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Applications in Trading System Development

Before upcoming chapters dig into details regarding applications of Monte-

Carlo permutation tests and bootstrap tests in trading system

development, it’s useful to get a head start by briefly presenting an

overview of some topics that will be covered.  These are some of the

situations in which these tests are immensely useful:

! We have already developed and tested a trading system.  We just

evaluated it on an out-of-sample (OOS) dataset and it performed well

enough that we are inclined to trade it with real money.  But what are

the chances that the impressive OOS results we just found could have

been due to good luck?  The truth is that in order to confidently put a

trading system into practice, it must satisfy two qualifications:

1) Its measured OOS performance must be good.  Everybody

knows about and tests this quality.

2) There must be small probability that this performance could

have been due to good luck.  Shockingly few developers take

the vital extra step of computing this probability.  It doesn’t

matter how wonderful its OOS performance is if there is a

significant probability that this impressive performance could

have arisen from good luck.  Believe it!

! We are in the earliest stages of developing a trading system.  We have

a generally defined system but it has one or more optimizable

parameters that must be tweaked.  Perhaps we have a sophisticated

predictive model with numerous model parameters to optimize, or

perhaps we have a simple algorithm system such as a moving-

average-crossover system with optimizable lookbacks.  The problem

is that if we have too many or too strong parameters we may overfit

the data; our system may learn random noise as if it is an authentic

pattern.  We can usually detect this by OOS testing, but that is a waste

of time and valuable OOS data.  Once we use OOS data, it is no longer

truly OOS and, to be strictly correct, can never again be considered OOS. 

Thus, it is a treasure to preserve.  Luckily, the MCPT provides an

excellent way to evaluate the susceptibility of our system to overfitting

at the earliest stage of development.
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! We have developed what may be called a model factory.  This is

typically a computer program that may try different models, perhaps

with different hyper-parameters, perhaps specializing in different

market conditions (high/low volatility, up/down trend, etc), perhaps

trading different markets or market sectors, and so forth.  In other

words, this is a machine that throws spaghetti against the wall,

watching for something to stick.  Invariably, a key part of deciding if

a candidate trading system is worth further evaluation is walkforward

testing.  We already saw that good OOS performance is a necessary

but not sufficient condition for having confidence in a trading system. 

We also need very low probability of the performance having been

possibly the product of good luck.  The same caveat applies to

walkforward testing.  The MCPT for walkforward testing is

considerably more complex than that for testing a single OOS dataset,

but just as necessary.  A model factory that does not have

walkforward permutation testing built in is a poor and unreliable

factory.

! We have a large set of indicators that may or may not have predictive

power.  For each individual indicator we don’t know if its predictive

power is restricted to just unusually large values, or unusually small

values, or both.  We don’t even know if that indicator is best used for

long systems, or short systems, or both.  We just have a lot of

indicators and a lot of hope.  If we were to try every combination of

predictive region and long/short ability for every indicator in our list,

we would almost certainly find some amazing ‘predictive power’ in

our trials, even if all indicators are completely worthless.  This is

because some of our trials are bound to be lucky even though

worthless; the chance of winning a major lottery is tiny, but someone

still wins despite not having any skill at picking good lottery numbers. 

An MCPT solves this problem by computing the probability that the

clear ‘winners’ in our ranked performance list could have achieved

their exalted position by sheer good luck.  This makes it easy to

identify potentially powerful indicators while rejecting junk.
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! We have multiple competing trading systems.  These might be

different algorithms operating on the same market, or a single

supposedly universal algorithm operating on a variety of markets, or

both (multiple systems on multiple markets).  There are two questions

that should be answered:

1) Are the best systems, which probably have good apparent

performance, really that good or just the luckiest systems?

2) Is the single best system truly superior to its competitors? 

More generally, is the rank ordering of the competitors by

performance well defined or is quite possibly random?

It must be made clear that despite superficial similarities, these are

completely different questions.  The first regards true predictive

power versus temporary good luck that will not continue.  This is the

more important question.  In fact, the second question doesn’t even

matter unless the answer to the first question indicates true power, not

just good luck.  The second question concerns the best system’s

ranking relative to the other systems.  Is it truly superior to its

competitors?  Suppose several of our employees present us with

different trading systems.  Should we focus exclusively on the best

performer, or is there evidence that its performance superiority is far

from certain?  Or suppose we apply our ‘universal’ trading system to

several markets.  Should we focus on whichever market has the best

performance, or is its superiority uncertain?  More generally, how

much importance should we give to the quality ranking?  An MCPT

answers question 1 above, and an interesting randomization test

answers question 2.

! Suppose we have a significant block of truly OOS daily (or finer

resolution) returns, perhaps from single-use withheld data, perhaps

pooled OOS returns from a walkforward, or even from realtime

trading results.  For example, we may have a year of returns.  We can

use bootstraps to compute probability-based estimates of performance

in the future, assuming that market behavior does not change (a

haughty assumption!).  We can say, for example, that there is a 90

percent chance that the system’s mean annualized daily return is at

least some computed value.  Using a very complex algorithm we can

even compute approximate probabilities for catastrophic drawdowns,

an extremely useful thing to know.
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