Diabetic Retinopathy Using Morphological Process and Hough Transform

D. Sirisha P.G student Mr. G.L.N. Murthy Associate Professor Department of Electronics & Communication Engineering Lakireddy Bali Reddy college of Engineering, Mylavaram, Andhra Pradesh

Abstract - In recent years, loss of vision is the most commonly observed problem affecting the daily activities is the one among number of causes for eye diseases. It occurs when blood vessels in the patient's retina begin to leak into the macula region of eye. The purpose of this paper is to extract features from retina digital images based on a further analysis of high frequency components (HH) obtained with the discrete wavelet transform (DWT). In particular, the DWT is applied to the retina photograph to obtain its high-high (HH) image sub-band using db1, symlet, biorthogonal wavelet transform. Then, a further decomposition by DWT is applied to the HH image sub-band of the previous step to obtain HH*. Finally, statistical features are computed from HH* Wavelet Transform (DWT) based features and Adaptive Neural Inference System is reported. The algorithm is capable of discriminating between normal and abnormal subjects. Performance of the algorithm is evaluated by computing sensitivity, specificity and accuracy.

Keywords- Discrete wavelet transform, neural network, Diabetic retina, hard exudates, fundus.

I. INTRODUCTION

Computer-aided diagnosis (CAD) has been the subject of a lot of research as a tool to help health professionals in medical decision making. As a result, many CAD systems integrate image processing, computer vision, and intelligent and statistical machine learning methods to radiologists in the interpretation of medical images and ultimately help improve diagnostic accuracy. The typical process starts with a segmentation stage to identify one or more regions of interest (ROI) in the image of interest. Then, the ROI(s) is processed for image enhancement and/or feature extraction before classification. Because the segmentation step requires prior knowledge of discriminate image features and its implementation typically calls for numerous parameter settings, recent works have attempted to eliminate it. These approaches realize feature space reduction by applying one or more transforms to the whole image and extracting the feature vector to classify from one or more of the obtained components. Diabetic Retinopathy is caused due to the increase in intraocular pressure of the eye. The intraocular pressure increases due to malfunction or malformation of the drainage system of the eye. The anterior chamber of the eye is the small space in the front portion of the eye. A clear liquid flow in and out of the chamber and this fluid is called aqueous humor. The increased intraocular pressure within the eye damages the optic nerve through which retina sends light to the brain where they are recognized as images and makes vision possible. The goal of this paper is to develop an algorithm which automatically analyze eye ultrasound images and classify normal eye images and diseased Diabetic Retinopathy eye images. The two central issues to automatic recognition feature extraction from the retinal images and classification based on the chosen feature extracted.

Fig.1: a, b Normal retinal image, c. Retinal image with background diabetic retinopathy, d. Retinal image with central retinal vein occlusion

Ophthalmologists use digital fundus cameras to noninvasively view the optic nerve, fovea, surrounding vessels and the retinal layer. Since retinal imaging is non-invasive, there is a rapid increase in the number of images which are being collected. Diagnosing these large volumes of images is expensive, time consuming and may be prone to human error. To aid the doctors with this diagnostic task, a

IJRECE VOL. 5 ISSUE 3 JULY.-SEPT. 2017

computer-aided diagnosis scheme could offer an objective, secondary opinion of the images.

II. RELATED PROBLEMS

A. Dynamic Thresholding

In this method we have applied median filtering into the input image directly if it is in grayscale, otherwise we have to convert the input image into grayscale before applying median filtering. This approach is subtraction of median filtered image from input image (in case of the input image is in grayscale form) or subtraction of median filtered image from grayscale form on input image (in case of the input image is in RGB form). Image subtraction is used to find changes between two images of same scene. Thresholding is one of the most useful and easy to implement technique for image segmentation. If in an image consists of light objects on a dark background, in such a way that object and background pixels have intensity values grouped into dominant modes, then we can extract light objects from background using thresholding operation. Depends on the value of thresholding parameter (T). For the proposed method we have used dynamic thresholding technique discussed. The value of thresholding parameter is calculated using the formulae discussed below to each pixel and it's neighborhood pixel. The thresholding values we are getting low specification value. As the disease needs much attention in terms of detection and curing, significant research has been carried out in this regard. Retina is unique blood vessel image can directly detected noninvasively [1]. Retina blood vessels are tree like structure connected with the same background features [2]. Texture analysis of wavelet features are used db1, symlets and orthogonal [3]. Blood vessels are detected by morphological Image Classification and texture features are process[4]. classified with artificial neural network [5]. 2D wavelet transform passed through different signatures for feature ranking, feature selection strategies [6].In glaucoma classification extract structural contextual features of retinal image[7].Orthogonal decomposition of frame work detecting glaucomatous progression HRT topographic of change analysis(TCA)[8] pattern recognition techniques, model-based approaches, tracking-based approaches and neural network based approaches.

III. PROPOSED METHOD

Multi-Level Discrete Wavelet Transform

In order to reduce dimensionality of image, DWT is used for image compression, feature extraction process. Discrete Wavelet transform (DWT) is a mathematical tool for hierarchically decomposing an image. The DWT decomposes an input image into four components labeled as LL, HL, LH and HH [9]. The first letter corresponds to applying either a low pass frequency operation or high pass frequency operation to the rows, and the second letter refers to the filter applied to

ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

the columns. The lowest resolution level LL consists of the approximation part of the original image. The remaining three resolution levels consist of the detail parts and give the vertical high (LH), horizontal high (HL) and high (HH) frequencies. Figure 3 shows three-level wavelet decomposition of an image.

In clinical diagnostic approaches (e.g. ABCD rule of dermoscopy and pattern analysis) dermatologists look into the visual differences within the retina and also changes in the

appearance of the retina over the time. There are a number of reasons that can cause reduced visual acuity, visual impairment, and blindness. In diabetic eye diseases, the causing to the eye. The diabetic eye disease that encompass a group of eye such as diabetic retinopathy, cataract, glaucoma etc.

Fig.3: Wavelet-based texture analysis on retina Images

These visual characteristics can be captured through texture analysis. Wavelet-based texture analysis provides a multi resolution analytical platform which enable us to characterize a signal (an image) in multiple spatial/frequency spaces. The multi-scale characteristics of wavelet can be very useful since dermoscopy images are taken under different circumstances such as various image acquisition set up (lighting, optical zooming, etc) and versatile skin colors on disease affected analysis. The 2D wavelet transform has been widely applied in image processing applications. There exists two wavelet structure; (1) Pyramid-structured wavelet transform which decomposes a signal into a set of frequency channels with narrower bandwidths in lower frequency channels, useful for signals which their important information lies in low frequency components [7], (2) Tree-structured wavelet analysis which provides low, middle and high frequency decomposition which is done by decomposing both

LIRECE VOL. 5 ISSUE 3 JULY, SEPT. 2017

approximate and detail coefficients as shown in Figure. In dermoscopy image analysis, the lower frequency components reveal information about the general properties (shape) of the lesion, which is clinically important, and the higher frequency decomposition provides information about the textural detail and internal patterns of the retina which is also significant in the diagnosis. Thus the decomposition of all frequency channels are useful in this application. Therefore, the treestructured wavelet analysis can be more informative for classification of retina funds.

Neural Networks

The network classifies input vector into a specific class because that class has the maximum probability to be correct. In this paper, the PNN has three layers: the Input Layer, Radial Basis Layer and the Competitive layer. Radial Basis Layer evaluates vector distances between input vector and row weight vectors in weight matrix. These distances are scaled by Radial Basis Function nonlinearly. Competitive Layer finds the shortest distance among them, and thus finds the training pattern closest to the input pattern based on their distance.

Fig.4: neural network analsis on retina

Hough transform:

The Hough transform is a technique which can be used to isolate features of a particular shape within an image. Because it requires that the desired features be specified in some parametric form, the *classical* Hough transform is most commonly used for the detection of regular curves such as lines, circles, ellipses, etc. A generalized Hough transform can be employed in applications where a simple analytic description of a feature(s) is not possible. Due to the computational complexity of the generalized Hough algorithm, we restrict the main focus of this discussion to the classical Hough transform. Despite its domain restrictions, the classical Hough transform (hereafter referred to without the *classical* prefix) retains many applications, as most manufactured parts (and many anatomical parts investigated in medical imagery) contain feature boundaries which can be described by regular curves. The main advantage of the

ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

Hough transform technique is that it is tolerant of gaps in feature boundary descriptions and is relatively unaffected by image noise.

Fig.5: common Hough transform

RESULT Analysis:-

Accuracy:- Accuracy is also used as a statistical measure of how well a binary classification test correctly identifies or excludes a condition. Among the total number of cases examined. To make the context clear by the semantics, it is often referred to as the "rand accuracy. It is a parameter of the test. it shows in the command window.

Acc=(Tp+Tn)/(Tp+Tn+Fp+Fn)

Sensitivity:-In medical diagnosis, test sensitivity is the ability of a test to correctly identify those with the disease (true positive rate).

Sensitivity =Tp/(Tp+Fn).

Specificity:-Whereas test specificity is the ability of the test to correctly identify those without the disease (true negative rate).

Specificity =Tn/(Tn+Fp).

Output image:-

Fig:6: Exudates of retina analysis

IJRECE VOL. 5 ISSUE 3 JULY.-SEPT. 2017

Fig.7: validations of retina analysis

Fig.8: retina morphological layer using hough transform

IV. CONCLUSION

This paper tried to classify the images with retina fundus using image classification by extracting texture features based on neural network. Here, probabilistic neural network was used for classification based on unsupervised leaning using wavelet and curve let statistical features and target vectors. The clustering was estimated from smoothing details of images accurately for effective retina disease affected part on segmentation. Sensitivity of 94% was attained with the current algorithm. Similarly better results were obtained in terms of specificity and accuracy.

V. REFERENCES

- Abràmoff, M.D., Garvin, M.K., Sonka, M., 2010. Retinal Imaging and Image Analysis. IEEE Rev. Biomed.Eng.3,169– 208.
- [2]. Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G., Barman, S. A. ,2012. Blood vessel segmentation methodologies in retinalimages.
- [3]. R. George, R. S. Ve, and L. Vijaya, "Glaucoma in India: Estimated burden of disease," J. Glaucoma, vol. 19, pp. 391– 397, Aug. 2010.
- [4]. Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G., Barman, S. A. ,2012. Blood vessel segmentation methodologies in retinal images.

ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

- [5]. K. R. Sung et al., "Imaging of the retinal nerve fiber layer with spectral domain optical coherence tomography for glaucoma diagnosis," Br. J. Ophthalmol., 2010.
- [6]. R. Varma et al., "Disease progression and the need for neuro protection in glaucoma management," Am. J. Manage Care, vol. 14, pp. S15–S19, 2008.
- [7]. J. M. Miquel-Jimenez et al., "Glaucoma detection by waveletbased analysis of the global flash multifocal electroretinogram," Med. Eng. Phys., vol. 32, pp. 617–622, 2010.
- [8]. S. Weiss, C. A. Kulikowski, and A. Safir, "Glaucoma consultation by computer," Comp. Biol. Med., vol. 8, pp. 24–40, 1978.
- [9]. R. O. Duncan et al., "Retinotopic organization of primary visual cortex in glaucoma: A method for comparing cortical function with damage to the optic disk," Invest. Ophthalmol. Vis. Sci., vol. 48, pp. 733–744, Feb. 2007.
- [10].M. Balasubramanian et al., "Clinical evaluation of the proper orthagonal decomposition framework for detecting glaucomatous changes in human subjects," Invest. Ophthalmol. Vis. Sci., vol. 51, pp. 264–271, 2010.
- [11].U. R. Acharya, S. Dua, X. Du, V. S. Sree, and C. K. Chua, "Automated diagnosis of glaucoma using texture and higher order spectra features," IEEE Trans. Inf. Technol. Biomed., vol. 15, no. 3, pp. 449–455, May 2011.
- [12].S. Dua, U. R. Acharya, and E. Y. K. Ng, Computational Analysis of the Human Eye With Applications. World Scientific Press, 2011.
- [13].E. A. Essock, Y. Zheng, and P. Gunvant, "Analysis of GDx-VCC polarime-try data by wavelet-Fourier analysis across glaucoma stages," Invest. Ophthalmol. Vis. Sci., vol. 46, pp. 2838–2847, Aug. 2005.
- [14].K. Huang and S. Aviyente, "Wavelet feature selection for image classification," IEEE Trans. Image Process., vol. 17, no. 9, pp. 1709–1720, Sep. 2008.
- [15].A. Arivazhagan and L. Ganesan, "Texture classification using wavelet transform," Pattern Recog. Lett., vol. 24, pp. 1513– 1521, 2003.
- [16].I. Daubechies, Ten Lectures on Wavelets. Philadelphia, PA: Society for Industrial and Applied Mathematics, 1992.
- [17].R. C. Gonzalez and R. E. Woods, Digital Image Processing. NJ: Prentice Hall, 2001.
- [18].M. H. Dunham, Data Mining Introductory and Advance Topics. NJ: Pren-tice Hall, 2002.
- [19].H. Liu and R. Setiono, "Chi2: Feature selection and discretization of numeric attributes," in Proc. IEEE 7th Int. Conf. Tools With Artif. Intell., 1995, pp. 338–391.
- [20].J. R. Quinlan, "Induction of decision trees," Mach. Learning, vol. 1, pp. 81–106, 1986.
- [21].J. R. Quinlan, C4.5 Programs for Machine Learning. San Mateo: Morgan Kaufmann, 1993.
- [22].K. Kira and L. A. Rendell, "A practical approach to feature selection," in Proc. 9th Int. Workshop Mach. Learning, San Francisco, CA, 1992, PP.249–256.

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

A UNIT OF I2OR

D. Sirisha P.G student, Department of Electronics & communication engineering in Lakireddy Bali Reddy college of Engineering, Mylavaram, Andhra Pradesh.

Mr. G.L.N. Murthy is presently working as Associate Professor in Department of ECE in Lakireddy Bali Reddy college of Engineering, Mylavaram, Andhra pradesh

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING