Cayley graphs of order 30p are hamiltonian

Ebrahim Ghaderpour, Dave Witte Morris

Department of Mathematics and Computer Science, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada

Abstract

Suppose G is a finite group, such that |G| = 30p, where p is prime. We show that if S is any generating set of G, then there is a hamiltonian cycle in the corresponding Cayley graph Cay(G; S).

1. Introduction

There is a folklore conjecture that every connected Cayley graph has a hamiltonian cycle. (See the surveys [3, 12, 14] for some background on this question.) The papers [8] and [10] began a systematic study of this conjecture in the case of Cayley graphs for which the number of vertices has a prime factorization that is small and easy. In particular, combining several of the results in [10] with [4, 5] and this paper shows:

If |G| = kp, where p is prime, with $1 \le k < 32$ and $k \ne 24$, then every connected Cayley graph on G has a hamiltonian cycle.

This paper's contribution to the project is the case k = 30:

Theorem 1.1. If |G| = 30p, where p is prime, then every connected Cayley graph on G has a hamiltonian cycle.

Acknowledgments. This work was partially supported by research grants from the Natural Sciences and Engineering Research Council of Canada.

Preprint submitted to Discrete Mathematics

Email addresses: Ebrahim.Ghaderpoor@uleth.ca (Ebrahim Ghaderpour), Dave.Morris@uleth.ca (Dave Witte Morris)

URL: http://people.uleth.ca/~dave.morris/ (Dave Witte Morris)

2. Preliminaries

Before proving Theorem 1.1, we present some useful facts about hamiltonian cycles in Cayley graphs.

Notation. Throughout this paper, G is a finite group.

- For any subset S of G, Cay(G; S) denotes the Cayley graph of G with respect to S. Its vertices are the elements of G, and there is an edge joining g to gs for every $g \in G$ and $s \in S$.
- For $x, y \in G$:
 - [x, y] denotes the commutator $x^{-1}y^{-1}xy$, and
 - y^x denotes the *conjugate* $x^{-1}yx$.
- $\langle A \rangle$ denotes the subgroup generated by a subset A of G.
- G' denotes the commutator subgroup [G, G] of G.
- Z(G) denotes the *center* of G.
- $G \ltimes H$ denotes a *semidirect product* of the groups G and H.
- D_{2n} denotes the *dihedral group* of order 2n.
- For $S \subset G$, a sequence (s_1, s_2, \ldots, s_n) of elements of $S \cup S^{-1}$ specifies the walk in the Cayley graph Cay(G; S) that visits (in order) the vertices

 $e, s_1, s_1 s_2, s_1 s_2 s_3, \ldots, s_1 s_2 \ldots s_n.$

If N is a normal subgroup of G, we use $(\overline{s_1}, \overline{s_2}, \ldots, \overline{s_n})$ to denote the image of this walk in the quotient $\operatorname{Cay}(G/N; S)$.

- If the walk $(\overline{s_1}, \overline{s_2}, \ldots, \overline{s_n})$ in $\operatorname{Cay}(G/N; S)$ is closed, then its *voltage* is the product $s_1s_2\ldots s_n$. This is an element of N.
- For $k \in \mathbb{Z}^+$, we use $(s_1, \ldots, s_m)^k$ to denote the concatenation of k copies of the sequence (s_1, \ldots, s_m) . Abusing notation, we often write s^k and s^{-k} for

$$(s)^k = (s, s, \dots, s)$$
 and $(s^{-1})^k = (s^{-1}, s^{-1}, \dots, s^{-1}),$

respectively. Furthermore, we often write $((s_1, \ldots, s_m), (t_1, \ldots, t_n))$ to denote the concatenation $(s_1, \ldots, s_m, t_1, \ldots, t_n)$. For example, we have

$$((a^2, b)^2, c^{-2})^2 = (a, a, b, a, a, b, c^{-1}, c^{-1}, a, a, b, a, a, b, c^{-1}, c^{-1}).$$

Theorem 2.1 (Marušič, Durnberger, Keating-Witte [9]). If G' is a cyclic group of prime-power order, then every connected Cayley graph on G has a hamiltonian cycle.

Lemma 2.2 ("Factor Group Lemma" [14, §2.2]). Suppose

- S is a generating set of G,
- N is a cyclic, normal subgroup of G,
- $\overline{C} = (\overline{s_1}, \overline{s_2}, \dots, \overline{s_n})$ is a hamiltonian cycle in $\operatorname{Cay}(G/N; S)$, and
- the voltage of \overline{C} generates N.

Then $(s_1, \ldots, s_n)^{|N|}$ is a hamiltonian cycle in Cay(G; S).

The following easy consequence of the Factor Group Lemma (2.2) is well known (and is implicit in [11]).

Corollary 2.3. Suppose

- S is a generating set of G,
- N is a normal subgroup of G, such that |N| is prime,
- $s \equiv t \pmod{N}$ for some $s, t \in S \cup S^{-1}$ with $s \neq t$, and
- there is a hamiltonian cycle in $\operatorname{Cay}(G/N; S)$ that uses at least one edge labeled s.

Then there is a hamiltonian cycle in Cay(G; S).

(note A.1)

Theorem 2.4 (Alspach [1, Cor. 5.2]). If $G = \langle s \rangle \ltimes \langle t \rangle$, for some elements s and t of G, then Cay(G; $\{s, t\}$) has a hamiltonian cycle.

Lemma 2.5 ([10, Lem. 2.27]). Let S generate the finite group G, and let $s \in S$, such that $\langle s \rangle \triangleleft G$. If $\operatorname{Cay}(G/\langle s \rangle; S)$ has a hamiltonian cycle, and either

- 1. $s \in Z(G)$, or
- 2. $Z(G) \cap \langle s \rangle = \{e\},\$

then Cay(G; S) has a hamiltonian cycle.

Lemma 2.6. Suppose

• $G = \langle a \rangle \ltimes \langle S_0 \rangle$, where $\langle S_0 \rangle$ is an abelian subgroup of odd order,

- $\#(S_0 \cup S_0^{-1}) \ge 3$, and
- $\langle S_0 \rangle$ has a nontrivial subgroup H, such that $H \triangleleft G$ and $H \cap Z(G) = \{e\}$.

Then $Cay(G; S_0 \cup \{a\})$ has a hamiltonian cycle.

Proof. Since $\langle S_0 \rangle$ is abelian of odd order, and $\#(S_0 \cup S_0^{-1}) \ge 3$, we know that $\operatorname{Cay}(\langle S_0 \rangle; S_0)$ is hamiltonian connected [2]. Therefore, it has a hamiltonian path (s_1, s_2, \ldots, s_m) , such that $s_1 s_2 \cdots s_m \in H$. Then

$$(s_1, s_2, \ldots, s_m, a)^{|a|}$$

is a hamiltonian cycle in $\operatorname{Cay}(G; S_0 \cup \{a\})$.

Lemma 2.7 ([4, Cor. 4.4]). If $a, b \in G$, such that $G = \langle a, b \rangle$, then $G' = \langle [a, b] \rangle$.

Lemma 2.8 ([13, Prop. 5.5]). If p, q, and r are prime, then every connected Cayley graph on the dihedral group D_{2pqr} has a hamiltonian cycle.

Lemma 2.9. If $G = D_{2pq} \times \mathbb{Z}_r$, where p, q, and r are distinct odd primes, then every connected Cayley graph on G has a hamiltonian cycle.

Proof. Let S be a minimal generating set of G, let $\varphi: G \to D_{2pq}$ be the natural projection, and let T be the group of rotations in D_{2pq} , so $T = \mathbb{Z}_p \times \mathbb{Z}_q$. For $s \in S$ we may assume:

For $s \in S$, we may assume:

- If $\varphi(s)$ has order 2, then $s = \varphi(s)$ has order 2. (Otherwise, Corollary 2.3 applies with $t = s^{-1}$.)
- $\varphi(s)$ is nontrivial. (Otherwise, $s \in \mathbb{Z}_r \subset Z(G)$, so Lemma 2.5(1) applies.)

Since $\varphi(S)$ generates D_{2pq} , it must contain at least one reflection (which is an element of order 2). So $S \cap D_{2pq}$ contains a reflection.

Case 1. Assume $S \cap D_{2pq}$ contains only one reflection. Let $a \in S \cap D_{2pq}$, such that a is a reflection.

Let $S_0 = S \setminus \{a\}$. Since $\langle S_0 \rangle$ is a subgroup of the cyclic, normal subgroup $T \times \mathbb{Z}_r$, we know $\langle S_0 \rangle$ is normal. Therefore $G = \langle a \rangle \ltimes \langle S_0 \rangle$, so:

• If $\#S_0 = 1$, then Theorem 2.4 applies.

 \Box (note A.2)

• If $\#S_0 \ge 2$, then Lemma 2.6 applies with H = T, because $T \times \mathbb{Z}_r$ is abelian of odd order.

Case 2. Assume $S \cap D_{2pq}$ contains at least two reflections. Since no minimal generating set of D_{2pq} contains three reflections, the minimality of S implies that $S \cap D_{2pq}$ contains exactly two reflections; say a and b are reflections.

Let $c \in S \setminus D_{2pq}$, so $\mathbb{Z}_r \subset \langle c \rangle$. Since |c| > 2, we know $\varphi(c)$ is not a reflection, so $\varphi(c) \in T$. The minimality of S (combined with the fact that #S > 2) implies $\langle \varphi(c) \rangle \neq T$. Since $\varphi(c)$ is nontrivial, this implies we may assume $\langle \varphi(c) \rangle = \mathbb{Z}_p$ (by interchanging p and q if necessary). Hence, we may write

$$c = wz$$
 with $\langle w \rangle = \mathbb{Z}_p$ and $\langle z \rangle = \mathbb{Z}_r$.

We now use the argument of [9, Case 5.3, p. 96], which is based on ideas of D. Marušič [11]. Let

$$\overline{G} = G/\mathbb{Z}_p = \overline{D_{2pq}} \times \mathbb{Z}_r = \overline{D_{2pq}} \times \langle \overline{c} \rangle.$$

Then $\overline{D_{2pq}} \cong D_{2q}$, so $(a, b)^q$ is a hamiltonian cycle in $\operatorname{Cay}(\overline{D_{2pq}}; a, b)$. With this in mind, it is easy to see that

$$\left(c^{r-1}, a, \left((b, a)^{q-1}, c^{-1}, (a, b)^{q-1}, c^{-1}\right)^{(r-1)/2}, (b, a)^{q-1}, b\right)$$

is a hamiltonian cycle in $\operatorname{Cay}(\overline{G}; S)$. This contains the string

$$(c, a, (b, a)^{q-1}, c^{-1}, a),$$

which can be replaced with the string

$$(b, c, (b, a)^{q-1}, b, c^{-1})$$

to obtain another hamiltonian cycle. Since

$$ca(ba)^{q-1}c^{-1}a = (cac^{-1}a)(ba)^{-(q-1)} \qquad (ba \in T \text{ is inverted by } a)$$

$$= ((wz)a(wz)^{-1}a)(ba)^{-(q-1)}$$

$$= (w^2)(ba)^{-(q-1)} \qquad (a \text{ inverts } w \text{ and centralizes } z)$$

$$\neq (w^{-2})(ba)^{-(q-1)}$$

$$= (b(wz)b(wz)^{-1})(ba)^{-(q-1)} \qquad (b \text{ inverts } w \text{ and centralizes } z)$$

$$= (bcbc^{-1})(ba)^{-(q-1)}$$

$$= bc(ba)^{q-1}bc^{-1}, \qquad (ba \in T \text{ is inverted by } b)$$

(note A.6)

(note A.5)

(note A.3)

(note A.4)

these two hamiltonian cycles have different voltages. Therefore at least one of them must have a nontrivial voltage. This nontrivial voltage must generate \mathbb{Z}_p , so the Factor Group Lemma (2.2) provides a hamiltonian cycle in $\operatorname{Cay}(G; S)$.

Proposition 2.10. Suppose

- |G| = 30p, where p is prime, and
- |G| is not square-free (i.e., $p \in \{2, 3, 5\}$).

Then every Cayley graph on G has a hamiltonian cycle.

Proof. We know |G| is either 60, 90, or 150, and it is known that every connected Cayley graph of any of these three orders has a hamiltonian cycle. This can be verified by exhaustive computer search, or see [10, Props. 7.2 and 9.1] and [6].

Lemma 2.11. Suppose

- |G| = 30p, where p is prime, and
- $p \ge 7$.

Then

- 1. G' is cyclic,
- 2. $G' \cap Z(G) = \{e\},\$
- 3. $G \cong \mathbb{Z}_n \ltimes G'$, for some $n \in \mathbb{Z}^+$, and
- 4. if b is a generator of \mathbb{Z}_n , and we choose $\tau \in \mathbb{Z}$, such that $x^b = x^{\tau}$ for all $x \in G'$, then $gcd(\tau 1, |a|) = 1$.

Proof. Since |G| is square-free (because $p \ge 7$), we know that every Sylow subgroup of G is cyclic. Therefore the conclusions follow from [7, Thm. 9.4.3, p. 146]¹.

¹The condition [(r-1), nm] = 1 in the statement of [7, Cor. 9.4.3, p. 146] suffers from a typographical error — it should say gcd((r-1)n, m) = 1.

3. Proof of the Main Theorem

Proof of Theorem 1.1. Because of Proposition 2.10, we may assume

 $p \ge 7$,

so the conclusions of Lemma 2.11 hold.

We may also assume |G'| is not prime (otherwise Theorem 2.1 applies). Furthermore, if |G'| = 15p, then G is a dihedral group, so Lemma 2.8 applies. (note A.8) In addition, if |G'| = 15, then $G \cong D_{30} \times \mathbb{Z}_p$, so Lemma 2.9 applies. Thus, (note A.9) we may assume |G'| = pq, where $q \in \{3, 5\}$. So (note A.10)

$$G = \mathbb{Z}_{2r} \ltimes \mathbb{Z}_{pq}$$
, with $\{q, r\} = \{3, 5\}$ (and $G' = \mathbb{Z}_{pq}$).

Note that \mathbb{Z}_r centralizes \mathbb{Z}_q , because there is no nonabelian group of order 15, so \mathbb{Z}_2 must act nontrivially on \mathbb{Z}_q . Therefore (note A.11)

 $y^x = y^{-1}$ whenever $y \in \mathbb{Z}_q$ and $\langle x \rangle = \mathbb{Z}_{2r}$.

We also assume

 \mathbb{Z}_r does not centralize \mathbb{Z}_p ,

because otherwise $G \cong D_{2pq} \times \mathbb{Z}_r$, so Lemma 2.9 applies.

Given a minimal generating set S of G, we may assume

$$S \cap G' = \emptyset,$$

for otherwise Lemma 2.5(2) applies.

Case 1. Assume #S = 2. Write $S = \{a, b\}$.

Subcase 1.1. Assume |a| is odd. This implies a has order r in G/G', so $(a^{-(r-1)}, b^{-1}, a^{r-1}, b)$ is a hamiltonian cycle in $\operatorname{Cay}(G/G'; S)$. Its voltage is

$$a^{-(r-1)}b^{-1}a^{r-1}b = [a^{r-1}, b].$$

Since gcd(r-1, |a|) | gcd(r-1, 15p) = 1, we know $\langle a^{r-1}, b \rangle = \langle a, b \rangle = G$. So (note A.13) $\langle [a^{r-1}, b] \rangle = G'$ (see Lemma 2.7). Therefore the Factor Group Lemma (2.2) applies.

Subcase 1.2. Assume a and b both have even order.

Subsubcase 1.2.1. Assume a has order 2 in G/G'. Note that $q \nmid |a|$, since \mathbb{Z}_2 does not centralize \mathbb{Z}_q . Also, if |a| = 2p, then Corollary 2.3 applies. (note A.14)

(note A.12)

Therefore, we may assume |a| = 2.

Now *b* must generate G/G' (since $\langle a, b \rangle = G$, and *b* has even order), so *b* has trivial centralizer in \mathbb{Z}_{pq} . Then, since |a| = 2 and $\langle a, b \rangle = G$, it follows that *a* must also have trivial centralizer in \mathbb{Z}_{pq} . Therefore (up to isomorphism), we must have either:

- 1. $a = x^3$ and b = xyw, in $G = \mathbb{Z}_6 \ltimes (\mathbb{Z}_5 \times \mathbb{Z}_p) = \langle x \rangle \ltimes (\langle y \rangle \times \langle w \rangle)$, with $y^x = y^{-1}$ and $w^x = w^d$, where d is a primitive 6th root of 1 in \mathbb{Z}_p (so $d^2 d + 1 \equiv 0 \pmod{p}$), or
- 2. $a = x^5$ and b = xyw, in $G = \mathbb{Z}_{10} \ltimes (\mathbb{Z}_3 \times \mathbb{Z}_p) = \langle x \rangle \ltimes (\langle y \rangle \times \langle w \rangle)$ with $y^x = y^{-1}$ and $w^x = w^d$, where d is a primitive 10th root of 1 in \mathbb{Z}_p (so $d^4 d^3 + d^2 d + 1 \equiv 0 \pmod{p}$).

For (1), we note that the sequence $((a, b^{-5})^4, a, b^5)$ is a hamiltonian cycle in $\operatorname{Cay}(G/\mathbb{Z}_p; S)$:

Calculating modulo the normal subgroup $\langle y \rangle$, its voltage is

$$(ab^{-5})^{4}(ab^{5}) = (ab)^{4}(ab^{-1}) \qquad (b^{6} = e)$$

$$\equiv (x^{3} (xw))^{4} (x^{3} (xw)^{-1}) \qquad (x^{3} \text{ inverts } w)$$

$$= (x^{4}w)^{4} ((xw^{-1})^{-1} x^{3}) \qquad (x^{3} \text{ inverts } w)$$

$$= (x^{16}w^{d^{12}+d^{8}+d^{4}+1}) ((wx^{-1}) x^{3}) \qquad (x^{6} = e \text{ and } d^{3} \equiv -1 \pmod{p})$$

$$= x^{-2}w^{d^{2}+2}x^{2} \qquad (d^{2} - d + 1 \equiv 0 \pmod{p}), d^{2}$$

which is nontrivial. Therefore, the voltage generates \mathbb{Z}_p , so the Factor Group Lemma (2.2) provides a hamiltonian cycle in $\operatorname{Cay}(G; S)$.

For (2), here is a hamiltonian cycle in $\operatorname{Cay}(G/\mathbb{Z}_p; S)$:

$$\overline{e} \quad \stackrel{a}{\longrightarrow} \quad \overline{x^5} \quad \stackrel{b}{\longrightarrow} \quad \overline{x^6y} \quad \stackrel{b}{\longrightarrow} \quad \overline{x^7} \quad \stackrel{b}{\longrightarrow} \quad \overline{x^8y} \quad \stackrel{b}{\longrightarrow} \quad \overline{x^9}$$

$$\stackrel{a}{\longrightarrow} \quad \overline{x^4} \quad \stackrel{b}{\longrightarrow} \quad \overline{x^5y} \quad \stackrel{a}{\longrightarrow} \quad \overline{y^2} \quad \stackrel{b}{\longrightarrow} \quad \overline{xy^2} \quad \stackrel{b}{\longrightarrow} \quad \overline{x^2y^2}$$

$$\stackrel{b}{\longrightarrow} \quad \overline{x^3y^2} \quad \stackrel{b}{\longrightarrow} \quad \overline{x^4y^2} \quad \stackrel{a}{\longrightarrow} \quad \overline{x^9y} \quad \stackrel{b^{-1}}{\longrightarrow} \quad \overline{x^8} \quad \stackrel{b^{-1}}{\longrightarrow} \quad \overline{x^7y}$$

$$\stackrel{b^{-1}}{\longrightarrow} \quad \overline{x^6} \quad \stackrel{a}{\longrightarrow} \quad \overline{x} \quad \stackrel{b^{-1}}{\longrightarrow} \quad \overline{y} \quad \stackrel{a}{\longrightarrow} \quad \overline{x^5y^2} \quad \stackrel{b}{\longrightarrow} \quad \overline{x^6y^2}$$

$$\stackrel{b}{\longrightarrow} \quad \overline{x^7y^2} \quad \stackrel{a}{\longrightarrow} \quad \overline{x^2y} \quad \stackrel{b}{\longrightarrow} \quad \overline{x^3} \quad \stackrel{b}{\longrightarrow} \quad \overline{x^4y} \quad \stackrel{a}{\longrightarrow} \quad \overline{x^9y^2}$$

$$\stackrel{b^{-1}}{\longrightarrow} \quad \overline{x^8y^2} \quad \stackrel{a}{\longrightarrow} \quad \overline{x^3y} \quad \stackrel{b^{-1}}{\longrightarrow} \quad \overline{x^2} \quad \stackrel{b^{-1}}{\longrightarrow} \quad \overline{xy} \quad \stackrel{b^{-1}}{\longrightarrow} \quad \overline{e}.$$

Calculating modulo $\langle y \rangle$, its voltage is

$$\begin{split} ab^{4}(aba)b^{4}(ab^{-3}a)b^{-1}(ab^{2})^{2}(ab^{-1}a)b^{-3} \\ &\equiv x^{5}(xw)^{4}\left(x^{5}(xw)x^{5}\right)(xw)^{4}\left(x^{5}(xw)^{-3}x^{5}\right) \\ &\cdot (xw)^{-1}\left(x^{5}(xw)^{2}\right)^{2}\left(x^{5}(xw)^{-1}x^{5}\right)(xw)^{-3} \\ &= x^{5}(xw)^{4}\left(xw^{-1}\right)(xw)^{4}\left(xw^{-1}\right)^{-3} \\ &\cdot (xw)^{-1}\left((xw^{-1})^{2}(xw)^{2}\right)\left(xw^{-1}\right)^{-1}(xw)^{-3} \\ &= x^{5}(x^{4}w^{d^{3}+d^{2}+d+1})\left(xw^{-1}\right)\left(x^{4}w^{d^{3}+d^{2}+d+1}\right)\left(w^{d^{2}+d+1}x^{-3}\right) \\ &\cdot (w^{-1}x^{-1})\left(x^{4}w^{-d^{3}-d^{2}+d+1}\right)\left(wx^{-1}\right)\left(w^{-(d^{2}+d+1)}x^{-3}\right) \\ &= w^{d(d^{3}+d^{2}+d+1)}w^{-1}w^{d^{6}(d^{3}+d^{2}+d+1)}w^{d^{6}(d^{2}+d+1)} \\ &\cdot w^{-d^{9}}w^{d^{6}(-d^{3}-d^{2}+d+1)}w^{d^{6}}w^{-d^{7}(d^{2}+d+1)} \\ &= w^{-2d^{9}+2d^{7}+4d^{6}+d^{4}+d^{3}+d^{2}+d-1}. \end{split}$$

Modulo p, the exponent of w is:

$$\begin{aligned} -2d^9 + 2d^7 + 4d^6 + d^4 + d^3 + d^2 + d - 1 \\ &\equiv 2d^4 - 2d^2 - 4d + d^4 + d^3 + d^2 + d - 1 \qquad \text{(because } d^5 \equiv -1\text{)} \\ &= 3d^4 + d^3 - d^2 - 3d - 1 \\ &= 3(d^4 - d^3 + d^2 - d + 1) + 4(d^3 - d^2 - 1) \\ &\equiv 3(0) + 4(d^3 - d^2 - 1) \\ &= 4(d^3 - d^2 - 1). \end{aligned}$$

This is nonzero (mod p), because $d^4 - d^3 + d^2 - d + 1 \equiv 0 \pmod{p}$ and $(d^3 - d^2)(d^3 - d^2 - 1) - (d^2 - d - 1)(d^4 - d^3 + d^2 - d + 1) = 1.$ Therefore the voltage generates $\langle w \rangle = \mathbb{Z}_p$, so the Factor Group Lemma (2.2) applies.

Subsubcase 1.2.2. Assume a and b both have order 2r in G/G'. Then |a| = |b| = 2r (because \mathbb{Z}_{2r} has trivial centralizer in \mathbb{Z}_{pq}). (note A.17)

We have $a \in b^i G'$ for some i with gcd(i, 2r) = 1. We may assume $1 \leq i < r$ by replacing a with its inverse if necessary. Here is a hamiltonian cycle in Cay(G/G'; S):

$$((a, b, a^{-1}, b)^{(i-1)/2}, a, b^{2r+1-2i}).$$

(note A.18)

To calculate its voltage, write $a = b^i y w$, where $\langle y \rangle = \mathbb{Z}_q$ and $\langle w \rangle = \mathbb{Z}_p$. We have $y^b = y^{-1}$ and $w^b = w^d$, where d is a primitive r^{th} or $(2r)^{\text{th}}$ root of unity (note A.19) in \mathbb{Z}_p . Then the voltage of the walk is:

$$(aba^{-1}b)^{(i-1)/2}ab^{2r+1-2i} = ((b^{i}yw)b(b^{i}yw)^{-1}b)^{(i-1)/2}(b^{i}yw)b^{1-2i}$$

= $((b^{i}yw)b(w^{-1}y^{-1}b^{-i})b)^{(i-1)/2}(b^{i}yw)b^{1-2i}$
= $(b^{2}y^{-2}w^{(d-1)d^{1-i}})^{(i-1)/2}(b^{i}yw)b^{1-2i}$ (note A.20)
= $(b^{i-1}y^{-(i-1)}w^{(d-1)d^{1-i}(d^{i-3}+d^{i-5}+\dots+d^{2}+1)})(b^{i}yw)b^{1-2i}$ (note A.21)

$$= b^{2i-1}y^{(i-1)+1}w^{(d-1)d(d^{i-3}+d^{i-5}+\dots+d^2+1)+1}b^{1-2i}.$$
 (note A.22)

Now:

- The exponent of y is (i-1)+1 = i. If $q \mid i$, then, since i < r, we must have q = 3, r = 5, and i = 3. (note A.23)
- The exponent of w is

$$(d-1)d(d^{i-3}+d^{i-5}+\dots+d^2+1)+1 = d(d-1)\frac{d^{i-1}-1}{d^2-1}+1$$
$$= d\frac{d^{i-1}-1}{d+1}+1 = \frac{d^i-d}{d+1}+\frac{d+1}{d+1} = \frac{d^i+1}{d+1}.$$

This is not divisible by p, because d is a primitive r^{th} or $(2r)^{\text{th}}$ root of 1 in \mathbb{Z}_p , and gcd(i, 2r) = 1.

Thus, the voltage generates G' (so the Factor Group Lemma (2.2) applies) unless q = 3, r = 5, and i = 3.

In this case, since i = 3, we have $a = b^3 yw$. Also, we may assume b = x. Then a hamiltonian cycle in $\operatorname{Cay}(G/\mathbb{Z}_n; S)$ is:

Calculating modulo $\langle y \rangle$, and noting that |a| = 2r = 10, its voltage is

$$a^{-9}b(a^{9}b)^{2} = ab(a^{-1}b)^{2} \equiv ((x^{3}w)x)(w^{-1}x^{-2})^{2}$$
$$= (x^{4}w^{d})(w^{-1-d^{2}}x^{-4}) = x^{4}w^{-(d^{2}-d+1)}x^{-4}.$$

Since d is a primitive 5th or 10th root of 1 in \mathbb{Z}_p , we know that it is not a primitive 6th root of 1, so $d^2 - d + 1 \not\equiv 0 \pmod{p}$. Therefore the voltage is nontrivial, and hence generates \mathbb{Z}_p , so the Factor Group Lemma (2.2) applies.

Case 2. Assume #S = 3, and S remains minimal in $G/\mathbb{Z}_p = \overline{G}$. Since $G = \mathbb{Z}_{2r} \ltimes \mathbb{Z}_{pq}$ and \mathbb{Z}_r centralizes \mathbb{Z}_q , we know $\overline{G} \cong (\mathbb{Z}_2 \ltimes \mathbb{Z}_q) \times \mathbb{Z}_r$. Also, since \mathbb{Z}_2 inverts \mathbb{Z}_q , we have $\mathbb{Z}_2 \ltimes \mathbb{Z}_q \cong D_{2q}$. Therefore, $\overline{G} \cong D_{2q} \times \mathbb{Z}_r$, so we may write $S = \{a, b, c\}$ with $\langle \overline{a}, \overline{b} \rangle = D_{2q}$ and $\langle \overline{c} \rangle = \mathbb{Z}_r$. Since $S \cap G' = \emptyset$, we (note A.24) know that \overline{a} and \overline{b} are reflections, so they have order 2 in G/\mathbb{Z}_p . Therefore, we may assume |a| = |b| = 2, for otherwise Corollary 2.3 applies. Also, since \mathbb{Z}_r does not centralize \mathbb{Z}_p , we know that |c| = r. Replacing c by a conjugate, (note A.25) we may assume $\langle c \rangle = \mathbb{Z}_r$.

We may assume $\mathbb{Z}_r \not\subset Z(G)$ (otherwise Lemma 2.9 applies), so we may (note A.26) assume $[a, c] \neq e$ (by interchanging a and b if necessary). Let

$$W = \left((b, a)^{q-1}, c, (c^{r-2}, a, c^{-(r-2)}, b)^{q-1} \right).$$

Then

$$(W, c^{r-2}, a, c^{-(r-1)}, a)$$
 and $(W, c^{r-3}, a, c^{-(r-1)}, a, c)$

are hamiltonian cycles in $\operatorname{Cay}(G/G'; S)$. Let v be the voltage of the first of (note A.27)

these, and let $\gamma = [a, c] [a, c]^{ac}$. Then the voltage of the second is

$$\begin{aligned} v \cdot (c^{r-2}ac^{-(r-1)}a)^{-1}(c^{r-3}ac^{-(r-1)}ac) &= v \cdot (ac^{r-1}ac^{-(r-2)})(c^{r-3}ac^{-(r-1)}ac) \\ &= v \cdot (ac^{-1}ac^{-1}acac) \\ &= v \cdot (ac^{-1}ac^{-1}acac) \\ &= v \cdot (ac^{-1}ac[a,c]^{ac}) \\ &= v \cdot ([a,c][a,c]^{ac}) \\ &= v\gamma. \end{aligned}$$

Since [a, c] generates \mathbb{Z}_p , and ac does not invert \mathbb{Z}_p (this is because a inverts \mathbb{Z}_p , and c does not centralize \mathbb{Z}_p), we know $\gamma \neq e$. Therefore v and $v\gamma$ cannot both be trivial, so at least one of them generates \mathbb{Z}_p . Then the Factor Group Lemma (2.2) provides a hamiltonian cycle in Cay(G; S).

Case 3. Assume #S = 3, and S does not remain minimal in G/\mathbb{Z}_p . Choose a 2-element subset $\{a, b\}$ of S that generates G/\mathbb{Z}_p . As in Case 2, we have $G/\mathbb{Z}_p \cong D_{2q} \times \mathbb{Z}_r$. From the minimality of S, we see that $\langle a, b \rangle = D_{2q} \times \mathbb{Z}_r$ (up to a conjugate). The projection of $\{a, b\}$ to D_{2q} must be of the form (note A.28) $\{f, y\}$ or $\{f, fy\}$, where f is a reflection and y is a rotation. Thus, using zto denote a generator of \mathbb{Z}_r (and noting that $y \notin S$, because $S \cap G' = \emptyset$), we see that $\{a, b\}$ must be of the form (note A.29)

- 1. $\{f, yz\}$, or
- 2. $\{f, fyz\}$, or
- 3. $\{fz, yz^{\ell}\}$, with $\ell \not\equiv 0 \pmod{r}$, or
- 4. $\{fz, fyz^{\ell}\}$, with $\ell \not\equiv 0 \pmod{r}$.

Let c be the final element of S. We may write

$$c = f^i y^j z^k w$$
 with $0 \le i < 2$, $0 \le j < q$, and $0 \le k < r$.

Note that, since $S \cap G' = \emptyset$, we know that *i* and *k* cannot both be 0. Let *d* be a primitive r^{th} root of unity in \mathbb{Z}_p , such that

$$w^z = w^d$$
 for $w \in \mathbb{Z}_p$.

Subcase 3.1. Assume a = f and b = yz. From the minimality of S, we know $\langle b, c \rangle \neq G$, so i = 0, so we must have $k \neq 0$. (note A.30)

Subsubcase 3.1.1. Assume k = 1. Then $b \equiv c \pmod{G'}$, so we have the hamiltonian cycles $(a, b^{-(r-1)}, a, b^{r-2}, c)$ and $(a, b^{-(r-1)}, a, b^{r-3}, c^2)$ in $\operatorname{Cay}(G/G'; S)$. The voltage of the first is

$$\begin{aligned} ab^{-(r-1)}ab^{r-2}c &= \left(ab^{-(r-1)}ab^{r-1}\right)\left(b^{-1}c\right) \\ &= \left((f)(yz)^{-(r-1)}(f)(yz)^{r-1}\right)\left((yz)^{-1}(y^{j}zw)\right) \\ &= \left(y^{2(r-1)}\right)\left(y^{j-1}w\right) & \text{(note A.31)} \\ &= \begin{cases} y^{j+3}w & \text{if } r = 3 \text{ and } q = 5, \\ y^{j+7}w & \text{if } r = 5 \text{ and } q = 3 \\ &= y^{j-2}w, \end{cases} & \text{(note A.32)} \end{aligned}$$

which generates $\mathbb{Z}_q \times \mathbb{Z}_p = G'$ if $j \neq 2$.

So we may assume j = 2 (for otherwise the Factor Group Lemma (2.2) applies). In this case, the voltage of the second hamiltonian cycle is

$$\begin{aligned} ab^{-(r-1)}ab^{r-3}c^2 &= \left(ab^{-(r-1)}ab^{r-1}\right)\left(b^{-2}c^2\right) \\ &= \left((f)(yz)^{-(r-1)}(f)(yz)^{r-1}\right)\left((yz)^{-2}(y^2zw)^2\right) \\ &= \left(y^{2(r-1)}\right)\left(y^2w^{d+1}\right) & \text{(note A.33)} \\ &= \begin{cases} y^6w^{d+1} & \text{if } r = 3 \text{ and } q = 5, \\ y^{10}w^{d+1} & \text{if } r = 5 \text{ and } q = 3 \end{cases} \\ &= yw^{d+1}, & \text{(note A.34)} \end{aligned}$$

which generates $\mathbb{Z}_q \times \mathbb{Z}_p = G'$. So the Factor Group Lemma (2.2) provides a (note A.35) hamiltonian cycle in Cay(G; S).

Subsubcase 3.1.2. Assume k > 1. We may replace c with its inverse, so we may assume $k \le (r-1)/2$. Therefore $r \ne 3$, so we must have r = 5 and k = 2. So a = f, b = yz, and $c = y^j z^2 w$.

Subsubsubcase 3.1.2.1. Assume j = 0. Here is a hamiltonian

cycle in $\operatorname{Cay}(G/\mathbb{Z}_p; S)$:

$$\overline{e} \quad \xrightarrow{a} \quad \overline{f} \quad \xrightarrow{b} \quad \overline{fyz} \quad \xrightarrow{a} \quad \overline{y^2z} \quad \xrightarrow{b} \quad \overline{z^2} \quad \xrightarrow{a} \quad \overline{fz^2} \\ \xrightarrow{b} \quad \overline{fyz^3} \quad \xrightarrow{a} \quad \overline{y^2z^3} \quad \xrightarrow{b} \quad \overline{z^4} \quad \xrightarrow{a} \quad \overline{fz^4} \quad \xrightarrow{b^{-1}} \quad \overline{fy^2z^3} \\ \xrightarrow{a} \quad \overline{yz^3} \quad \xrightarrow{b} \quad \overline{y^2z^4} \quad \xrightarrow{c^{-1}} \quad \overline{y^2z^2} \quad \xrightarrow{a} \quad \overline{fyz^2} \quad \xrightarrow{c} \quad \overline{fyz^4} \\ \xrightarrow{b^{-1}} \quad \overline{fz^3} \quad \xrightarrow{a} \quad \overline{z^3} \quad \xrightarrow{b} \quad \overline{yz^4} \quad \xrightarrow{a} \quad \overline{fy^2z^4} \quad \xrightarrow{c^{-1}} \quad \overline{fy^2z^2} \\ \xrightarrow{a} \quad \overline{yz^2} \quad \xrightarrow{c^{-1}} \quad \overline{y} \quad \xrightarrow{a} \quad \overline{fy^2} \quad \xrightarrow{b} \quad \overline{fz} \quad \xrightarrow{a} \quad \overline{z} \\ \xrightarrow{b^{-1}} \quad \overline{y^2} \quad \xrightarrow{a} \quad \overline{fy} \quad \xrightarrow{b} \quad \overline{fy^2z} \quad \xrightarrow{a} \quad \overline{yz} \quad \xrightarrow{b^{-1}} \quad \overline{e}.$$

Letting $\epsilon \in \{\pm 1\}$, such that $w^f = w^{\epsilon}$, and calculating modulo $\langle y \rangle$, its voltage is

$$\begin{aligned} (ab)^4 (ab^{-1}ab) (c^{-1}ac) (b^{-1}ab) (ac^{-1})^2 (abab^{-1})^2 \\ &\equiv (fz)^4 (fz^{-1}fz) (w^{-1}z^{-2}fz^2w) (z^{-1}fz) (fw^{-1}z^{-2})^2 (fzfz^{-1})^2 \\ &= (z^4) (e) (w^{\epsilon-1}f) (f) (w^{-(\epsilon+d^2)}z^{-4}) (e) \\ &= z^4 w^{-(d^2+1)} z^{-4}. \end{aligned}$$
(note A.36)

Since d is a primitive 5th root of unity in \mathbb{Z}_p , we know that $d^2 + 1 \not\equiv 0 \pmod{p}$, so the voltage is nontrivial, and hence generates \mathbb{Z}_p , so the Factor Group Lemma (2.2) applies.

Subsubsubcase 3.1.2.2. Assume $j \neq 0$. Since $\langle a, c \rangle \neq G$, this implies f centralizes \mathbb{Z}_p , so $G = D_6 \times (\mathbb{Z}_5 \ltimes \mathbb{Z}_p)$. (note A.37) If j = 1 (so $c = yz^2w$), here is a hamiltonian cycle in Cay $(G/\mathbb{Z}_p; S)$:

$$\overline{e} \xrightarrow{a} \overline{f} \xrightarrow{b} \overline{fyz} \xrightarrow{a} \overline{y^2z} \xrightarrow{b} \overline{z^2} \xrightarrow{a} \overline{fz^2}$$

$$\xrightarrow{b} \overline{fyz^3} \xrightarrow{a} \overline{y^2z^3} \xrightarrow{b} \overline{z^4} \xrightarrow{b} \overline{y} \xrightarrow{a} \overline{fy^2}$$

$$\xrightarrow{b} \overline{fz} \xrightarrow{a} \overline{z} \xrightarrow{b^{-1}} \overline{y^2} \xrightarrow{a} \overline{fy} \xrightarrow{b} \overline{fy^2z}$$

$$\xrightarrow{a} \overline{yz} \xrightarrow{b} \overline{y^2z^2} \xrightarrow{a} \overline{fyz^2} \xrightarrow{c} \overline{fy^2z^4} \xrightarrow{a} \overline{yz^4}$$

$$\xrightarrow{b^{-1}} \overline{z^3} \xrightarrow{a} \overline{fz^3} \xrightarrow{b} \overline{fyz^4} \xrightarrow{a} \overline{fyz^4} \xrightarrow{b^{-1}} \overline{yz^3}$$

$$\xrightarrow{a} \overline{fy^2z^3} \xrightarrow{b} \overline{fz^4} \xrightarrow{c^{-1}} \overline{fy^2z^2} \xrightarrow{a} \overline{yz^2} \xrightarrow{c^{-1}} \overline{e}.$$

Calculating modulo the normal subgroup $D_6 = \langle f, y \rangle$, its voltage is

$$\begin{aligned} (ab)^4 (ba)^2 (b^{-1}a) (ba)^2 (c) (ab^{-1}ab)^2 (c^{-1}ac^{-1}) \\ &\equiv (ez)^4 (ze)^2 (z^{-1}e) (ze)^2 (z^2w) (ez^{-1}ez)^2 (w^{-1}z^{-2}ew^{-1}z^{-2}) \\ &= z^7 w^{-1}z^{-2} \\ &= z^2 w^{-1}z^{-2}. \end{aligned}$$

because |z| = r = 5. Since this voltage generates \mathbb{Z}_p , the Factor Group Lemma (2.2) provides a hamiltonian cycle in $\operatorname{Cay}(G; S)$.

If j = 2 (so $c = y^2 z^2 w$), here is a hamiltonian cycle in $\operatorname{Cay}(G/\mathbb{Z}_p; S)$:

$$\overline{e} \quad \stackrel{b^{-1}}{\longrightarrow} \quad \overline{y^2 z^4} \quad \stackrel{a}{\longrightarrow} \quad \overline{fyz^4} \quad \stackrel{b}{\longrightarrow} \quad \overline{fy^2} \quad \stackrel{b}{\longrightarrow} \quad \overline{fz} \quad \stackrel{a}{\longrightarrow} \quad \overline{z} \\ \stackrel{b}{\longrightarrow} \quad \overline{yz^2} \quad \stackrel{a}{\longrightarrow} \quad \overline{fy^2 z^2} \quad \stackrel{b}{\longrightarrow} \quad \overline{fz^3} \quad \stackrel{a}{\longrightarrow} \quad \overline{z^3} \quad \stackrel{c}{\longrightarrow} \quad \overline{y^2} \\ \stackrel{b^{-1}}{\longrightarrow} \quad \overline{yz^4} \quad \stackrel{a}{\longrightarrow} \quad \overline{fy^2 z^4} \quad \stackrel{b}{\longrightarrow} \quad \overline{f} \quad \stackrel{b}{\longrightarrow} \quad \overline{fyz} \quad \stackrel{a}{\longrightarrow} \quad \overline{y^2 z} \\ \stackrel{b}{\longrightarrow} \quad \overline{z^2} \quad \stackrel{a}{\longrightarrow} \quad \overline{fz^2} \quad \stackrel{b}{\longrightarrow} \quad \overline{fyz^3} \quad \stackrel{a}{\longrightarrow} \quad \overline{y^2 z^3} \quad \stackrel{c}{\longrightarrow} \quad \overline{y} \\ \stackrel{b^{-1}}{\longrightarrow} \quad \overline{z^4} \quad \stackrel{a}{\longrightarrow} \quad \overline{fz^4} \quad \stackrel{b}{\longrightarrow} \quad \overline{fy} \quad \stackrel{b}{\longrightarrow} \quad \overline{fy^2 z} \quad \stackrel{a}{\longrightarrow} \quad \overline{yz} \\ \stackrel{b}{\longrightarrow} \quad \overline{y^2 z^2} \quad \stackrel{a}{\longrightarrow} \quad \overline{fyz^2} \quad \stackrel{b}{\longrightarrow} \quad \overline{fy^2 z^3} \quad \stackrel{a}{\longrightarrow} \quad \overline{yz^3} \quad \stackrel{c}{\longleftarrow} \quad \overline{e}.$$

Calculating modulo the normal subgroup $D_6 = \langle f, y \rangle$, its voltage is

$$(b^{-1}ab^2(ab)^2(ac))^3 \equiv (z^{-1}ez^2(ez)^2(ez^2w))^3 = (z^5w)^3 = w^3,$$

because |z| = r = 5. Since this voltage generates \mathbb{Z}_p , the Factor Group Lemma (2.2) provides a hamiltonian cycle in $\operatorname{Cay}(G; S)$.

Subcase 3.2. Assume a = f and b = fyz. Since $\langle b, c \rangle \neq G$, we must have $c \in \langle fy, z \rangle w$, so (note A.38)

$$c = (fy)^i z^k w$$
 with $0 \le i < 2$ and $0 \le k < r$.

Subsubcase 3.2.1. Assume k = 0. Then c = fyw, so we have $c \equiv a \pmod{G'}$. Therefore $(b^{-(r-1)}, a, b^{r-1}, c)$ is a hamiltonian cycle in $\operatorname{Cay}(G/G'; S)$. Since

$$b^{r-1} = (fyz)^{r-1} = (fy)^{r-1}(z^{r-1}) = (e)(z^{-1}) = z^{-1},$$
 (note A.39)

its voltage is

$$b^{-(r-1)}ab^{r-1}c = (b^{-(r-1)}ab^{r-1}a)(ac) = [b^{r-1}, a](ac) = [z^{-1}, f](yw) = yw,$$

which generates $\mathbb{Z}_q \times \mathbb{Z}_p = G'$, so the Factor Group Lemma (2.2) provides a hamiltonian cycle in Cay(G; S).

Subsubcase 3.2.2. Assume i = 0. Then $c = z^k w$, and we know $k \neq 0$, because $S \cap G' = \emptyset$.

If k = 1, then $((a, c)^{r-1}, a, b)$ is a hamiltonian cycle in $\operatorname{Cay}(G/G'; S)$. (note A.40) Letting $\epsilon \in \{\pm 1\}$, such that $w^f = w^{\epsilon}$, its voltage is

$$(ac)^{r-1} a b = (ac)^r (c^{-1} b)$$
 (note A.41)

$$= (fzw)^r ((zw)^{-1}(fyz))$$

$$= (f^r z^r w^{(\epsilon d)^{r-1} + (\epsilon d)^{r-2} + \dots + 1}) (w^{-1} z^{-1} fyz)$$
 (note A.42)

$$= f w^{(\epsilon d)^{r-1} + (\epsilon d)^{r-2} + \dots + \epsilon d} fy$$
 (note A.43)

$$= w^{\epsilon ((\epsilon d)^{r-1} + (\epsilon d)^{r-2} + \dots + \epsilon d)} y$$

$$= w^{d ((\epsilon d)^{r-2} + (\epsilon d)^{r-3} + \dots + 1)} y.$$

Since ϵd is a primitive r^{th} or $(2r)^{\text{th}}$ root of unity in \mathbb{Z}_p , it is clear that the exponent of w is nonzero (mod p). Therefore the voltage generates $\mathbb{Z}_p \times$ (note A.44) $\mathbb{Z}_q = G'$, so the Factor Group Lemma (2.2) provides a hamiltonian cycle in Cay(G; S).

We may now assume $k \ge 2$. However, we may also assume $k \le (r-1)/2$ (by replacing c with its inverse if necessary). So r = 5 and k = 2. In this case, here is a hamiltonian cycle in $\operatorname{Cay}(G/\mathbb{Z}_p; S)$:

$$\overline{e} \quad \xrightarrow{a} \quad \overline{f} \quad \xrightarrow{b} \quad \overline{fyz} \quad \xrightarrow{a} \quad \overline{y^2z} \quad \xrightarrow{b^{-1}} \quad \overline{y} \quad \xrightarrow{a} \quad \overline{fy^2}$$

$$\xrightarrow{b} \quad \overline{fz} \quad \xrightarrow{a} \quad \overline{z} \quad \xrightarrow{b^{-1}} \quad \overline{y^2} \quad \xrightarrow{a} \quad \overline{fy} \quad \xrightarrow{b} \quad \overline{fy^2z}$$

$$\xrightarrow{a} \quad \overline{yz} \quad \xrightarrow{b} \quad \overline{y^2z^2} \quad \xrightarrow{a} \quad \overline{fyz^2} \quad \xrightarrow{b} \quad \overline{fy^2z^3} \quad \xrightarrow{a} \quad \overline{yz^3}$$

$$\xrightarrow{b} \quad \overline{y^2z^4} \quad \xrightarrow{a} \quad \overline{fyz^4} \quad \xrightarrow{b^{-1}} \quad \overline{fz^3} \quad \xrightarrow{a} \quad \overline{z^3} \quad \xrightarrow{b} \quad \overline{yz^4}$$

$$\xrightarrow{c^{-1}} \quad \overline{yz^2} \quad \xrightarrow{a} \quad \overline{fy^2z^2} \quad \xrightarrow{c} \quad \overline{fy^2z^4} \quad \xrightarrow{b^{-1}} \quad \overline{fyz^3} \quad \xrightarrow{a} \quad \overline{y^2z^3}$$

$$\xrightarrow{b} \quad \overline{z^4} \quad \xrightarrow{a} \quad \overline{fz^4} \quad \xrightarrow{c^{-1}} \quad \overline{fz^2} \quad \xrightarrow{a} \quad \overline{z^2} \quad \xrightarrow{c^{-1}} \quad \overline{e}.$$

Its voltage is

$$(abab^{-1})^2(ab)^4(ab^{-1}ab)(c^{-1}ac)(b^{-1}ab)(ac^{-1})^2.$$

Since the voltage is in \mathbb{Z}_p , it is a power of w, and it is clear that the only terms that contribute a power of w to the product are contained in the last

three parenthesized expressions (because c does not appear anywhere else). Choosing $\epsilon \in \{\pm 1\}$, such that $w^f = w^{\epsilon}$, we calculate the product of these three expressions modulo $\langle y \rangle$:

$$(c^{-1}ac)(b^{-1}ab)(ac^{-1})^{2} \equiv ((z^{2}w)^{-1}f(z^{2}w))((fz)^{-1}f(fz))(f(z^{2}w)^{-1})^{2}$$

= $(w^{\epsilon-1}f)(f)(w^{-(\epsilon+d^{2})}z^{-4})$ (note A.45)
= $w^{-(d^{2}+1)}z^{-4}$

Since the power of w is nonzero, the voltage generates \mathbb{Z}_p , so the Factor Group Lemma (2.2) provides a hamiltonian cycle in $\operatorname{Cay}(G; S)$.

Subsubcase 3.2.3. Assume *i* and *k* are both nonzero. Since $\langle a, c \rangle \neq G$, this implies that *f* centralizes *w*. Therefore $G = D_{2q} \times (\mathbb{Z}_r \ltimes \mathbb{Z}_p)$. Also, (note A.46) since $0 \leq i < 2$, we know i = 1, so $c = fyz^kw$. We may assume $k \neq 1$ (for otherwise $b \equiv c \pmod{\mathbb{Z}_p}$, so Corollary 2.3 applies). Since we may also assume that $k \leq (r-1)/2$ (by replacing *c* with its inverse if necessary), then we have r = 5 and k = 2.

Here is a hamiltonian cycle in $\operatorname{Cay}(G/\mathbb{Z}_p; S)$:

$$\overline{e} \quad \stackrel{a}{\longrightarrow} \quad \overline{f} \quad \stackrel{b}{\longrightarrow} \quad \overline{yz} \quad \stackrel{a}{\longrightarrow} \quad \overline{fy^2z} \quad \stackrel{b}{\longrightarrow} \quad \overline{y^2z^2} \quad \stackrel{a}{\longrightarrow} \quad \overline{fyz^2}$$

$$\stackrel{c}{\longrightarrow} \quad \overline{z^4} \quad \stackrel{a}{\longrightarrow} \quad \overline{fz^4} \quad \stackrel{b^{-1}}{\longrightarrow} \quad \overline{yz^3} \quad \stackrel{a}{\longrightarrow} \quad \overline{fy^2z^3} \quad \stackrel{c}{\longrightarrow} \quad \overline{y^2}$$

$$\stackrel{a}{\longrightarrow} \quad \overline{fy} \quad \stackrel{b}{\longrightarrow} \quad \overline{z} \quad \stackrel{a}{\longrightarrow} \quad \overline{fz} \quad \stackrel{b}{\longrightarrow} \quad \overline{yz^2} \quad \stackrel{a}{\longrightarrow} \quad \overline{fy^2z^2}$$

$$\stackrel{c}{\longrightarrow} \quad \overline{y^2z^4} \quad \stackrel{a}{\longrightarrow} \quad \overline{fyz^4} \quad \stackrel{b^{-1}}{\longrightarrow} \quad \overline{z^3} \quad \stackrel{a}{\longrightarrow} \quad \overline{fz^3} \quad \stackrel{c}{\longrightarrow} \quad \overline{y}$$

$$\stackrel{a}{\longrightarrow} \quad \overline{fy^2} \quad \stackrel{b}{\longrightarrow} \quad \overline{y^2z} \quad \stackrel{a}{\longrightarrow} \quad \overline{fyz} \quad \stackrel{b}{\longrightarrow} \quad \overline{z^2} \quad \stackrel{a}{\longrightarrow} \quad \overline{fz^2}$$

$$\stackrel{c}{\longrightarrow} \quad \overline{yz^4} \quad \stackrel{a}{\longrightarrow} \quad \overline{fy^2z^4} \quad \stackrel{b^{-1}}{\longrightarrow} \quad \overline{y^2z^3} \quad \stackrel{a}{\longrightarrow} \quad \overline{fyz^3} \quad \stackrel{c}{\longrightarrow} \quad \overline{e}.$$

Calculating modulo the normal subgroup $D_6 = \langle f, y \rangle$, its voltage is

$$((ab)^2 a c a b^{-1} a c)^3 \equiv ((ez)^2 e(z^2 w) e z^{-1} e(z^2 w)))^3$$

= $(z^4 w z w)^3$
= $w^{3(d+1)}$, (note A.47)

which generates $\langle w \rangle = \mathbb{Z}_p$, so the Factor Group Lemma (2.2) applies. (note A.48)

Subcase 3.3. Assume a = fz and $b = yz^{\ell}$, with $\ell \neq 0$. Since $\langle a, c \rangle \neq G$ and $\langle b, c \rangle \neq G$, we must have $c \in \langle f, z \rangle w$ and $c \in \langle y, z \rangle w$. So $c \in \langle z \rangle w$; write (note A.49) $c = z^k w$ (with $k \neq 0$, because $S \cap G' = \emptyset$).

Subsubcase 3.3.1. Assume $\ell = k$. Then $b \equiv c \equiv z^{\ell} \pmod{G'}$, so

$$(a^{-1}, b^{-(r-1)}, a, b^{r-2}, c)$$

is a hamiltonian cycle in $\operatorname{Cay}(G/G'; S)$. Its voltage is

$$\begin{aligned} a^{-1}b^{-(r-1)}ab^{r-2}c &= (fz)^{-1}(yz^{\ell})^{-(r-1)}(fz)(yz^{\ell})^{r-2}(z^{\ell}w) \\ &= (f^{-1}y^{-(r-1)}f)y^{r-2}w \qquad \qquad \left(\begin{array}{c} z \text{ commutes} \\ \text{with } f \text{ and } y \end{array}\right) \\ &= (y^{r-1})y^{r-2}w \qquad \qquad (f \text{ inverts } y) \\ &= y^{2r-3}w. \end{aligned}$$

Since $2(3) - 3 \not\equiv 0 \pmod{5}$ and $2(5) - 3 \not\equiv 0 \pmod{3}$, we have $2r - 3 \not\equiv 0 \pmod{q}$, so y^{2r-3} is nontrivial, and hence generates \mathbb{Z}_q . Therefore, this voltage generates $\mathbb{Z}_q \times \mathbb{Z}_p = G'$. So the Factor Group Lemma (2.2) provides a hamiltonian cycle in $\operatorname{Cay}(G; S)$.

Subsubcase 3.3.2. Assume $\ell \neq k$. We may assume $\ell, k \leq (r-1)/2$ (perhaps after replacing *b* and/or *c* by their inverses). Then we must have r = 5 and $\{\ell, k\} = \{1, 2\}$.

(note A.50)

For $(\ell, k) = (1, 2)$, here is a hamiltonian cycle in $\operatorname{Cay}(G/\mathbb{Z}_p; S)$:

$$\overline{e} \xrightarrow{a} \overline{fz} \xrightarrow{b} \overline{fyz^2} \xrightarrow{a^{-1}} \overline{y^2z} \xrightarrow{a^{-1}} \overline{fy} \xrightarrow{b^{-1}} \overline{fz^4}$$

$$\xrightarrow{a^{-1}} \overline{z^3} \xrightarrow{a^{-1}} \overline{fz^2} \xrightarrow{a^{-1}} \overline{z} \xrightarrow{a^{-1}} \overline{f} \xrightarrow{b^{-1}} \overline{fy^2z^4}$$

$$\xrightarrow{a} \overline{y} \xrightarrow{a} \overline{fy^2z} \xrightarrow{a} \overline{yz^2} \xrightarrow{a} \overline{fy^2z^3} \xrightarrow{a} \overline{yz^4}$$

$$\xrightarrow{a} \overline{fy^2} \xrightarrow{a} \overline{yz} \xrightarrow{a} \overline{fy^2z^2} \xrightarrow{a} \overline{yz^3} \xrightarrow{b} \overline{y^2z^4}$$

$$\xrightarrow{a^{-1}} \overline{fyz^3} \xrightarrow{a^{-1}} \overline{y^2z^2} \xrightarrow{a^{-1}} \overline{fyz} \xrightarrow{a^{-1}} \overline{yz} \xrightarrow{a^{-1}} \overline{y^2} \xrightarrow{a^{-1}} \overline{fyz^4}$$

$$\xrightarrow{a^{-1}} \overline{y^2z^3} \xrightarrow{b} \overline{z^4} \xrightarrow{z^4} \xrightarrow{a^{-1}} \overline{fz^3} \xrightarrow{a^{-1}} \overline{z^2} \xrightarrow{c^{-1}} \overline{e}.$$

Its voltage is

$$aba^{-2}b^{-1}a^{-4}b^{-1}a^{9}ba^{-6}ba^{-2}c^{-1}$$

Since there is precisely one occurrence of c in this product, and therefore only one occurrence of w, it is impossible for this appearance of w to cancel. So the voltage is nontrivial, and therefore generates \mathbb{Z}_p , so the Factor Group Lemma (2.2) provides a hamiltonian cycle in $\operatorname{Cay}(G; S)$. For $(\ell, k) = (2, 1)$, here is a hamiltonian cycle in Cay $(G/\mathbb{Z}_p; S)$:

$$\overline{e} \quad \stackrel{a^{-1}}{\longrightarrow} \quad \overline{fz^4} \quad \stackrel{a^{-1}}{\longrightarrow} \quad \overline{z^3} \quad \stackrel{a^{-1}}{\longrightarrow} \quad \overline{fz^2} \quad \stackrel{a^{-1}}{\longrightarrow} \quad \overline{z} \quad \stackrel{a^{-1}}{\longrightarrow} \quad \overline{f} \\ \xrightarrow{a^{-1}}{\xrightarrow{a^{-1}}} \quad \overline{z^4} \quad \stackrel{b}{\longrightarrow} \quad \overline{yz} \quad \stackrel{a^{-1}}{\longrightarrow} \quad \overline{fy^2} \quad \stackrel{a^{-1}}{\longrightarrow} \quad \overline{yz^4} \quad \stackrel{c}{\longrightarrow} \quad \overline{y} \\ \xrightarrow{a^{-1}}{\xrightarrow{f}} \quad \overline{fy^2z^4} \quad \stackrel{a^{-1}}{\longrightarrow} \quad \overline{yz^3} \quad \stackrel{a^{-1}}{\longrightarrow} \quad \overline{fy^2z^2} \quad \stackrel{c}{\longrightarrow} \quad \overline{fy^2z^3} \quad \stackrel{a^{-1}}{\longrightarrow} \quad \overline{yz^2} \\ \xrightarrow{a^{-1}}{\xrightarrow{a^{-1}}} \quad \overline{fy^2z} \quad \stackrel{b}{\longrightarrow} \quad \overline{fz^3} \quad \stackrel{a^{-1}}{\longrightarrow} \quad \overline{z^2} \quad \stackrel{a^{-1}}{\longrightarrow} \quad \overline{fz} \quad \stackrel{b}{\longrightarrow} \quad \overline{fyz^3} \\ \xrightarrow{a^{-1}}{\xrightarrow{a^{-1}}} \quad \overline{y^2z^2} \quad \stackrel{a^{-1}}{\longrightarrow} \quad \overline{fyz} \quad \stackrel{c}{\longrightarrow} \quad \overline{fyz^2} \quad \stackrel{a^{-1}}{\longrightarrow} \quad \overline{y^2z} \quad \stackrel{a^{-1}}{\longrightarrow} \quad \overline{fy} \\ \xrightarrow{a^{-1}}{\xrightarrow{a^{-1}}} \quad \overline{y^2z^4} \quad \stackrel{c}{\longrightarrow} \quad \overline{y^2} \quad \stackrel{a^{-1}}{\longrightarrow} \quad \overline{fyz^4} \quad \stackrel{a^{-1}}{\longrightarrow} \quad \overline{y^2z^3} \quad \stackrel{b}{\longrightarrow} \quad \overline{e}. \\ \end{array}$$

Choosing $\epsilon \in \{\pm 1\}$, such that $w^f = w^{\epsilon}$, we calculate the voltage, modulo $\langle y \rangle$:

$$\begin{aligned} a^{-4} \Big(\left(a^{-2}ba^{-2}\right)ca^{-3}c\left(a^{-2}b\right) \Big)^2 \\ &\equiv (fz)^{-4} \Big(\left((fz)^{-2}z^2(fz)^{-2}\right)(zw)(fz)^{-3}(zw)\left((fz)^{-2}z^2\right) \Big)^2 \\ &= z^{-4} \big((z^{-2})(zw)(fz^{-3})(zw)(e) \big)^2 \qquad (\text{note A.51}) \\ &= z^{-4} \big(z^{-1}wfz^{-2}w \big)^2 \\ &= z^{-4} (w^{d^6 + \epsilon d^4 + \epsilon d^3 + d}z^{-6}) \qquad (\text{note A.52}) \\ &= z^{-4} (w^{d(\epsilon d^3 + \epsilon d^2 + 2)}z^4). \qquad (\text{note A.53}) \end{aligned}$$

Since d is a primitive r^{th} root of unity in \mathbb{Z}_p , and r = 5, we know $d^4 + d^3 + d^2 + d + 1 \equiv 0 \pmod{5}$. Combining this with the fact that

$$-(d^3 + d^2 - 1)(d^3 + d^2 + 2) + (d^2 + d - 1)(d^4 + d^3 + d^2 + d + 1) = 1$$

and

$$(d^3 + d^2 + 3)(-d^3 + -d^2 + 2) + (d^2 + d - 1)(d^4 + d^3 + d^2 + d + 1) = 5 \not\equiv 0 \pmod{p},$$

we see that $\epsilon d^3 + \epsilon d^2 + 2$ is nonzero in \mathbb{Z}_p . Therefore the voltage is nontrivial, so it generates \mathbb{Z}_p . Hence, the Factor Group Lemma (2.2) provides a hamiltonian cycle in Cay(G; S).

Subcase 3.4. Assume a = fz and $b = fyz^{\ell}$, with $\ell \neq 0$. Since $\langle a, c \rangle \neq G$ and $\langle b, c \rangle \neq G$, we must have $c \in \langle f, z \rangle w$ and $c \in \langle fy, z \rangle w$. So $c \in \langle z \rangle w$; (note A.54) write $c = z^k w$ (with $k \neq 0$ because $S \cap G' = \emptyset$). We may assume $k, \ell \leq (r-1)/2$, by replacing either or both of b and c with their inverses if necessary. We may also assume $\ell \neq 1$, for otherwise $a \equiv b \pmod{\langle y \rangle}$, so Corollary 2.3 applies. Therefore, we must have $r = 5 \pmod{\langle x, b \rangle}$ and $\ell = 2$. We also have $k \in \{1, 2\}$.

For k = 1, here is a hamiltonian cycle in $\operatorname{Cay}(G/\mathbb{Z}_p; S)$:

$$\overline{e} \quad \xrightarrow{a} \quad \overline{fz} \quad \xrightarrow{b^{-1}} \quad \overline{yz^4} \quad \xrightarrow{a^{-1}} \quad \overline{fy^2z^3} \quad \xrightarrow{a^{-1}} \quad \overline{yz^2} \quad \xrightarrow{b} \quad \overline{fz^4}$$

$$\xrightarrow{a^{-1}} \quad \overline{z^3} \quad \xrightarrow{a^{-1}} \quad \overline{fz^2} \quad \xrightarrow{a^{-1}} \quad \overline{z} \quad \xrightarrow{a^{-1}} \quad \overline{f} \quad \xrightarrow{b^{-1}} \quad \overline{yz^3}$$

$$\xrightarrow{a} \quad \overline{fy^2z^4} \quad \xrightarrow{a} \quad \overline{y} \quad \xrightarrow{a} \quad \overline{fy^2z} \quad \xrightarrow{c^{-1}} \quad \overline{fy^2} \quad \xrightarrow{a} \quad \overline{yz}$$

$$\xrightarrow{a} \quad \overline{fy^2z^2} \quad \xrightarrow{b} \quad \overline{y^2z^4} \quad \xrightarrow{a^{-1}} \quad \overline{fyz^3} \quad \xrightarrow{a^{-1}} \quad \overline{y^2z^2} \quad \xrightarrow{a^{-1}} \quad \overline{fyz}$$

$$\xrightarrow{a^{-1}} \quad \overline{y^2} \quad \xrightarrow{a^{-1}} \quad \overline{fyz^4} \quad \xrightarrow{a^{-1}} \quad \overline{y^2z^3} \quad \xrightarrow{a^{-1}} \quad \overline{fyz^2} \quad \xrightarrow{a^{-1}} \quad \overline{fyz}$$

$$\xrightarrow{a^{-1}} \quad \overline{fy} \quad \xrightarrow{b} \quad \overline{z^2} \quad \xrightarrow{a} \quad \overline{fz^3} \quad \xrightarrow{a} \quad \overline{z^4} \quad \xrightarrow{c} \quad \overline{e}.$$

Its voltage is

$$ab^{-1}a^{-2}ba^{-4}b^{-1}a^{3}c^{-1}a^{2}ba^{-9}ba^{2}c$$

Calculating modulo y, the product between the occurrence of c^{-1} and the occurrence of c is

$$a^{2}ba^{-9}ba^{2} \equiv (fz)^{2}(fz^{2})(fz)^{-9}(fz^{2})(fz)^{2} = z^{-1},$$
 (note A.51)

which does not centralize w. So the occurrence of w^{-1} in c^{-1} does not cancel the occurrence of w in c. Therefore the voltage is nontrivial, so it generates \mathbb{Z}_p , so the Factor Group Lemma (2.2) applies.

For k = 2, here is a hamiltonian cycle in $\operatorname{Cay}(G/\mathbb{Z}_p; S)$:

$$\overline{e} \xrightarrow{a} \overline{fz} \xrightarrow{b} \overline{yz^3} \xrightarrow{b} \overline{f} \xrightarrow{a} \overline{z} \xrightarrow{a} \overline{fz^2}$$

$$\xrightarrow{a} \overline{z^3} \xrightarrow{a} \overline{fz^4} \xrightarrow{b^{-1}} \overline{yz^2} \xrightarrow{a} \overline{fy^2z^3} \xrightarrow{a} \overline{yz^4}$$

$$\xrightarrow{a} \overline{fy^2} \xrightarrow{a} \overline{yz} \xrightarrow{a} \overline{fy^2z^2} \xrightarrow{c} \overline{fy^2z^4} \xrightarrow{a} \overline{y}$$

$$\xrightarrow{a} \overline{fy^2z} \xrightarrow{b} \overline{y^2z^3} \xrightarrow{a} \overline{fyz^4} \xrightarrow{a} \overline{y^2} \xrightarrow{a} \overline{fyz}$$

$$\xrightarrow{a} \overline{y^2z^2} \xrightarrow{a} \overline{fyz^3} \xrightarrow{a} \overline{y^2z^4} \xrightarrow{a} \overline{fyz}$$

$$\xrightarrow{a} \overline{fyz^2} \xrightarrow{b} \overline{z^4} \xrightarrow{a^{-1}} \overline{fz^3} \xrightarrow{a^{-1}} \overline{z^2} \xrightarrow{c^{-1}} \overline{e}.$$

Its voltage is

$$ab^{2}a^{4}b^{-1}a^{5}ca^{2}ba^{9}ba^{-2}c^{-1}$$

Calculating modulo y, the product between the occurrence of c and the occurrence of c^{-1} is

$$a^{2}ba^{9}ba^{-2} \equiv (fz)^{2}(fz^{2})(fz)^{9}(fz^{2})(fz)^{-2} = fz^{13} = fz^{3},$$
 (note A.56)

(note A.58)

which does not centralize w. So the occurrence of w^{-1} in c^{-1} does not (note A.57) cancel the occurrence of w in c. Therefore the voltage is nontrivial, so it generates \mathbb{Z}_p , so the Factor Group Lemma (2.2) applies.

Case 4. Assume $\#S \ge 4$. Write $S = \{s_1, s_2, \ldots, s_\ell\}$, and let $G_i = \langle s_1, \ldots, s_i \rangle$ for $i = 1, 2, \ldots, \ell$. Since S is minimal, we know

$$\{e\} \subsetneq G_1 \subsetneq G_2 \subsetneq \cdots \subsetneq G_\ell \subseteq G.$$

Therefore, the number of prime factors of $|G_i|$ is at least *i*. Since |G| = 30p is the product of only 4 primes, and $\ell = \#S \ge 4$, we conclude that $|G_i|$ has exactly *i* prime factors, for all *i*. (In particular, we must have #S = 4.) By permuting the elements of $\{s_1, s_2, \ldots, s_\ell\}$, this implies that if S_0 is any subset of *S*, then $|\langle S_0 \rangle|$ is the product of exactly $\#S_0$ primes. In particular, by letting $\#S_0 = 1$, we see that every element of *S* must have prime order.

Now, choose $\{a, b\} \subset S$ to be a 2-element generating set of $G/G' \cong \mathbb{Z}_2 \times \mathbb{Z}_r$. From the preceding paragraph, we see that we may assume |a| = 2 and |b| = r (by interchanging a and b if necessary). Since $|\langle a, b \rangle|$ is the product of only two primes, we must have $|\langle a, b \rangle| = 2r$, so $\langle a, b \rangle \cong G/G'$. Therefore

$$G = (\langle a \rangle \times \langle b \rangle) \ltimes G'.$$

Since $\langle S \rangle = G$, we may choose $s_1 \in S$, such that $s_1 \notin \langle a, b \rangle \mathbb{Z}_p$. Then $\langle a, b, s_1 \rangle = \langle a, b \rangle \mathbb{Z}_q$. Since a centralizes both a and b, but does not centralize \mathbb{Z}_q , which is contained in $\langle a, b, s_1 \rangle$, we know that $[a, s_1]$ is nontrivial. Therefore $\langle a, s_1 \rangle$ contains $\langle a, b, s_1 \rangle' = \mathbb{Z}_q$. Then, since $|\langle a, s_1 \rangle|$ is only divisible by two primes, we must have $|\langle a, s_1 \rangle| = 2q$. Also, since $S \cap G' = \emptyset$, we must have $|s_1| \neq q$; therefore $|s_1| = 2$. Hence $2r \mid |\langle b, s_1 \rangle|$, so we must have $|\langle b, s_1 \rangle| = 2r$. Therefore

$$[b, s_1] \in \langle b, s_1 \rangle \cap \langle a, b, s_1 \rangle' = \langle b, s_1 \rangle \cap \mathbb{Z}_q = \{e\},\$$

so b centralizes s_1 . It also centralizes a, so b centralizes $\langle a, s_1 \rangle = \mathbb{Z}_2 \ltimes \mathbb{Z}_q$.

Similarly, if we choose $s_2 \in S$ with $s_2 \notin \langle a, b \rangle \mathbb{Z}_q$, then *a* centralizes $\langle b, s_2 \rangle = \mathbb{Z}_r \ltimes \mathbb{Z}_p$.

Therefore $G = \langle a, s_1 \rangle \times \langle b, s_2 \rangle$, so

$$\operatorname{Cay}(G; S) \cong \operatorname{Cay}(\langle a, s_1 \rangle; \{a, s_1\}) \times \operatorname{Cay}(\langle b, s_2 \rangle; \{b, s_2\}).$$

This is a Cartesian product of hamiltonian graphs and therefore is hamiltonian. $\hfill \Box$

References

- B. Alspach: Lifting Hamilton cycles of quotient graphs, *Discrete Math.* 78 (1989), 25–36.
- [2] C. C. Chen and N. Quimpo: On strongly hamiltonian abelian group graphs, in K. L. McAvaney, ed.: *Combinatorial Mathematics VIII* (*Proceedings, Geelong, Australia 1980*), Springer-Verlag, Berlin, 1981, pp. 23–24.
- [3] S. J. Curran and J. A. Gallian: Hamiltonian cycles and paths in Cayley graphs and digraphs—a survey, *Discrete Math.* 156 (1996) 1–18.
- [4] S. J. Curran, D. W. Morris, and J. Morris: Cayley graphs of order 16p are hamiltonian, Ars Math. Contemp. (to appear). http://amc.imfm.si/index.php/amc/article/view/207
- [5] E. Ghaderpour and D. W. Morris: Cayley graphs of order 27p are hamiltonian, *Internat. J. Comb.* 2011, Article ID 206930, 16 pages. http://www.hindawi.com/journals/ijct/2011/206930/
- [6] E. Ghaderpour and D. W. Morris: Cayley graphs of order 150 are hamiltonian (unpublished). http://arxiv.org/src/1102.5156/anc/150.pdf
- [7] M. Hall: The Theory of Groups, Macmillan, New York, 1959.
- [8] D. Jungreis and E. Friedman: Cayley graphs on groups of low order are hamiltonian (unpublished).
- [9] K. Keating and D. Witte: On Hamilton cycles in Cayley graphs with cyclic commutator subgroup, Ann. Discrete Math. 27 (1985) 89–102.

- [10] K. Kutnar, D. Marušič, J. Morris, D. W. Morris, and P. Šparl: Hamiltonian cycles in Cayley graphs whose order has few prime factors, Ars Math. Contemp. 5 (2012), no. 1, 27–71.
 http://amc.imfm.si/index.php/amc/article/view/177
- [11] D. Marušič: Hamiltonian circuits in Cayley graphs, *Discrete Math.* 46 (1983), no. 1, 49–54.
- [12] I. Pak and R. Radoičić: Hamiltonian paths in Cayley graphs, Discrete Math. 309 (2009) 5501–5508.
- [13] D. Witte: On hamiltonian circuits in Cayley diagrams, *Discrete Math.* 38 (1982) 99–108.
- [14] D. Witte and J. A. Gallian: A survey: Hamiltonian cycles in Cayley graphs, *Discrete Math.* 51 (1984) 293–304.

Appendix A. Notes to aid the referee

A.1. By assumption, there is a hamiltonian cycle $C = (s_i)_{i=1}^n$ in Cay(G/N; S), such that $s_i = s$, for some *i*. Replacing s_i with *t* does not change the hamiltonian cycle in Cay(G/N; S), because $t \equiv s = s_i \pmod{N}$, but the voltage of the new cycle is

$$s_1 s_2 \cdots s_{i-1} t s_{i+1} s_{i+2} \cdots s_n.$$

Since $t \neq s_i$, this is not equal to the voltage of the original cycle. So at least one of the two cycles has a voltage that is $\neq e$. Since |N| is prime, it is generated by any of its nontrivial elements, so the Factor Group Lemma (2.2) applies.

A.2. The walk traverses all of the vertices in $\langle S_0 \rangle$, then the vertices in the coset $a\langle S_0 \rangle$, then the vertices in $a^2\langle S_0 \rangle$, etc., so it visits all of the vertices in G. Also, note that, for any $h \in H$, we have

$$\left(\prod_{x\in\langle a\rangle}h^x\right)^a = \prod_{x\in\langle a\rangle}h^{xa} = \prod_{x\in\langle a\rangle}h^x,$$

so $\prod_{x \in \langle a \rangle} h^x \in C_H(a)$. Therefore, letting $h = s_1 s_2 \cdots s_m \in H$, we have

$$(ha)^{|a|} = a^{|a|}(a^{-|a|}ha^{|a|})\cdots(a^{-3}ha^{3})(a^{-2}ha^{2})(a^{-1}ha)$$

$$= \prod_{x \in \langle a \rangle} h^{x} \qquad (\text{because } a^{|a|} = e)$$

$$\in C_{H}(a)$$

$$= H \cap Z(G) \qquad \left(\begin{array}{c} H \subset \langle S_{0} \rangle \text{ and } \langle S_{0} \rangle \text{ abelian } \Rightarrow \\ C_{H}(a) \subset C_{H}(\langle S_{0}, a \rangle) = C_{H}(G) \end{array} \right)$$

$$= \{e\},$$

so the walk is closed. Since the length of the walk is |G|, these facts imply that it is a hamiltonian cycle in Cay(G; S).

A.3. Suppose S_0 is a minimal generating set of D_{2pq} , and S_0 contains 3 reflections a, at^i , and at^j , where t is a rotation that generates T. Since $|D_{2pq}|$ is the product of 3 primes, and the minimality of S_0 implies

$$\langle a \rangle \subsetneq \langle a, at^i \rangle \subsetneq \langle a, at^i, at^j \rangle,$$

we must have $\langle a, at^i, at^j \rangle = D_{2pq}$. From the minimality of S_0 , we know $\langle at^i, at^j \rangle$ is a proper subgroup D_{2pq} , so we may assume $q \mid (i - j)$ (after interchanging p and q if necessary). Since $\langle a, at^i \rangle$ and $\langle a, at^j \rangle$ must also be proper subgroups (and are not equal to each other), we may assume $p \mid i$ and $q \mid j$ (after interchanging i and j if necessary). Then

$$q \mid (i-j) + j = i.$$

So $pq \mid i$, which means $at^i = a$. This contradicts the fact that a and at^i are two different reflections.

A.4. If $\langle \varphi(c) \rangle = T$, then $\langle c \rangle = T \times \mathbb{Z}_r$ has index 2 in G. So $\langle a, c \rangle = G$, which contradicts the fact that S is a minimal generating set.

A.7. From the cited theorem of [7] (but replacing the symbol r with τ), we know that G is "metacyclic", and there exist $a, b \in G$, such that

- $G = \langle b \rangle \ltimes \langle a \rangle$, and
- $gcd((\tau 1)|b|, |a|) = 1$, where $\tau \in \mathbb{Z}$ is chosen so that $a^b = a^{\tau}$.

(1) Since G is metacyclic, we know G' is cyclic. In fact, the proof points out that $G' = \langle a \rangle$. (This follows easily from the fact that $gcd(\tau - 1, |a|) = 1$.)

(2) Suppose $a^k \in Z(G)$. This means

$$e = [a^k, b] = a^{-k} (a^k)^b = a^{-k} a^{k\tau} = a^{(\tau-1)k},$$

so $|a| | (\tau - 1)k$. Since $gcd(\tau - 1, |a|) = 1$, this implies |a| | k, so $a^k = e$.

(3) Let $\mathbb{Z}_n = \langle b \rangle$. Then $G = \langle b \rangle \ltimes \langle a \rangle = \mathbb{Z}_n \ltimes G'$.

(4) This is one of the conclusions of the cited theorem of [7] (except that we have replaced r with τ).

A.8. From Lemma 2.11, we may write $G = \langle b \rangle \ltimes \langle a \rangle$ with |b| = 2 and $\langle a \rangle = G' \cong \mathbb{Z}_{15p}$. Choose $\tau \in \mathbb{Z}$, such that $a^b = a^{\tau}$. Since |b| = 2, we must have $\tau^2 \equiv 1 \pmod{15p}$, so $\tau \equiv \pm 1 \pmod{25p}$ and $\tau^2 \equiv 1 \pmod{15p}$, so $\tau \equiv \pm 1 \pmod{25p}$. Also, we know

$$gcd(\tau - 1, 15p) = gcd(\tau - 1, |a|) = 1,$$

which means $\tau \not\equiv 1$ modulo any prime divisor of 15*p*. We conclude that $\tau \equiv -1 \pmod{15p}$, so $G \cong D_{30p}$.

A.9. From Lemma 2.11, we may write $G = \langle b \rangle \ltimes \langle a \rangle$ with $\langle b \rangle \cong \mathbb{Z}_{2p} \cong \mathbb{Z}_2 \times \mathbb{Z}_p$ and $\langle a \rangle = G' \cong \mathbb{Z}_{15}$. Since

$$\gcd(|\mathbb{Z}_p|, |\operatorname{Aut}(\mathbb{Z}_{15})|) = \gcd(p, \phi(15)) = \gcd(p, 8) = 1,$$

we know that \mathbb{Z}_p centralizes \mathbb{Z}_{15} . So $G = (\mathbb{Z}_2 \ltimes \mathbb{Z}_{15}) \times \mathbb{Z}_p$. Since $G' = \mathbb{Z}_{15}$, the argument of A.8 implies that $\mathbb{Z}_2 \ltimes \mathbb{Z}_{15} \cong D_{30}$.

A.10. From Lemma 2.11, we may write $G = \langle b \rangle \ltimes \langle a \rangle$, with $G' = \langle a \rangle$. Choose $\tau \in \mathbb{Z}$, such that $a^b = a^{\tau}$.

We claim |a| is odd. Suppose not. From Lemma 2.11(4), we know that $gcd(\tau - 1, |a|) = 1$, so τ is even. But this contradicts the fact that τ must be relatively prime to |a|.

So |G'| is an odd divisor of 30*p*. In other words, |G'| is a divisor of 15*p*. However, we are assuming that |G'| is not prime, and that it is not 15. Therefore, |G'| is either 3*p* or 5*p*.

A.11. From Lemma 2.11, we know $G' \cap Z(G) = \{e\}$, so some element of \mathbb{Z}_{2r} must act nontrivially on \mathbb{Z}_q .

A.12. We already know that \mathbb{Z}_r centralizes \mathbb{Z}_q . Obviously, it also centralizes \mathbb{Z}_{2r} . If it also centralizes \mathbb{Z}_p , then it centralizes all of G, so it is in Z(G). This implies that $G = (\mathbb{Z}_2 \ltimes \mathbb{Z}_{pq}) \times \mathbb{Z}_r$. Since $G' = \mathbb{Z}_{pq}$, the argument of A.8 implies that $\mathbb{Z}_2 \ltimes \mathbb{Z}_{pq} \cong D_{2pq}$.

A.13. Since $r \in \{3, 5\}$, we have $r - 1 \in \{2, 4\}$. Since 15*p* is odd, this implies gcd(r - 1, 15p) = 1.

A.14. If $q \mid |a|$, then $\langle a \rangle$ contains a subgroup of order q, which is obviously centralized by a. However, \mathbb{Z}_q is the unique subgroup of order q in G (since a normal Sylow qsubgroup is unique). So a centralizes \mathbb{Z}_q . Since the image of a in G/G' has order 2, this implies that \mathbb{Z}_2 centralizes \mathbb{Z}_q .

A.15. Since *b* has even order, there is some $k \in \mathbb{Z}$, such that $|b^k| = 2$. Then $\langle a \rangle$ and $\langle b^k \rangle$ are Sylow 2-subgroups of *G*, so they must be conjugate. Since *b* generates G/G' and centralizes b^k , this implies there is some $x \in G'$, such that $a^x = b^k$. Writing $G' = C_{G'}(a) \times H$, for some subgroup *H*, we may write x = ch with $c \in C_{G'}(a)$ and $h \in H$. Then

$$a^h = a^{ch} = a^x = b^k \in \langle b \rangle,$$

so $a \in \langle b, h \rangle = \langle b \rangle \ltimes H$. Since $\langle a, b \rangle = G$, we conclude that $\langle b \rangle \ltimes H = G$, so H = G'. Therefore $C_{G'}(a)$ is trivial.

A.16. We have either r = 3 or r = 5. We now show that, for a given choice of r, we need only consider the single situation described in the text.

Since all elements of order 2 are conjugate, we may assume a is the unique element of order 2 in \mathbb{Z}_{2r} ; in other words, $a = x^r$. Since b generates G/G', there is no harm in assuming that the projection of b to \mathbb{Z}_{2r} is the generator x, so b = xg' for some $g' \in G'$. Since $\langle a, b \rangle = G$, we must have $\langle g' \rangle = G'$, so there is no harm in assuming that g' = yw.

We said earlier that $y^x = y^{-1}$.

Choose $d \in \mathbb{Z}$, such that $w^x = w^d$. Since *a* does not centralize \mathbb{Z}_p , we know that x^r does not centralize \mathbb{Z}_p , so $d^r \not\equiv 1 \pmod{p}$. Also, we said earlier that \mathbb{Z}_r does not centralize \mathbb{Z}_p , so x^2 does not centralize \mathbb{Z}_p , so $d^2 \not\equiv 1 \pmod{p}$. On the other hand, $x^{2r} = e$ does centralize \mathbb{Z}_p , so $d^{2r} \equiv 1 \pmod{p}$. Therefore *d* is a primitive $(2r)^{\text{th}}$ root of 1 in \mathbb{Z}_p . This implies that $d^r \equiv -1 \pmod{p}$. Since $d \not\equiv -1 \pmod{p}$, we may divide by d + 1, so, since *r* is odd, we have

$$\sum_{i=0}^{r-1} (-1)^i d^i = \frac{d^r+1}{d+1} \equiv \frac{0}{d+1} \equiv 0 \pmod{p}.$$

A.17. We have $a^{2r} \in G'$ (since |G/G'| = 2r), and *a* obviously centralizes a^{2r} . Since $\langle a \rangle$ has trivial centralizer in G', this implies $a^{2r} = e$, so |a| = 2r. Similarly, |b| = 2r.

A.19. Since |b| = 2r, we know $d^{2r} \equiv 1 \pmod{p}$. Also, since $\langle b^2 \rangle = \mathbb{Z}_r$ does not centralize y, we have $d^2 \not\equiv 1 \pmod{p}$. Therefore d is either a primitive r^{th} or $(2r)^{\text{th}}$ root of unity modulo p.

A.20. To calculate the exponents of b and y, we can work modulo the normal subgroup $\langle w \rangle$. Since gcd(i, 2r) = 1, we know 1 - i is odd, so b^{1-i} inverts y (but b inverts y). Therefore

Now, to calculate the exponent of y, we can work modulo the normal subgroup $\langle y \rangle$. Since $w^b = w^d$, we have

$$(b^{i}w)b(w^{-1}b^{-i})b = b^{i+1}w^{d-1}b^{1-i} = b^{2}w^{(d-1)d^{1-i}}.$$

A.21. To calculate the exponents of b and y, we work modulo $\langle w \rangle$. Since b inverts y, we know b^2 centralizes y, so

$$(b^2y^{-2})^{(i-1)/2} = (b^2)^{(i-1)/2}(y^{-2})^{(i-1)/2} = b^{i-1}y^{-(i-1)}.$$

Now, to calculate the exponent of w, we can work modulo the normal subgroup $\langle y \rangle$. For convenience, let $\underline{b} = b^2$, $\underline{w} = w^{(d-1)d^{1-i}}$, and i' = (i-1)/2. Then

$$(b^2 w^{(d-1)d^{1-i}})^{(i-1)/2} = (\underline{b}\underline{w})^{i'} = \underline{b}^{i'} (\underline{b}^{-(i'-1)} \underline{w} \underline{b}^{i'-1}) (\underline{b}^{-(i'-2)} \underline{w} \underline{b}^{i'-2}) \cdots (\underline{b}^{-1} \underline{w} \underline{b}^1) (\underline{b}^{-0} \underline{w} \underline{b}^0) = b^{i-1} (b^{-(i-3)} \underline{w} \underline{b}^{i-3}) (b^{-(i-5)} \underline{w} \underline{b}^{i-5}) \cdots (b^{-2} \underline{w} \underline{b}^2) (b^{-0} \underline{w} \underline{b}^0) = b^{i-1} (\underline{w}^{d^{i-3}}) (\underline{w}^{d^{i-5}}) \cdots (\underline{w}^{d^2}) (\underline{w}^{d^0}) = b^{i-1} \underline{w}^{d^{i-3} + d^{i-5} + \dots + d^2 + 1} = b^{i-1} w^{(d-1)d^{1-i} (d^{i-3} + d^{i-5} + \dots + d^2 + 1)}.$$

A.22. For convenience, let
$$\underline{w} = w^{(d-1)(d^{i-3}+d^{i-5}+\dots+d^2+1)}$$
. Then
 $(b^{i-1}y^{-(i-1)}w^{(d-1)d^{1-i}(d^{i-3}+d^{i-5}+\dots+d^2+1)})(b^iyw)$
 $= (b^{i-1}y^{-(i-1)}\underline{w}^{d^{1-i}})(b^iyw)$
 $= (b^{2i-1}y^{i-1}(\underline{w}^{d^{1-i}})^{d^i})(yw)$ (b^i inverts y , since i is odd)
 $= b^{2i-1}y^{(i-1)+1}\underline{w}^d(w)$ (y commutes with w ,
since both are in \mathbb{Z}_{pq}).

Also, we have

$$\underline{w}^{d}(w) = (w^{(d-1)(d^{i-3}+d^{i-5}+\dots+d^{2}+1)})^{d}(w) = w^{(d-1)d(d^{i-3}+d^{i-5}+\dots+d^{2}+1)+1}.$$

A.23. Recall that $\{q, r\} = \{3, 5\}$. Since $q \mid i$ and i < r, we must have q < r, so q = 3 and r = 5. Then, since $q \mid i$ and i < r, we have $3 \mid i$ and i < 5, so it is obvious that i = 3.

A.24. Let c be an element of S with nontrivial projection to \mathbb{Z}_r , so $\mathbb{Z}_r \subset \langle c \rangle$. Since S is minimal and $\#(S \setminus \{c\}) > 1$, we know that $|\overline{G}/\langle \overline{c} \rangle|$ cannot be prime. Therefore $\langle \overline{c} \rangle = \mathbb{Z}_r$.

The other elements of S must have trivial projection to \mathbb{Z}_r . (Otherwise, the previous paragraph implies they belong to $\mathbb{Z}_r = \langle \overline{c} \rangle$, contradicting the minimality of \overline{S} . So $\overline{a}, \overline{b} \in D_{2q}$.

A.25. We have $c^r \in \mathbb{Z}_p$ (since $\overline{c}^r = \overline{e}$), and c obviously centralizes c^r . Since $\langle \overline{c} \rangle = \mathbb{Z}_r$ acts nontrivially on \mathbb{Z}_p , and hence has trivial centralizer in \mathbb{Z}_p , this implies $c^r = e$, so |c| = r.

This implies that $\langle c \rangle$ is a Sylow *r*-subgroup of *G*, so it is conjugate to any other Sylow *r*-subgroup, including \mathbb{Z}_r .

A.26. If $\mathbb{Z}_r \subset Z(G)$, then $G = \langle a, b \rangle \times \mathbb{Z}_r$. Also, since |a| = |b| = 2, we know that $\langle a, b \rangle$ is a dihedral group. Therefore Lemma 2.9 applies.

A.28. Let $H = \langle a, b \rangle$. Since $\langle \overline{a}, \overline{b} \rangle = \overline{G}$, we know $2qr \mid |H|$. On the other hand, the minimality of S implies $H \neq G$, so H is a proper divisor of |G| = 2pqr. Therefore |H| = 2qr. Since G is solvable, any two Hall subgroups of the same order are conjugate [7, Thm. 9.3.1(2), p. 141], so H is conjugate to $D_{2q} \times \mathbb{Z}_r$.

A.29. Let $\varphi \colon \langle a, b \rangle \to D_{2q}$ be the projection with kernel \mathbb{Z}_r .

Case 1. Assume the projection of a to \mathbb{Z}_r is trivial. This means a = f. Then b must project nontrivially to \mathbb{Z}_r (since $\langle a, b \rangle = D_{2q} \times \mathbb{Z}_r$). Therefore, we may assume the projection of b to \mathbb{Z}_r is z (since every nontrivial element of \mathbb{Z}_r is a generator). Therefore b is either yz or fyz, depending on whether $\varphi(b)$ is y or fy, respectively.

Case 2. Assume the projection of a to \mathbb{Z}_r is nontrivial. We may assume a = fz (since every nontrivial element of \mathbb{Z}_r is a generator).

We have $b = \varphi(b) z^{\ell}$ for some $\ell \in \mathbb{Z}$, and we wish to show that we may assume $\ell \not\equiv 0 \pmod{r}$. That is, we wish to show that we may assume $b \neq \varphi(b)$.

- Since $y \notin S$, we know that $b \neq \varphi(b)$ if $\varphi(b) = y$.
- If $b = \varphi(b) = fy$, then interchanging a and b would put us in Case 1.

A.30. Suppose $i \neq 0$, which means i = 1. Since y and z commute, we have $\langle yz \rangle = \langle y \rangle \times \langle z \rangle$. Therefore

$$\langle b, c \rangle = \langle y, z, fy^j z^k w \rangle = \langle y, z, fw \rangle.$$

This contains

$$(fw)^{-1}(fw)^z = (fw)^{-1}(fw^d) = w^{d-1}.$$

Since $d \neq 1$, we have $\langle w^{d-1} \rangle = \mathbb{Z}_p$, so $\langle b, c \rangle$ contains w. Since it also contains y, z, and fw, we conclude that $\langle b, c \rangle = G$.

A.31. We have

$$((f)(yz)^{-(r-1)}(f))(yz)^{r-1} = f^2(y^{-1}z)^{-(r-1)}(yz)^{r-1} \quad (f \text{ inverts } y \text{ and centralizes } z) = y^{2(r-1)} \qquad (|f| = 2 \text{ and } y \text{ commutes with } z).$$

Also, $(yz)^{-1}(y^j zw) = y^{j-1}w$, since y commutes with z.

A.32. Since |y| = q, it suffices to check (for each of the two possible values of q) that the given exponent of y is congruent to j - 2, modulo q:

- If q = 5, then $j + 3 \equiv j 2 \pmod{q}$.
- If q = 3, then $j + 7 \equiv j 2 \pmod{q}$.

A.33. We have

$$((f)(yz)^{-(r-1)}(f))(yz)^{r-1} = f^2(y^{-1}z)^{-(r-1)}(yz)^{r-1} \quad (f \text{ inverts } y \text{ and centralizes } z)$$

= $y^{2(r-1)} \qquad (|f| = 2 \text{ and } y \text{ commutes with } z).$

Also,

$$\begin{split} (y^2zw)^2 &= (y^2zw)(y^2zw) \\ &= (y^4zw)(zw) \qquad (y \text{ commutes with both } z \text{ and } w) \\ &= y^4z^2w^{d+1} \qquad (w^z = w^d), \end{split}$$

 \mathbf{SO}

$$(yz)^{-2}(y^2zw)^2 = (yz)^{-2}(y^4z^2w^{d+1}) = y^2w^{d+1},$$

since y commutes with z.

A.34. Since |y| = q, it suffices to check (for each of the two possible values of q) that the given exponent of y is congruent to 1, modulo q:

- If q = 5, then $6 \equiv 1 \pmod{q}$.
- If q = 3, then $10 \equiv 1 \pmod{q}$.

A.35. Since d is a primitive r^{th} root of unity in \mathbb{Z}_p , we know $d \not\equiv -1 \pmod{p}$. Therefore w^{d+1} is nontrivial, and hence generates \mathbb{Z}_p .

A.36. Since y commutes with z, we have

$$(fz)^4 = f^4 z^4 = z^4,$$

$$fz^{-1}fz = f^2 = e,$$

$$w^{-1}z^{-2}fz^2w = w^{-1}fw = w^{-1+\epsilon}f,$$

$$z^{-1}fz = f,$$

$$(fzfz^{-1})^2 = (f^2)^2 = e^2 = e.$$

Also,

$$(fw^{-1}z^{-2})^2 = (fw^{-1}z^{-2})(fw^{-1}z^{-2})$$

= $fw^{-1}fw^{-d^2}z^{-4}$ (z commutes with f, but $w^z = w^d$)
= $f^2w^{-\epsilon-d^2}z^{-4}$ ($w^f = w^\epsilon$)
= $w^{-(\epsilon+d^2)}z^{-4}$ ($|f| = 2$).

A.37. Since y centralizes both z and w (and $j \neq 0$), we have

$$\langle c \rangle = \langle y^j z^2 w \rangle = \langle y \rangle \times \langle z^2 w \rangle.$$

Therefore $\langle a, c \rangle = \langle f, y, z^2 w \rangle$.

Since f centralizes z, this contains

$$(z^2w)^{-1}(z^2w)^f = (z^2w)^{-1}(z^2w^f) = [w, f].$$

If f does not centralize \mathbb{Z}_p , then [w, f] is nontrivial, so it generates $\mathbb{Z}_p = \langle w \rangle$. This implies that $\langle a, c \rangle$ contains w. Since it also contains a, c, and z^2w , this would imply that $\langle a, c \rangle = G$, which is a contradiction. Therefore f centralizes \mathbb{Z}_p .

So f and y each centralize both z and w. Therefore

$$G = \langle f, y \rangle \times \langle z, w \rangle = D_{2q} \times (\mathbb{Z}_r \ltimes \mathbb{Z}_p) = D_6 \times (\mathbb{Z}_5 \ltimes \mathbb{Z}_p)$$

A.38. Since z commutes with f and y, we have $\langle fyz \rangle = \langle fy \rangle \times \langle z \rangle$. Also, since $c = f^i y^j z^k w$, we have $c \in \langle fy, z \rangle y^\ell w$ for some $\ell \in \mathbb{Z}$. Therefore

$$\langle b, c \rangle = \langle fy, z, c \rangle = \langle fy, z, y^{\ell}w \rangle.$$

This contains

$$(y^{\ell}w)^{-1}(y^{\ell}w)^{z} = (y^{\ell}w)^{-1}(y^{\ell}w^{z}) \qquad (z \text{ centralizes } y)$$
$$= w^{-1}w^{z}$$
$$= [w, z].$$

Since \mathbb{Z}_r does not centralize \mathbb{Z}_p , this commutator is nontrivial, so it generates $\mathbb{Z}_p = \langle w \rangle$. Therefore $\langle b, c \rangle$ contains w. It also contains fy, z, and $y^{\ell}w$. If $\ell \neq 0$, this implies $\langle b, c \rangle = G$, which contradicts the minimality of S.

Therefore, we must have $\ell = 0$, so $c \in \langle fy, z \rangle y^{\ell} w = \langle fy, z \rangle w$.

A.39.

- z commutes with both f and y, so $(fyz)^{r-1} = (fy)^{r-1}z^{r-1}$
- fy is a reflection, so it has order 2, so $(fy)^{r-1} = e$, since r-1 is even.
- $z^r = e$, since $z \in \mathbb{Z}_r$, so $z^{r-1} = z^{-1}$.

A.40. Modulo $G' = \langle y, w \rangle$, we have $a \equiv f, b \equiv fz$, and $c \equiv z$. Since f commutes with z, we have

$$(ac)^{r-1}ab) \equiv (fz)^{r-1}f fz = f^{r+1}z^r = e,$$

since |f| = 2, r+1 is even, and |z| = r. Therefore, the walk in Cay(G/G'; S) is closed.

A.41.

$$(ac)^{r-1} a b = (ac)^{r-1} ((ac)(ac)^{-1}) a b = ((ac)^{r-1}(ac)) (c^{-1}a^{-1}) a b = (ac)^r (c^{-1}b)$$

A.42.

$$(fzw)^{r} = ((fz)w)((fz)w)\cdots((fz)w)((fz)w)$$

= $(fz)^{r}((fz)^{-(r-1)}w(fz)^{r-1})((fz)^{-(r-2)}w(fz)^{r-2})\cdots((fz)^{-1}w(fz)^{1})((fz)^{-0}w(fz)^{0})$
= $f^{r}z^{r}w^{(\epsilon d)^{r-1}+(\epsilon d)^{r-2}+\dots+1}.$

A.43.

- $f^r = f$ because |f| = 2 and r is odd.
- |z| = r and z commutes with both f and y.

A.44. Let $\omega \in \mathbb{Z}$. If

$$\omega^{r-2} + \omega^{r-3} + \cdots + 1 \equiv 0 \pmod{p},$$

then

$$\omega^{r-1} - 1 = (\omega - 1)(\omega^{r-2} + \omega^{r-3} + \dots + 1) \equiv (\omega - 1)(0) = 0 \pmod{p},$$

so ω is an $(r-1)^{\text{st}}$ root of unity in \mathbb{Z}_p . Therefore, it cannot be a primitive r^{th} or $(2r)^{\text{th}}$ root of unity.

A.45. We have

$$\begin{aligned} (z^2w)^{-1}f(z^2w) &= (w^{-1}z^{-2})f(z^2w) \\ &= w^{-1}fw & (z \text{ commutes with } f) \\ &= w^{-1}(fwf)f & (f^2 = e) \\ &= w^{\epsilon-1}f, \\ (fz)^{-1}f(fz) &= (z^{-1}f^{-1})f(fz) \\ &= f & (f \text{ and } z \text{ commute}). \end{aligned}$$

and

$$(f(z^2w)^{-1})^2 = (fw^{-1}z^{-2})(fw^{-1}z^{-2}) = (fw^{-1}f)(z^{-2}w^{-1}z^2)z^{-4}$$
 (f and z commute)
$$= (w^{-\epsilon})(w^{-d^2})z^{-4} = w^{-(\epsilon+d^2)}z^{-4}.$$

A.46. Since $0 \le i < 2$ and we are assuming that $i \ne 0$, we have $c = fyz^k w$, so

$$\langle a, c \rangle = \langle f, fyz^k w \rangle = \langle f, yz^k w \rangle.$$

Since y commutes with both z and w, we have

$$\langle yz^k w \rangle = \langle y \rangle \times \langle z^k w \rangle,$$

so $\langle a,c\rangle$ contains both y and $z^kw.$ Therefore, since f centralizes z, it also contains

$$(z^{k}w)^{-1}(z^{k}w)^{f} = (w^{-1}z^{-k})(z^{k}w^{f}) = w^{-1}w^{f} = [w, f]$$

If f does not centralize w, then this commutator is nontrivial, so it generates $\mathbb{Z}_p = \langle w \rangle$. This implies that $\langle a, c \rangle$ contains w. Since it also contains f, y, and $z^k w$ (with $k \neq 0$), we conclude that $\langle a, c \rangle = G$. This is a contradiction. So f must centralize w.

Hence, f and y each centralize both z and w, so

$$G = \langle f, y \rangle \times \langle z, w \rangle = D_{2q} \times (\mathbb{Z}_r \ltimes \mathbb{Z}_p).$$

A.47.

$$(z^4wzw)^3 = ((z^{-1}wz)w)^3$$
 $(|z| = r = 5)$
= $(w^dw)^3$
= $w^{3(d+1)}$.

A.48. *d* is a primitive r^{th} root of unity in \mathbb{Z}_p , so $d + 1 \not\equiv 0 \pmod{p}$. Since $p \geq 7$, this implies $3(d+1) \not\equiv 0 \pmod{p}$. Therefore $w^{3(d+1)}$ is nontrivial, and hence generates \mathbb{Z}_p .

A.49. We have $c = f^i y^j z^k w$.

We claim that j = 0 (which means $c \in \langle f, z \rangle w$). Since z commutes with f, we have

$$\langle a \rangle = \langle fz \rangle = \langle f \rangle \times \langle z \rangle.$$

Therefore

$$\langle a, c \rangle = \langle f, z, f^i y^j z^k w \rangle = \langle f, z, y^j w \rangle,$$

which contains

$$(y^j w)^{-1} (y^j w)^z = (w^{-1} y^{-j}) (y^j w^z) = w^{-1} w^z = [w, z].$$

Since \mathbb{Z}_r does not centralize \mathbb{Z}_p , this commutator is nontrivial, so it generates $\mathbb{Z}_p = \langle w \rangle$. Therefore $\langle a, c \rangle$ contains w. So it contains $(y^j w) w^{-1} = y^j$.

If $j \neq 0$, this implies that $\langle a, c \rangle$ contains y. Since it also contains f, z, and w, we would have $\langle a, c \rangle = G$, which is a contradiction. Therefore j = 0, as claimed.

We claim that i = 0 (which means $c \in \langle y, z \rangle w$). Since z commutes with y (and $\ell \neq 0$), we have

$$\langle b \rangle = \langle y z^{\ell} \rangle = \langle y \rangle \times \langle z^{\ell} \rangle = \langle y \rangle \times \langle z \rangle.$$

Therefore

$$\langle b, c \rangle = \langle y, z, f^i y^j z^k w \rangle = \langle y, z, f^i w \rangle,$$

which contains

$$(f^iw)^{-1}(f^iw)^z = (w^{-1}f^{-i})(f^iw^z) = w^{-1}w^z = [w, z].$$

Since \mathbb{Z}_r does not centralize \mathbb{Z}_p , this commutator is nontrivial, so it generates $\mathbb{Z}_p = \langle w \rangle$. Therefore $\langle b, c \rangle$ contains w. So it contains $(f^i w) w^{-1} = f^i$.

If $i \neq 0$, this implies that $\langle b, c \rangle$ contains f. Since it also contains y, z, and w, we would have $\langle b, c \rangle = G$, which is a contradiction. Therefore i = 0, as claimed.

Since i = 0 and j = 0, we have $c = z^k w$.

A.50. If r = 3, then (r - 1)/2 = 1, so $\ell = k = 1$, contradicting the fact that $\ell \neq k$.

Thus, we must have r = 5, so (r-1)/2 = 2. Since $\ell \neq k$, we must have $\{\ell, k\} = \{1, 2\}$.

A.51. Recall that f commutes with z, and $f^2 = e$

A.52.

$$(z^{-1}wfz^{-2}w)^{2} = ((z^{-1}wz)f(z^{-3}wz^{3})z^{-3})^{2} (f \text{ commutes with } z)$$

$$= ((w^{d})f(w^{d^{3}})z^{-3})^{2}$$

$$= (fw^{d^{3}+\epsilon d}z^{-3})^{2}$$

$$= (fw^{d^{3}+\epsilon d}z^{-3})(fw^{d^{3}+\epsilon d}z^{-3})$$

$$= (fw^{d^{3}+\epsilon d}f)(z^{-3}w^{d^{3}+\epsilon d}z^{3})z^{-6} (f \text{ commutes with } z)$$

$$= (w^{\epsilon(d^{3}+\epsilon d)})(w^{d^{3}(d^{3}+\epsilon d)})z^{-6}$$

$$= (w^{d^{6}+\epsilon d^{4}+\epsilon d^{3}+d})z^{-6} (\epsilon^{2} = 1).$$

A.53. Since d is an r^{th} root of unity in \mathbb{Z}_p , and r = 5, we have $d^6 \equiv d \pmod{p}$, so, modulo p, we have

$$d^{6} + \epsilon d^{4} + \epsilon d^{3} + d \equiv d + \epsilon d^{4} + \epsilon d^{3} + d = \epsilon d^{4} + \epsilon d^{3} + 2d = d(\epsilon d^{3} + \epsilon d^{2} + 2).$$

Also, since $|z| = r = 5$, we have $z^{-6} = z^{4}$.

A.54. If we write $c = f^i y^j z^k w$, then, exactly as in note A.49, we must have j = 0 (which means $c \in \langle f, z \rangle w$).

We may also write write $c = (fy)^i y^{j'} z^k w$. We claim that j' = 0 (which means $c \in \langle fy, z \rangle w$). Since z commutes with both f and y (and $\ell \neq 0$), we have

$$\langle b \rangle = \langle fyz^{\ell} \rangle = \langle fy \rangle \times \langle z^{\ell} \rangle = \langle fy \rangle \times \langle z \rangle.$$

Therefore

$$\langle b, c \rangle = \langle fy, z, (fy)^i y^{j'} z^k w \rangle = \langle fy, z, y^{j'} w \rangle,$$

which contains

$$(y^{j'}w)^{-1}(y^{j'}w)^z = (w^{-1}y^{-j'})(y^{j'}w^z) = w^{-1}w^z = [w, z].$$

Since \mathbb{Z}_r does not centralize \mathbb{Z}_p , this commutator is nontrivial, so it generates $\mathbb{Z}_p = \langle w \rangle$. Therefore $\langle b, c \rangle$ contains w. So it contains $(y^{j'}w)w^{-1} = y^{j'}$.

If $j' \neq 0$, this implies that $\langle b, c \rangle$ contains y. Since it also contains fy, z, and w, we would have $\langle b, c \rangle = G$, which is a contradiction. Therefore j' = 0, as claimed.

Therefore

$$c \in \langle f, z \rangle w \cap \langle fy, z \rangle w = (\langle f, z \rangle \cap \langle fy, z \rangle) w = \langle z \rangle w.$$

A.55. If r = 3, we have $1 < \ell \leq (r-1)/2 = 1$, which is impossible. Therefore r = 5. So we have $1 < \ell \leq (r-1)/2 = 2$, which implies $\ell = 2$. Also, since $1 \leq k \leq (r-1)/2 = 2$, we have $k \in \{1, 2\}$.

A.56. Recall that f commutes with z, and $f^2 = e$. Also, we have $z^5 = z^r = e$, so $z^{13} = z^3$.

A.57. We have

$$(fz^3)^{-1}w(fz^3) = z^{-3}(f^{-1}wf)z^3 = z^{-3}w^{\epsilon}z^3 = w^{\epsilon d^3}.$$

Since d is a primitive r^{th} root of unity in \mathbb{Z}_p , we know $d^3 \not\equiv \pm 1 \pmod{p}$. Therefore $\epsilon d^3 \not\equiv 1 \pmod{p}$, so $(fz^3)^{-1}w(fz^3) \neq w$.

A.58. Since $|\langle a, b, s_1 \rangle|$ is the product of only three primes (and is divisible by $|\langle a, b \rangle| = 2r$), it must be either 2qr or 2pr.

However, if $|\langle a, b, s_1 \rangle| = 2pr$, then $\langle a, b, s_1 \rangle$ contains \mathbb{Z}_p (since \mathbb{Z}_p is a normal Sylow *p*-subgroup of *G*, and hence is the unique subgroup of order *p* in *G*). So

$$\langle a, b, s_1 \rangle \supset \langle a, b \rangle \mathbb{Z}_p$$

Since they have the same order, these two subgroups must be equal, so

$$s_1 \in \langle a, b, s_1 \rangle = \langle a, b \rangle \mathbb{Z}_p$$

This contradicts the choice of s_1 .

Therefore $|\langle a, b, s_1 \rangle| = 2qr$. Since \mathbb{Z}_q is a normal Sylow q-subgroup of G, we know that it is the unique subgroup of order q in G. So $\mathbb{Z}_q \subset \langle a, b, s_1 \rangle$. Hence (by comparing orders) we must have $\langle a, b, s_1 \rangle = \langle a, b \rangle \mathbb{Z}_q$.