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Abstract. This paper introduces a novel framework for graph sparsification that pre-
serves the essential learning attributes of original graphs, improving computational effi-
ciency and reducing complexity in learning algorithms. We refer to these sparse graphs
as “learning backbones.” Our approach leverages the zero-forcing (ZF) phenomenon,
a dynamic process on graphs with applications in network control. The key idea is to
generate a tree from the original graph that retains critical dynamical properties. By
correlating these properties with learning attributes, we construct effective learning
backbones. We evaluate the performance of our ZF-based backbones in graph classi-
fication tasks across eight datasets and six baseline models. The results demonstrate
that our method outperforms existing techniques. Additionally, we explore extensions
using node distance metrics to further enhance the framework’s utility.
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1 Introduction

In recent decades, networks have become essential for analyzing complex systems with
applications in computer vision [18], 3D object modeling [11], and chemical molecules [16]. In
machine learning, constructing efficient graph representations is critical for tasks like social
network analysis, financial systems, and recommendation systems [25]. The complexity of real-
world graphs often requires extracting sparse yet informative substructures, known as graph
learning backbones, to enable effective learning [26]. This paper addresses the challenge of
identifying these sparse representations while retaining essential properties for downstream
tasks by integrating principles from Network Control Theory [10].

Control theory, renowned for analyzing and steering dynamic systems [22], helps select
minimal edge sets that capture a graph’s intrinsic behavior [5, 17]. Viewing a graph as a dy-
namic system, this approach ensures controllability by maintaining key structural properties.

In graph-based learning, preserving dynamic properties is crucial for accurate classification
and prediction [20]. Previous methods such as graph sparsifiers and spanners [13, 14] aimed
to reduce graph complexity while retaining key properties, but often lacked alignment with
specific graph learning objectives [26]. Techniques like spectral rewiring [6], Forman curvature-
based rewiring [23], and graph diffusion [8] have also been explored for optimizing graph
structures. However, these methods can sometimes lead to information loss or significant
graph densification, which complicates learning tasks. Sparse subgraph extraction techniques
have focused on community preservation [26] but remain limited in balancing both sparsity
and learning effectiveness.
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Inspired by tree-like substructures in communication networks [29], we propose that a
connected tree subgraph represents the minimal structure required for learning. These sparse
trees, derived from control theory, offer efficient representations while preserving critical prop-
erties.

Graph learning has advanced significantly [20], but determining the ideal graph structure
for specific learning objectives remains a challenge [24]. This motivates exploration of the
Graph Lottery Ticket Hypothesis (GLTH), which posits that within any complex graph,
there exists a sparse substructure capable of achieving comparable performance to the full
graph [24], opening new avenues for scalable graph learning [7].

However, prevailing methods for uncovering these winning tickets often rely on pruning or
sampling, risking information loss [7]. This paper introduces a novel control-theoretic approach
to discovering these tickets. The Graph Lottery Ticket Hypothesis is articulated as follows:

Graph Lottery Ticket Hypothesis [24]: For any given graph, there exists a sparse subset of
edges such that training any graph learning algorithm solely on this subset yields performance
comparable to that of the original graph.

We present a detailed exploration of our control-theoretic approach to discovering Graph
Lottery Tickets (GLTs), which we refer to as learning backbones. We propose that the zero-
forcing set (ZFS)-based control backbone [2], a tree, represents the winning ticket. Our method
demonstrates superior precision and efficiency in identifying substructures compared to exist-
ing techniques. Additionally, we extend this concept by preserving other control properties in
the graph. Through experiments on diverse datasets and tasks, we showcase the exceptional
performance and sparsity of the winning tickets identified by our approach.

The rest of the paper is organized as follows: Section 2 introduces important notations and
formulates the main problem of graph sparsification for graph classification. Section 3 defines
the concept of the ZFS-based backbone and proposes several approaches to compute the
learning backbone using control properties of networks. Section 4 presents empirical results
for graph classification. Finally, Section 5 concludes the paper and discusses future directions.

In the next section, we review some notations to be used in the rest of the paper and
explain the main problem.

2 Preliminaries and Problem Formulation

In this section, we establish the fundamental notation to be employed throughout the
paper and properly formulate the main problem addressed in this paper.

2.1 Preliminaries

An undirected graph G = (V,E) represents a multi-agent network, where the vertex set
V represents agents and the edge set E ⊆ V ×V denotes interactions between them. An edge
between vertices u and v is denoted by the unordered pair (u, v). The neighborhood of vertex
u is defined as NG(u) = {v ∈ V : (u, v) ∈ E}, and the degree of u is deg(u) = |NG(u)|. The
average degree d̄ is given by d̄ = 1

|V |
∑

v∈V deg(v), where deg(v) is the degree of vertex v.

A path P in G is a sequence of distinct vertices (v1, v2, . . . , vk) such that for each i from
1 to k − 1, there exists an edge between vi and vi+1. The distance between vertices u and v,
denoted dG(u, v), is the number of edges in the shortest path between u and v. For simplicity,
the subscript is dropped when the context is clear. A graph Ĝ = (V̂ , Ê) is a subgraph of
G = (V,E), denoted Ĝ ⊆ G, if V̂ ⊆ V and Ê ⊆ E.
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A connected component C of G is a maximal subset of vertices V ′ ⊆ V such that for every
pair of vertices u, v in V ′, there exists a path between u and v. A tree is an undirected graph
that is connected and acyclic, or equivalently, a graph with n vertices and n− 1 edges.

2.2 Problem Formulation

In the context of graph-based machine learning, the graph classification problem is a
fundamental task. The objective is to assign a discrete label to an entire graph, indicating
the class to which the graph belongs. This task finds applications in various domains, such
as cheminformatics, where graphs represent molecules, and social network analysis, where
graphs represent interactions between individuals [12].

Formally, given a collection of graphs {G1, G2, . . . , Gk}, where each graph Gi = (Vi, Ei)
consists of a set of vertices Vi and a set of edges Ei, and a corresponding set of labels
{y1, y2, . . . , yk} with yi ∈ {0, 1, . . . , C}, the goal is to learn a function ϕ : G → y, where G is
the set of all possible graphs, y ∈ {0, 1, . . . , C}, and C ∈ Z is the number of possible labels.
The function ϕ takes an input graph Gi and outputs a label ỹi, representing the predicted
class of the graph. A machine learning approach to this problem involves training a model to
generate this discrete labeling: a model ϕ(Gi,θ) that takes an input graph Gi and outputs
a probability score ϕ : {Gi} → [0, 1]C indicating the likelihood of each graph being classified
as one of the classes, where θ are the learnable weights. The learned function ϕ(G,θ) should
minimize the classification error L(y, ỹ) on a given set of graphs, where the error is essentially
the difference between the predicted label ỹ and the true given label y.

Problem 1 (Graph Classification): Given a graph G = (V,E), the goal is to map G to
a discrete label y ∈ {0, 1, . . . , C} using a machine learning model with learnable weights θ.
The mapping function ϕ can be expressed as:

ỹ = ϕ(G;θ),

where ỹ is the predicted label for the graph G and θ represents the parameters of the model.

In many applications of graph-based machine learning, dealing with large and dense graphs
can pose significant computational challenges. Graph sparsification is a crucial technique to
address this issue, aiming to reduce the number of edges in a graph while preserving its
essential properties [24]. By simplifying the graph structure, sparsification can lead to more
efficient algorithms, reduced memory usage, and faster processing times, without significantly
compromising the performance of graph-based tasks such as classification. Formally, given a
graph G = (V,E), a sparsification function A produces a sparser subgraph Ĝ = (V, Ê) such
that Ê ⊆ E and |Ê| ≪ |E|. The goal is to ensure that Ĝ retains the key structural properties
of G necessary for downstream machine learning tasks.

Problem 2 (Graph Sparsification): Given a graph G = (V,E) and a label y, the goal
is to find a sparsification function A : G → Ĝ such that G 7→ Ĝ = (V, Ê), Ê ⊆ E, and
ϕ(Ĝ,θ) = ỹ where the predicted label ỹ should be the same as the given label y.

In light of graph classification, the problem can be framed to incorporate graph sparsi-
fication. To leverage sparsification, we first apply a sparsification function A to each graph
Gi, obtaining a sparser graph Ĝi = A(Gi) ∀i ∈ {1, 2, . . . , k}. Then, we learn the classifica-
tion function ϕ on the set of sparser graphs {Ĝ1, Ĝ2, . . . , Ĝk}. The objective is to minimize
the classification error L(y, ỹ) on the sparsified graphs, ensuring ϕ(Ĝ,θ) = ỹ ≈ y and thus
maintaining high classification performance on the original graph set. This idea is presented
in Figure 1 where the gray box represents the main focus of this work.
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Fig. 1: Main Idea: Sparsify the graph while maintaining the critical learning backbone for
downstream machine learning tasks such as graph classification. The predicted label ϕ(Ĝ,θ) =
ỹ should be close to the true label y.

In Section 3.2, we propose a novel approach to sparsify a graph for computing the learn-
ing backbone. The sparse graph we propose is a tree, as it is the minimum connected graph
structure. Finding a tree graph for a given graph is not a trivial task, as it can be compu-
tationally expensive to identify a suitable tree that preserves the essential properties of the
original graph required for downstream learning tasks. The exact number of spanning trees
of a given graph can be computed by the Matrix Tree Theorem [9]. The number of spanning
trees of a given graph G = (V,E) is the normalized product of the non-zero eigenvalues of

the Laplacian matrix, and it can be as large as
(

2m−∆−δ−1
n−3

)n−3

, where n is the number of

nodes and n > 3, m is the number of edges, ∆ is the maximum degree, and δ is the minimum
degree [15]. Note that the number of spanning trees in a given graph can be exponential with
respect to the number of vertices.

In the next section, we present our proposed approach for finding a learning tree backbone.

3 Learning Backbone

Control theory is a branch of engineering and mathematics focused on the behavior of
dynamical systems with inputs. Its goal is to develop a control strategy that governs the
system’s output by manipulating the inputs. A core concept in control theory is feedback,
where the system’s output is measured and used to adjust the inputs to maintain desired
performance. Control theory has applications in robotics, aerospace, and economics. The
structural properties of the underlying graph, representing the network of interconnected
components, significantly influence a system’s dynamic behavior. For instance, the presence
or absence of specific edges can affect the stability, controllability, and observability of the
system [1].

The dynamic behavior of a control system is closely related to graph-based machine learn-
ing. In machine learning, how information propagates through a graph is crucial for tasks such
as node classification, link prediction, and graph classification [20, 21]. The graph structure
dictates how signals spread across the network, influencing the performance of graph neural
networks (GNNs) and other models. Sparse representations, like trees, play a vital role by pre-
serving essential control properties, such as connectivity and controllability [2], while reducing
computational complexity. This approach aligns with the Graph Lottery Ticket Hypothesis,
which suggests that a sparse substructure within a complex graph can achieve comparable
performance to the original, optimizing both control and learning objectives.
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In this section, we explore the concept of the network controllability backbone, which aims
to identify a sparse subset of edges that preserves the network’s controllability under struc-
tural perturbations. We begin by establishing the fundamental framework for understanding
controllability in networked systems and then introduce the concept of a learning backbone.

3.1 Controllability Framework

Consider a network of n agents, denoted by V = {v1, v2, · · · , vn}. Among these agents,
m are designated as input or leader vertices, represented as Vℓ = {ℓ1, ℓ2, · · · , ℓm} ⊆ V , while
the remaining vertices act as followers. The network’s dynamics are modeled by the following
linear time-invariant system:

ẋ(t) = Mx(t) +Hu(t), (1)

where x(t) ∈ Rn is the state vector, and u(t) ∈ Rm represents the external input injected
through the m leaders. The matrix M ∈ M(G) is the system matrix associated with the
graph G, and H ∈ Rn×m is the input matrix determined by the leader vertices. The family
of matrices M(G) is defined as follows:

M(G) = {M ∈ Rn×n : M = M⊤, and for i ̸= j,

Mij ̸= 0 ⇔ (i, j) ∈ E(G)}.
(2)

This definition encompasses a broad class of system matrices associated with the graph G,
including the adjacency matrix, Laplacian matrix, and the signless Laplacian matrix.

A system (1) is controllable if an input u(t) can drive the system from any initial state
x(t0) to any desired state x(tf ) in finite time. We say that (M,H) is a controllable pair if
and only if the controllability matrix C(M,H) ∈ Rn×nm is full rank, i.e., rank(C(M,H)) = n.
The controllability matrix is given by:

C(M,H) =
[
H MH M2H · · · Mn−1H

]
. (3)

Definition 1. (Strong Structural Controllability (SSC)) A graph G = (V,E) with a specified
set of leaders Vℓ ⊆ V (and the corresponding H matrix) is strongly structurally controllable
if and only if (M,H) is a controllable pair for all M ∈ M(G).

If the network G is strongly structurally controllable for a given set of leaders, then
the rank of the controllability matrix does not depend on the edge weights (as long as they
satisfy the conditions given by M(G)). For the remainder of this paper, we will refer to strong
structural controllability simply as controllability. The dimension of the strongly structurally
controllable subspace, denoted by γ(G,Vℓ), is the smallest possible rank of the controllability
matrix under feasible edge weights.

Network Controllability Backbone The main idea of a controllability backbone is to
identify a minimal subset of edges within a network that ensures the preservation of its
controllability in any subgraph. We define the controllability backbone as this sparse subgraph,
denoted by B, such that any subgraph Ĝ containing B maintains at least the same level of
controllability as the original network G.

Definition 2. (Controllability Backbone) For a given graph G = (V,E) and a set of leaders
Vℓ ⊆ V , the controllability backbone B = (V,EB) is a subgraph of G such that any subgraph
Ĝ = (V, Ê) containing EB, i.e., EB ⊆ Ê ⊆ E, satisfies:

γ(Ĝ, Vℓ) ≥ γ(G,Vℓ). (4)

In essence, the controllability backbone ensures that the controllability of any subgraph
encompassing it does not deteriorate compared to the original network.
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3.2 Zero Forcing for Controllability Backbone

Zero forcing is a rule-based coloring technique for vertices in a graph, providing a lower
bound on the dimension of Strong Structural Controllability (SSC). By leveraging zero forcing,
our aim is to identify a subset of edges constituting the controllability backbone, termed as
the ZFS-based backbone.

Definition 3 (Zero Forcing (ZF) Process). Let G = (V,E) be a graph where each vertex
v ∈ V is initially colored either black or white. The ZF process iteratively changes the color
of white vertices to black according to the following rule until no further color changes are
possible: Color change rule: If a black vertex v ∈ V has exactly one white neighbor u, change
the color of u to black.

We define a forced relationship between vertices v and u if a black vertex v changes the
color of a white vertex u to black during the ZF process.

Definition 4 (Derived Set). Let G = (V,E) be a graph with Vℓ ⊆ V representing the initial
set of black vertices. The derived set [4], denoted by dset(G,Vℓ), is the set of black vertices
obtained after the ZF process, and |dset(G,Vℓ)| = ζ(G,Vℓ). When the context is clear, we
omit the parameter Vℓ.

The set of initial black vertices Vℓ is also known as the input or leader set. For a given
Vℓ, dset(G,Vℓ) is unique [4]. Now, we define the zero forcing set.

Definition 5 (Zero Forcing Set (ZFS)). For a graph G = (V,E), Vℓ ⊆ V is a ZFS if and
only if dset(G,Vℓ) = V . We denote a ZFS of G by Z(G).

Figure 2 illustrates zero forcing through a set of input vertices and the corresponding
derived set. Initially, Vℓ = {v1, v2, v5, v6} are colored black. In the next step, v2 can force v3
as it is its only white neighbor and so on.

ZF

Fig. 2: Vℓ = {v1, v2, v5, v6} is the input set. After the ZF process, dset(G,Vℓ) = V , as indicated
by the black vertices. Hence, Vℓ is a ZFS.

The zero forcing phenomenon is significant in characterizing the network’s SSC [28]. In
particular, the size of the derived set for a given set of input vertices provides a lower bound
on the dimension of SSC, i.e., for a network G = (V,E) with the leader set Vℓ ⊆ V , we have
ζ(G,Vℓ) ≤ γ(G,Vℓ) [3,28]. By computing the ZFS, we obtain a lower bound on the dimension
of SSC, facilitating the identification of the controllability backbone.

ZFS-based Backbone Our goal is to discover a backbone that maintains the zero forcing
bound ζ(G,Vℓ) for a given leader set Vℓ. The objective is to identify a subset of edges EBZ

in the graph G = (V,E) with Vℓ such that the ZFS-based controllability bound is preserved
in any subgraph Ĝ = (V, Ê) containing those edges (EBZ

⊆ Ê). Formally, we define the
ZFS-based backbone as follows:
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Definition 6. (ZFS-based Backbone) Given a graph G = (V,E) and a leader set Vℓ, the
ZFS-based backbone, denoted as Bz = (V,EBz

), is a subgraph where any subgraph Ĝ = (V, Ê)
containing EBZ

satisfies ζ(Ĝ, Vℓ) ≥ ζ(G,Vℓ).

Thus, in any subgraph of G containing the ZFS-based backbone, the dimension of SSC is
at least ζ(G,Vℓ), i.e., γ(Ĝ, Vℓ) ≥ ζ(G,Vℓ).

3.3 Controllability Backbone as Learning Backbone

In graph-based learning, optimizing the underlying graph structure for both control and
information propagation is crucial. The Zero Forcing Set (ZFS) method is a powerful tool
for maintaining network controllability. By leveraging the principles of strong structural con-
trollability (SSC), we can identify a minimal subset of edges, termed the ZFS-based con-
trollability backbone, which preserves the essential control properties of the original graph.
This backbone, effectively forming a sparse substructure, ensures robust dynamic behavior
while significantly reducing computational complexity. Using the ZFS-based controllability
backbone as the learning backbone aims to enhance the efficiency of graph classification tasks
while maintaining the critical control properties of the original network.

It has been shown that the ZFS-based backbone Bz is a set of paths originating from
vertices v ∈ Vℓ, always having n−|Vℓ| edges, and consequently, |Vℓ| connected components [2].
If the original graph is connected, edges can be added to form a subgraph G′ = (V,E′) such
that EBZ

⊆ E′ ⊆ E, and G′ is a connected tree. This tree, known as the learning backbone,
substitutes the original tree and can be used for downstream machine-learning tasks. This
approach is presented in Algorithm 1.

Algorithm 1 Computing Learning Backbone

Input: Graph G = (V,E)
Output: Learning backbone Ĝ = (V, Ê)
1: Compute a zero-forcing set Vℓ [3]
2: Initialize a graph Bz with paths originating from all vertices v ∈ Vℓ by running the zero-forcing

process
3: Add any |Vℓ| − 1 edges from G to Bz to form Ĝ such that Ĝ becomes a connected tree

Theorem 1. Given a graph G = (V,E), Algorithm 1 returns a learning backbone, a con-
nected tree, that is strong structurally controllable for the computed leader set Vℓ.

Proof. For any given graph G = (V,E) and leader set Vℓ, any subgraph Ĝ = (V, Ê), where
EBZ

⊆ Ê ⊆ E, satisfies the relation

ζ(Ĝ, Vℓ) ≥ ζ(G,Vℓ)

by definition. In step 1 of Algorithm 1, we compute a zero-forcing set that makes the graph
fully controllable. Hence, γ(G,Vℓ) = |V |. The ZFS-based backbone Bz contains an uncon-
nected set of paths where each path originates from a leader vertex. Bz can be computed
from Algorithm 1 of [2]. By definition of Bz, we can add any number of edges from the orig-
inal graph randomly, and the graph will remain fully controllable. The learning backbone Ĝ
contains only the edges that are in the original graph besides containing the controllability
backbone Bz. Hence, we can compute a connected tree with n − 1 edges from Algorithm 1
where the tree would be strong structurally controllable for the computed zero-forcing set Vℓ.
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Fig. 3: Illustration of the proposed framework: The process begins by identifying a leader
vertex subset within the graph. Using network control theory, a graph sparsification framework
is then applied to derive a tree-like structure, called the ‘learning backbone’, from the original
graph.

3.4 Generalized Learning Backbone

In networked systems, preserving various control properties is crucial for robust perfor-
mance and effective information propagation. While the Zero Forcing Set (ZFS) method en-
sures network controllability, other control properties, such as controllability matrices, graph
distances, and structural patterns, also significantly impact dynamical system behavior.

Graph distances, representing the shortest paths between vertices, are particularly impor-
tant for understanding how control signals propagate through a network. The distribution
of these distances influences system stability and responsiveness [28]. In closely connected
networks, control inputs more efficiently affect the entire system. The distances between all
vertices and leaders also determine the lower bound on controllability rank, γ(G,Vℓ) [27]. For
a network G = (V,E) with leaders Vℓ = {ℓ1, ℓ2, · · · , ℓm}, the distance-to-leader (DL) vector
for each vi ∈ V is defined as

Di =
[
d(ℓ1, vi) d(ℓ2, vi) · · · d(ℓm, vi)

]T ∈ Zm,

where [Di]j = d(ℓj , vi) is the distance between leader ℓj and vertex vi. The maximum sequence
of these DL vectors that meets certain constraints defines the lower bound on γ(G,Vℓ).

Ahmad et al. introduced the distance-based controllability backbone Bd = (V,EBd
), which

emphasizes preserving key distances between vertex pairs, unlike the ZFS-based backbone
Bz, which focuses on tree-like structures [2]. While Bz ensures controllability via paths, Bd

maintains critical distances while preserving sparsity with O(n) edges, where n is the number
of vertices.

Incorporating graph distances into backbone construction enhances control properties and
ensures robust dynamic behavior, supporting downstream tasks like graph classification by
retaining the network’s structural integrity, as demonstrated in Section 4.

In summary, while the ZFS-based method is valuable for ensuring controllability, consid-
ering additional control properties like graph distances offers a more comprehensive approach.
The distance-based backbone balances sparsity with the preservation of critical features, pro-
viding robust control across various applications. We incorporate the distance-based backbone
in our experiments, detailed in Section 4.

4 Experimental Results

In this section, we offer a comprehensive evaluation of the proposed framework within
the context of graph classification tasks, employing real-world social networks and molecular
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Table 1: Dataset stats

Dataset # of Graphs
# of Nodes Average Degree d̄

Density
Original Backbone

min max Original Backbone min max min max

MUTAG 188 10 28 2.189 1.88 0.082 0.222 0.071 0.20
PTC 344 2 64 1.981 1.862 0.034 1.0 0.031 1.0

PROTEINS 1113 4 620 3.735 1.893 0.005 1.0 0.003 0.5
NCI1 4110 3 111 2.155 1.908 0.019 0.667 0.018 0.667

Deezer Ego 9,629 11 363 4.292 1.887 0.015 0.909 0.006 0.182
GitHub Stargazers 12,725 10 957 3.111 1.939 0.003 0.561 0.004 0.200

Twitch Ego 127,094 12 52 5.397 1.922 0.038 0.967 0.038 0.143
Reddit Threads 203,088 11 97 2.039 1.889 0.021 0.328 0.021 0.182

datasets. We introduce the datasets and then provide a detailed description of the exper-
imental setup. Following the setup, we discuss the results, elucidating the efficacy of our
framework.

4.1 Datasets

We evaluate our proposed approach using eight real-world datasets relevant for binary
graph classification tasks. These datasets include MUTAG, PTC, PROTEINS, NCI1, Deezer
Ego Network, GitHub Stargazers, Twitch Ego Networks, and Reddit Threads [16, 19]. Each
dataset presents unique challenges in graph classification, offering a comprehensive testbed
for assessing the effectiveness of our ZFS-based backbone approach.

4.2 Experimental Setup

We evaluate six widely recognized graph convolution methods: k-GNN, GraphSAGE,
GCN, Transformer Convolution (UniMP), Residual Gated Graph ConvNets (ResGatedGCN),
and Graph Attention Network (GAT). The proposed learning frameworks consists of three
GNN layers, each with 64 hidden units. After the GNN layers, we apply Sort Aggregation,
followed by two 1D convolution layers with Max Pooling. The output is then passed through
a two-layer multi-layer perceptron, each layer containing 32 hidden neurons.

For evaluation, we perform 10-fold cross-validation, training each model for 100 epochs.
The learning rate is set to 1 × 10−4, and weight decay is 5 × 10−4. All experiments are
conducted on a Lambda machine with an AMD Ryzen Threadripper PRO 3975WX 32-Core
CPU, 512 GB of RAM, and an NVIDIA RTX 3090 GPU with 16 GB of memory.

We present the ROC AUC (Receiver Operating Characteristic Area Under the Curve)
classification results for all eight datasets, comparing the original graphs and the ZFS-based
tree backbone graphs in Table 2. Consistent architectures and experimental settings are used
for evaluation. Overall, the performance between the backbone graphs Bz and the original
graphs is comparable across all datasets.

4.3 Results Analysis

For certain datasets, such as Deezer Ego and PTC, we observe from Table 2 that the
ZFS-based backbone—derived from zero forcing-based controllability—serves as a more effec-
tive representation for graph learning tasks. This is exemplified by the notable performance
improvement seen with the PTC dataset, where the application of a UniMP baseline GNN
model on the backbone graph resulted in a maximum performance enhancement of 9.04%.
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Table 2: Comparison of ROC AUC scores of the proposed method (ZFS-based backbone)
against original graphs. Pairs where the backbone ROC AUC is within 5% of the original are
highlighted in blue. Additionally, backbone values higher than the original are bolded.

Datasets
k-GNN SAGE GCN UniMP ResGatedGCN GAT

Original Backbone Original Backbone Original Backbone Original Backbone Original Backbone Original Backbone

Deezer Ego 50.98 52.07 50.82 52.54 48.45 52.66 50.34 52.65 51.72 54.21 50.54 50.88
Twitch Ego 72.23 72.36 72.34 72.47 72.44 72.25 72.35 72.47 72.42 72.49 72.37 72.47
GitHub Stargazers 71.47 68.54 64.95 61.85 65.58 64.65 65.59 65.45 72.55 68.52 65.01 62.03
Reddit Threads 83.80 83.40 82.99 83.45 83.06 83.26 83.87 83.54 83.87 83.55 83.84 83.05
MUTAG 93.20 90.13 86.02 92.95 88.07 92.31 91.92 82.94 92.95 92.95 90.25 95.13
PTC 49.10 56.80 47.79 56.07 50.93 46.87 48.36 57.40 57.53 48.70 53.33 57.07
PROTEINS 78.65 75.62 77.59 73.78 78.37 72.36 77.86 76.25 77.02 75.34 77.62 72.95
NCI1 77.78 69.60 69.23 67.92 72.34 61.66 70.63 67.63 72.50 66.41 71.72 66.89

In fact, in 20 out of 48 combinations, the backbone representation resulted in a better ROC
AUC compared to the original graphs. Moreover, in 38 out of 48 combinations, the backbones
exhibited less than 5% deterioration in ROC AUC, further underscoring the potential of our
proposed backbone to not only simplify the graph structure but also to potentially uncover
more salient features pertinent to the learning task.

Conversely, it is crucial to acknowledge instances where the proposed backbone represen-
tation led to a decrease in performance. The most significant reduction was observed with
the NCI1 dataset, where the application of the GCN baseline model on the backbone graph
saw a decline in ROC AUC by 10.68%. This suggests that while the proposed backbone can
generally maintain or improve performance, there may be specific scenarios or datasets where
the full topology of the original graph is necessary to capture the nuances required for better
classification.

In Section 3, we introduced two methodologies for deriving control backbones from net-
works: the ZFS approach and the distance-based approach. Both methods are designed to
ensure network controllability. Similar to Bz, the distance-based backbone, denoted as Bd [2],
is crafted to maintain the lower controllability bound, preserving the network’s control char-
acteristics. We evaluated the effectiveness of these backbones by comparing their performance
to the original graphs, and included random spanning trees, constructed using Kruskal’s al-
gorithm, as a baseline for learning and controllability. The empirical results, shown in Figure
4, reveal a clear trend: in most cases, the control backbones outperform the original graphs
across various datasets and models. In 67% of cases, the control backbones improve ROC
AUC compared to the original graphs, with less than 5% deterioration in the remaining cases.
Additionally, the control backbones outperform random spanning trees in approximately 80%
of cases, with less than 2% deterioration in the rest. These results demonstrate that the ZFS-
and distance-based control backbones provide an effective solution for simplifying network
structures while retaining essential control and learning properties.

5 Conclusion and Future Work

This work develops an effective sparse machine learning backbone for graphs using a ZFS-
based approach. This method simplifies graph structures into tree-like forms while retaining
essential control properties, enhancing learning efficiency. Extensive experiments demonstrate
that the ZFS-based backbone not only preserves network controllability but often outperforms
original graphs and other sparse representations in graph classification tasks. We also ex-
plored a distance-based backbone, showing its potential to generalize the controllability back-
bone and preserve critical characteristics across diverse networks. The ZFS-based backbone
provides a robust, efficient solution for improving graph learning by simplifying structures
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Fig. 4: Comparing the Efficacy of Network Backbone Structures for Graph Classification.
The backbone represents the best-performing structure between Bz and Bd. The results are
compared against the original graphs and random spanning tree subgraphs of the original
graphs.

without sacrificing control attributes. Future research will refine the backbone computation
process for large-scale applications and investigate the relationship between controllability
and learning through the average degree of learning backbones.
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