 3C). Since drug resistant 497 
oncogenes are being increased, the inhibition of KDM4A may provide a novel 498 
mechanism for modulating TSSGs and provide a method for reducing 1q21 drug 499 
resistant associated cancers.  500 
 501 
The fact that transient exposure to elevated KDM4A can promote copy number gain that 502 
is only present during S phase suggests that other mechanisms must be present to 503 
remove the TSSGs. Similar mechanisms may be involved in the removal of 504 
extrachomosomal DHFR and EGFR amplifications. The TSSG data support the notion 505 
that chromosomal regions with specific genes that confer a survival advantage are 506 
amplified to protect the cell. Selectively amplifying genes that confer distinct advantages 507 
either related to cell survival, metabolizing drugs, mounting responses to counteract drug 508 
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sensitivity or features promoting tumorigenesis, could aid in the evolution/adaptation of 509 
cancer cells. The question remains as to whether the classical oncogenes (e.g., EGFR, 510 
MYC, ERBB2, etc.; Table 1) are subjected to site-specific copy gains in tumors, and 511 
subsequent retention upon genetic, intrinsic or extrinsic exposure.  Some extrinsic cues 512 
could be therapeutic and metabolic challenge, stress conditions (such as hypoxia, 513 
nutrient deprivation), vasculature and extracellular matrix plasticity.  Future studies 514 
investigating their impact on TSSG and gene amplification will be critical. 515 
 516 
Tumor Heterogeneity. Tumor heterogeneity presents a major diagnostic and 517 
therapeutic challenge in the treatment of cancer. Indeed, recent sequencing efforts with 518 
next generation sequencing helped in the tracing of clonal lineages in tumors (187, 188). 519 
Focal gains or losses of chromosomes can result in diversity within cells in a tumor 520 
population [intratumoral heterogeneity; (189)] as well as between tumors [intertumoral 521 
heterogeneity; (189)]. For example, next generation sequencing of five bladder tumors 522 
from patients with transitional cell carcinoma of the urinary bladder showed genomic 523 
rearrangements and mutational heterogeneity within tumors (188). Whole exome 524 
sequencing of samples from eighteen patients with chronic lymphocytic leukemia (CLL) 525 
revealed the emergence of sub-clones within selected population of cells treated with 526 
chemotherapy (190). These populations of cells might be more fit than the pre-treatment 527 
counterpart and could contribute to relapse after therapy. Thus, identifying the 528 
mutational landscape before and after chemotherapy could not only identify mechanisms 529 
of tumor relapse but also help to design effective therapeutic options for the elimination 530 
of dominant subclones arising after chemotherapeutic selection pressures.  531 
 532 
Another mechanism contributing to intra-tumoral heterogeneity could be by the 533 
regulation of TSSGs from KDM4A levels, oxygen concentrations, cell division rates, 534 
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metabolites and KDM4A inhibition. Cells could be cycling at different rates in a tumor 535 
population thereby affecting the rate at which re-replicated fragments are generated 536 
(Figure 3C). Differential levels of KDM4A expression, hypoxia levels or metabolic status 537 
in cells within a tumor population could also generate copy number gains at different 538 
rates thereby affecting heterogeneity. We hypothesize that the site-specific re-replication 539 
events could be one of the characteristics acquired in specific population of cells during 540 
subclonal divergence.  Specific environmental, metabolic or therapeutic stress conditions 541 
can produce site-specific chromosomal alterations in the subclonal populations, which 542 
could either be transient, persisting only when the signal is there or could eventually 543 
become integrated elsewhere in the genome upon subsequent genetic/epigenetic 544 
changes. TSSGs within specific cell populations could either influence the emergence of 545 
the dominant sub-clone or it could go hand-in-hand with the germline mutations 546 
occurring during tumor evolution.  Whether these events result in the emergence of the 547 
fittest clone that promotes survival and if these sets of “fit” cells clonally expand after a 548 
therapeutic challenge, is a hypothesis that needs to be investigated. 549 
 550 
Conclusion  551 
CNVs influence the ability of normal cells to respond to physiological triggers and can 552 
serve as an adaptive strategy for a variety of responses such as hypoxia, nutrient 553 
deprivation, toxic challenges or cell survival and proliferation. Alterations in copy number 554 
often lead to diseases such as cancer, where the tumor cells can also co-opt these 555 
aberrations as an adaptive response to amplify genes involved in chemotherapeutic 556 
resistance. It is important to determine whether the process of generating copy number 557 
alterations under normal physiological, developmental or pathological conditions are 558 
based on an active cell-directed and regulated mechanism or are the result of random 559 
aberrations that have occurred during cell division. Whether random or directed, it is 560 
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important to understand that copy number changes are not always permanent.  The 561 
recent discovery of a specific chromatin regulator controlling re-replication and site-562 
specific copy number change suggests that copy number changes can be regulated and 563 
are reversible. These transient site-specific copy gains may generate intra-tumoral 564 
heterogeneity that could have important consequences in chemotherapeutic sensitivity 565 
and patient outcome. Hence, identifying regulators of CNVs and delineating processes 566 
affected by CNVs will be important therapeutically.  567 
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FIGURE LEGENDS 1337 
Figure 1. Types of Copy Number Changes. (A) Representative examples of structural 1338 
chromosomal alterations are shown with new sequence insertion (D), deletion of region 1339 
AB, and duplication of sequence B (ABB). The reference chromosome is shown at the 1340 
top. (B) Aneuploidy with whole chromosome gain (extra black chromosome) and loss (of 1341 
black chromosome) is depicted with respect to a normal mitotic reference nucleus. (C) A 1342 
part of chromosome (black) can be amplified or deleted (black) giving rise to segmental 1343 
aneuploidy. This is demonstrated here involving rearrangement of only one 1344 
chromosome. A more likely scenario is an unbalanced translocation, which is not shown 1345 
in the figure. (D) Homogenously staining regions (HSR) and double minutes (DMs) are 1346 
chromosomal structures that are generated as a consequence of gene amplification. 1347 
HSRs are repeated units clustered at a single chromosomal locus (red) and DMs are 1348 
unstable circular extrachromosomal DNA structures lacking a centromere or a telomere. 1349 
In addition to these structures, amplicons can be present at a number of loci in the 1350 
genome, which is not shown in the figure. 1351 
 1352 
Figure 2. Copy number changes during normal development and physiology. 1353 
Representative copy number changes are shown for organisms and specific tissues 1354 
under different developmental and physiological conditions. Please refer to text for 1355 
detailed description and corresponding references. 1356 
 1357 
 1358 
Figure 3. Permanent and Transient Adaptive Changes Under Different Cellular 1359 
Conditions (A) Methotrexate treatment results in the amplification of DHFR gene 1360 
(shown in red). DHFR can persist either as a stable structure such as an HSR or as an 1361 
unstable DM that is lost upon subsequent cell division. (B) Continued treatment of 1362 
glioblastoma cells with a tyrosine kinase inhibitor such as Erlotinib results in the loss of 1363 
EGFR vIII positive extrachromosomal DNA (red) and its reemergence upon drug 1364 
removal. (C) Hypoxia or overexpression of histone demethylase KDM4A results in site-1365 
specific genome amplification (red), which is generated every S phase. The amplification 1366 
is reversible after KDM4 inhibitor treatment or with increased succinate dose. 1367 
Manuscripts related to the data are discussed within the text.  1368 
 1369 
 1370 
Table I. Table representing a partial list of amplified genes that impact drug resistance. 1371 
We apologize for not being able to cite or include all studies related to gene amplification 1372 
and drug resistance.  1373 
 1374 
 1375 
 1376 
 1377 









Cancer Type Therapeutic Agent Genes Implicated in Resistance  
Multiple Myeloma Bortezomib, Cisplatin 

Melphalan, Cisplatin, Vincristine 
Dexamethasone 

CKS1B (111, 121, 126) 
PDZK1 (115) 
FGFR3 (127) 

Ovarian Cancer Cisplatin, CDK2 inhibitors 
Paclitaxel 

CCNE1 (128, 142) 
MDR1 (129, 130) 

Lung Cancer Gefitinib 
Paclitaxel 
Crizotinib 

MET (123, 125) 
MDR1 (129, 130, 131) 
ALK, KIT (132) 

Breast Cancer Trastuzumab MET (133), IQGAP1 (134) 
Colorectal Cancer Gefitinib 

5-flurouracil 
MET (124) 
TMYS (135) 

CML Imatinib BCR-ABL (136) 
Melanoma Vemurafinib BRAF (137, 138), BCL2A1 (139) 
Leukemia Methotrexate DHFR (140, 141)   


