Calculus 3 - Line Integrals Over Vector Fields

Consider the following. Suppose we have a 1 kg block sitting on the ground. We apply a force of say 10 N to the corner of the block where the direction of the force is 30° to the horizon (see the attached figure). If we assume we are on a frictionless surface, what force would be done moving the block 2 m .

From elementary physics we have

$$
\begin{equation*}
W=F d \cos \theta \tag{1}
\end{equation*}
$$

Here $F=10, d=2$, and $\theta=30$ and from (1) we obtain

$$
\begin{equation*}
W=10 \times 2 \times \cos 30=10 \sqrt{3} \mathrm{Nm} \tag{2}
\end{equation*}
$$

In this problem, we have assume that the force applied was constant and in the same direction (i.e. 30°). Now we assume all these change. We will assume:

1. that the force's direction changes and depends on position so the force is now $\vec{F}(x, y)$ (a vector)
2. the path we follow will depend on both x and y and so we will move along some curve C.

We assume that we move along a curve C whose position can be represented by a vector

$$
\vec{r}(t)=\langle x(t), y(t)\rangle
$$

and we are moving through a vector field \vec{F}

To calculate the work, we project \vec{F} onto the tangent vector \vec{T}, multiply by a small distance $d s$ and integrate over the entire curve C, i.e.,

$$
\begin{equation*}
W=\int_{C} \vec{F} \cdot \vec{T} d s \tag{3}
\end{equation*}
$$

From our section on vector functions we have

$$
\vec{T}=\frac{\vec{r}^{\prime}}{\left\|\vec{r}^{\prime}\right\|}=\frac{\left\langle x^{\prime}, y^{\prime}\right\rangle}{\sqrt{x^{\prime 2}+y^{\prime 2}}}
$$

and from arc length that $d s$ is given by

$$
d s=\sqrt{x^{\prime 2}+y^{\prime 2}} d t
$$

Now suppose the \vec{F} is given by

$$
\vec{F}=\langle P(x, y), Q(x, y)\rangle
$$

then from (3) we obtain

$$
\begin{align*}
W & =\int_{C} \vec{F} \cdot \vec{T} d s \\
& =\int_{C}\langle P(x, y), Q(x, y)\rangle \cdot \frac{\left\langle x^{\prime}, y^{\prime}\right\rangle}{\sqrt{x^{\prime 2}+y^{\prime 2}}} \sqrt{x^{\prime 2}+y^{\prime 2}} d t \\
& =\int_{C}\langle P(x, y), Q(x, y)\rangle \cdot\left\langle\frac{d x}{d t}, \frac{d y}{d t}\right\rangle d t \tag{4}\\
& =\int_{C}\langle P(x, y), Q(x, y)\rangle \cdot\langle d x, d y\rangle \\
& =\int_{C} P d x+Q d y
\end{align*}
$$

so we define the line integral along the curve C over the vector field \vec{F} as

$$
\begin{equation*}
\int_{C} P d x+Q d y \tag{5}
\end{equation*}
$$

Example 1. Evaluate

$$
\begin{equation*}
\int_{C} y d x+2 x d y \tag{6}
\end{equation*}
$$

where C is the curve $y=x^{2}$ from $(1,1)$ to $(2,4)$.
Soln.

Since $y=x^{2}$, then $d y=2 x d x$ and our line integral becomes

$$
\begin{equation*}
\int_{1}^{2} x^{2} d x+2 x \cdot 2 x d x=\int_{1}^{2} 5 x^{2} d x=\left.\frac{5}{3} x^{3}\right|_{1} ^{2}=\frac{35}{3} \tag{7}
\end{equation*}
$$

Example 2. Evaluate

$$
\begin{equation*}
\int_{C} x d x-x y d y \tag{8}
\end{equation*}
$$

where C is the curve $y=0, x=1$ and $y=x$ going around the curve counterclockwise.

Soln.
We first draw the picture

As there are three distinct curves, we will have three line integrals C_{1} - The line $y=0$ from $x=0 \rightarrow 1$. So $d y=0$ and from (8)

$$
\begin{equation*}
\int_{0}^{1} x d x=\left.\frac{1}{2} x^{2}\right|_{0} ^{1}=\frac{1}{2} \tag{9}
\end{equation*}
$$

C_{2} - The line $x=1$ from $y=0 \rightarrow 1$. So $d x=0$ and from (8)

$$
\begin{equation*}
\int_{0}^{1}-y d y=-\left.\frac{1}{2} y^{2}\right|_{0} ^{1}=-\frac{1}{2} \tag{10}
\end{equation*}
$$

C_{3} - The line $y=x$ from $x=1 \rightarrow 0$. So $d y=d x$ and from (8)

$$
\begin{equation*}
\int_{1}^{0} x d x-x^{2} d x=\frac{1}{2} x^{2}-\left.\frac{1}{3} x^{3}\right|_{1} ^{0}=-\frac{1}{6} \tag{11}
\end{equation*}
$$

So

$$
\begin{equation*}
\int_{C} x d x-x y d y=\frac{1}{2}-\frac{1}{2}-\frac{1}{6}=-\frac{1}{6} \tag{12}
\end{equation*}
$$

Example 3. Evaluate

$$
\begin{equation*}
\int_{C} x d y \tag{13}
\end{equation*}
$$

where C is the curve $x^{2}+y^{2}=4$ going around the curve counterclockwise. Soln.

We first draw the picture

We certainly could solve for y but it's really much easier to parameterize the curve. Here

$$
\begin{equation*}
x=2 \cos t, \quad y=2 \sin t, \quad t: 0 \rightarrow 2 \pi \tag{14}
\end{equation*}
$$

so

$$
\begin{equation*}
d x=-2 \sin t d t, \quad d y=2 \cos t d t \tag{15}
\end{equation*}
$$

and (13) becomes

$$
\begin{align*}
\int_{0}^{2 \pi} 2 \cos t(2 \cos t) d t & =4 \int_{0}^{2 \pi} \cos ^{2} t d t \\
& =4 \int_{0}^{2 \pi} \frac{1+\cos 2 t}{2} d t \tag{16}\\
& =\left.2\left(t+\frac{\sin 2 t}{2}\right)\right|_{0} ^{2 \pi} \\
& =4 \pi
\end{align*}
$$

Example 4. Evaluate

$$
\begin{equation*}
\int_{C} \mathrm{~F} \cdot \mathrm{dr} \tag{17}
\end{equation*}
$$

where $\mathbf{F}(x, y)=x y \mathbf{i}+3 y^{2} \mathbf{j}$ and $C: \mathbf{r}(t)=11 t^{4} \mathbf{i}+t^{3} \mathbf{j} \quad 0 \leq t \leq 1$
Soln.
I am going to turn this into a problem I'm more familiar with. here, we identify that

$$
\begin{equation*}
P=x y, \quad Q=3 y^{2} \tag{18}
\end{equation*}
$$

so (17) is

$$
\begin{equation*}
\int_{C} x y d x+3 y^{2} d y \tag{19}
\end{equation*}
$$

Next the curve, so

$$
\begin{equation*}
x=11 t^{4}, \quad y=t^{3} \tag{20}
\end{equation*}
$$

the curve is already parameterized. So

$$
\begin{equation*}
d x=44 t^{3} d t, \quad d y=3 t^{2} d t \tag{21}
\end{equation*}
$$

and (19) becomes

$$
\begin{aligned}
\int_{0}^{1} 11 t^{3} \cdot t^{3} \cdot 44 t^{3} d t+3 t^{6} \cdot 3 t^{2} d t & =\int_{0}^{1}\left(484 t^{10}+9 t^{8}\right) d t \\
& =44 t^{11}+\left.t^{9}\right|_{0} ^{1} \\
& =45
\end{aligned}
$$

3D Line Integrals over Vector Fields

If the vector field is

$$
\begin{equation*}
\vec{F}=\langle P(x, y, z), Q(x, y, z), R(x, y, z)\rangle \tag{23}
\end{equation*}
$$

then the 3D line integral is

$$
\begin{equation*}
\int_{C} P d x+Q d y+R d z \tag{24}
\end{equation*}
$$

Example 5. Evaluate

$$
\begin{equation*}
\int_{C} y d x+z d y+x d z \tag{25}
\end{equation*}
$$

where C is the line joining $(1,0,1)$ to $(4,1,2)$
Soln.
The line is

$$
x=1+3 t, \quad y=t, \quad z=1+t
$$

and so

$$
\begin{gather*}
d x=3 d t \quad d y=d t, \quad d z=d t \\
\int_{0}^{1} t 3 d t+(1+t) d t+(1+3 t) d t=\int_{0}^{1}(2+7 t) d t=\frac{11}{2} \tag{26}
\end{gather*}
$$

