Cayley graphs of order 30p are hamiltonian

Ebrahim Ghaderpour, Dave Witte Morris

Department of Mathematics and Computer Science, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada

Abstract

Suppose G is a finite group, such that $|G| = 30p$, where p is prime. We show that if S is any generating set of G , then there is a hamiltonian cycle in the corresponding Cayley graph $Cay(G;S)$.

1. Introduction

There is a folklore conjecture that every connected Cayley graph has a hamiltonian cycle. (See the surveys [\[3,](#page-21-0) [12,](#page-22-0) [14\]](#page-22-1) for some background on this question.) The papers [\[8\]](#page-21-1) and [\[10\]](#page-22-2) began a systematic study of this conjecture in the case of Cayley graphs for which the number of vertices has a prime factorization that is small and easy. In particular, combining several of the results in [\[10\]](#page-22-2) with [\[4,](#page-21-2) [5\]](#page-21-3) and this paper shows:

If $|G| = kp$, where p is prime, with $1 \leq k < 32$ and $k \neq 24$, then every connected Cayley graph on G has a hamiltonian cycle.

This paper's contribution to the project is the case $k = 30$:

Theorem 1.1. If $|G| = 30p$, where p is prime, then every connected Cayley graph on G has a hamiltonian cycle.

Acknowledgments. This work was partially supported by research grants from the Natural Sciences and Engineering Research Council of Canada.

Email addresses: Ebrahim.Ghaderpoor@uleth.ca (Ebrahim Ghaderpour), Dave.Morris@uleth.ca (Dave Witte Morris)

URL: http://people.uleth.ca/~dave.morris/ (Dave Witte Morris)

2. Preliminaries

Before proving Theorem [1.1,](#page-0-0) we present some useful facts about hamiltonian cycles in Cayley graphs.

Notation. Throughout this paper, G is a finite group.

- For any subset S of G, Cay $(G; S)$ denotes the Cayley graph of G with respect to S . Its vertices are the elements of G , and there is an edge joining q to qs for every $q \in G$ and $s \in S$.
- For $x, y \in G$:
	- \circ [x, y] denotes the *commutator* $x^{-1}y^{-1}xy$, and
	- \circ y^x denotes the *conjugate* $x^{-1}yx$.
- $\langle A \rangle$ denotes the subgroup generated by a subset A of G.
- G' denotes the *commutator subgroup* $[G, G]$ of G .
- $Z(G)$ denotes the *center* of G .
- $G \ltimes H$ denotes a *semidirect product* of the groups G and H.
- D_{2n} denotes the *dihedral group* of order $2n$.
- For $S \subset G$, a sequence (s_1, s_2, \ldots, s_n) of elements of $S \cup S^{-1}$ specifies the walk in the Cayley graph $Cav(G; S)$ that visits (in order) the vertices

 $e, s_1, s_1s_2, s_1s_2s_3, \ldots, s_1s_2 \ldots s_n.$

If N is a normal subgroup of G, we use $(\overline{s_1}, \overline{s_2}, \ldots, \overline{s_n})$ to denote the image of this walk in the quotient $Cay(G/N; S)$.

- If the walk $(\overline{s_1}, \overline{s_2}, \ldots, \overline{s_n})$ in $Cay(G/N; S)$ is closed, then its voltage is the product $s_1s_2 \ldots s_n$. This is an element of N.
- For $k \in \mathbb{Z}^+$, we use $(s_1, \ldots, s_m)^k$ to denote the concatenation of k copies of the sequence (s_1, \ldots, s_m) . Abusing notation, we often write s^k and s^{-k} for

$$
(s)^k = (s, s, \dots, s)
$$
 and $(s^{-1})^k = (s^{-1}, s^{-1}, \dots, s^{-1}),$

respectively. Furthermore, we often write $((s_1, \ldots, s_m), (t_1, \ldots, t_n))$ to denote the concatenation $(s_1, \ldots, s_m, t_1, \ldots, t_n)$. For example, we have

$$
((a^2,b)^2,c^{-2})^2 = (a,a,b,a,a,b,c^{-1},c^{-1},a,a,b,a,a,b,c^{-1},c^{-1}).
$$

Theorem 2.1 (Marušič, Durnberger, Keating-Witte [\[9\]](#page-21-4)). If G' is a cyclic group of prime-power order, then every connected Cayley graph on G has a hamiltonian cycle.

Lemma 2.2 ("Factor Group Lemma" [\[14,](#page-22-1) §2.2]). Suppose

- S is a generating set of G ,
- N is a cyclic, normal subgroup of G ,
- $\overline{C} = (\overline{s_1}, \overline{s_2}, \ldots, \overline{s_n})$ is a hamiltonian cycle in Cay($G/N; S$), and
- the voltage of \overline{C} generates N.

Then $(s_1, \ldots, s_n)^{|N|}$ is a hamiltonian cycle in Cay($G; S$).

The following easy consequence of the Factor Group Lemma [\(2.2\)](#page-2-0) is well known (and is implicit in [\[11\]](#page-22-3)).

Corollary 2.3. Suppose

- S is a generating set of G .
- N is a normal subgroup of G , such that $|N|$ is prime,
- $s \equiv t \pmod{N}$ for some $s, t \in S \cup S^{-1}$ with $s \neq t$, and
- there is a hamiltonian cycle in $Cay(G/N;S)$ that uses at least one edge labeled s.

Then there is a hamiltonian cycle in $Cay(G;S)$.

 $(note A.1)$ $(note A.1)$ $(note A.1)$

Theorem 2.4 (Alspach [\[1,](#page-21-5) Cor. 5.2]). If $G = \langle s \rangle \times \langle t \rangle$, for some elements s and t of G, then $\text{Cay}(G; \{s, t\})$ has a hamiltonian cycle.

Lemma 2.5 ([\[10,](#page-22-2) Lem. 2.27]). Let S generate the finite group G , and let $s \in S$, such that $\langle s \rangle \triangleleft G$. If $\text{Cay}(G/\langle s \rangle;S)$ has a hamiltonian cycle, and either

- 1. $s \in Z(G)$, or
- 2. $Z(G) \cap \langle s \rangle = \{e\},\$

then $Cay(G;S)$ has a hamiltonian cycle.

Lemma 2.6. Suppose

• $G = \langle a \rangle \ltimes \langle S_0 \rangle$, where $\langle S_0 \rangle$ is an abelian subgroup of odd order,

- $\#(S_0 \cup S_0^{-1}) \geq 3$, and
- $\langle S_0 \rangle$ has a nontrivial subgroup H, such that $H \triangleleft G$ and $H \cap Z(G) = \{e\}.$

Then Cay $(G; S_0 \cup \{a\})$ has a hamiltonian cycle.

Proof. Since $\langle S_0 \rangle$ is abelian of odd order, and $\#(S_0 \cup S_0^{-1}) \geq 3$, we know that $Cay(\langle S_0 \rangle; S_0)$ is hamiltonian connected [\[2\]](#page-21-6). Therefore, it has a hamiltonian path (s_1, s_2, \ldots, s_m) , such that $s_1 s_2 \cdots s_m \in H$. Then

$$
(s_1, s_2, \ldots, s_m, a)^{|a|}
$$

is a hamiltonian cycle in $\text{Cay}(G; S_0 \cup \{a\})$.

Lemma 2.7 ([\[4,](#page-21-2) Cor. 4.4]). If $a, b \in G$, such that $G = \langle a, b \rangle$, then $G' =$ $\langle [a, b] \rangle$.

Lemma 2.8 ([\[13,](#page-22-4) Prop. 5.5]). If p, q, and r are prime, then every connected Cayley graph on the dihedral group D_{2pqr} has a hamiltonian cycle.

Lemma 2.9. If $G = D_{2pq} \times \mathbb{Z}_r$, where p, q, and r are distinct odd primes, then every connected Cayley graph on G has a hamiltonian cycle.

Proof. Let S be a minimal generating set of G, let $\varphi: G \to D_{2pq}$ be the natural projection, and let T be the group of rotations in D_{2pq} , so $T = \mathbb{Z}_p \times \mathbb{Z}_q$. For $s \in S$, we may assume:

- If $\varphi(s)$ has order 2, then $s = \varphi(s)$ has order 2. (Otherwise, Corollary [2.3](#page-2-1)) applies with $t = s^{-1}$.)
- $\varphi(s)$ is nontrivial. (Otherwise, $s \in \mathbb{Z}_r \subset Z(G)$, so Lemma [2.5](#page-2-2)[\(1\)](#page-2-3) applies.)

Since $\varphi(S)$ generates D_{2pq} , it must contain at least one reflection (which is an element of order 2). So $S \cap D_{2pq}$ contains a reflection.

Case 1. Assume $S \cap D_{2pq}$ contains only one reflection. Let $a \in S \cap D_{2pq}$, such that a is a reflection.

Let $S_0 = S \setminus \{a\}$. Since $\langle S_0 \rangle$ is a subgroup of the cyclic, normal subgroup $T \times \mathbb{Z}_r$, we know $\langle S_0 \rangle$ is normal. Therefore $G = \langle a \rangle \times \langle S_0 \rangle$, so:

• If $\#S_0 = 1$, then Theorem [2.4](#page-2-4) applies.

 $(note A.2)$ $(note A.2)$ $(note A.2)$

• If $\#S_0 \geq 2$, then Lemma [2.6](#page-2-5) applies with $H = T$, because $T \times \mathbb{Z}_r$ is abelian of odd order.

Case 2. Assume $S \cap D_{2pq}$ contains at least two reflections. Since no minimal generating set of D_{2pq} contains three reflections, the minimality of S implies that $S \cap D_{2pq}$ contains exactly two reflections; say a and b are reflections.

Let $c \in S \setminus D_{2pq}$, so $\mathbb{Z}_r \subset \langle c \rangle$. Since $|c| > 2$, we know $\varphi(c)$ is not a reflection, so $\varphi(c) \in T$. The minimality of S (combined with the fact that $#S > 2$) implies $\langle \varphi(c) \rangle \neq T$. Since $\varphi(c)$ is nontrivial, this implies we may assume $\langle \varphi(c) \rangle = \mathbb{Z}_p$ (by interchanging p and q if necessary). Hence, we may write

$$
c = wz
$$
 with $\langle w \rangle = \mathbb{Z}_p$ and $\langle z \rangle = \mathbb{Z}_r$.

We now use the argument of [\[9,](#page-21-4) Case 5.3, p. 96], which is based on ideas of D. Marušič [\[11\]](#page-22-3). Let

$$
\overline{G} = G/\mathbb{Z}_p = \overline{D_{2pq}} \times \mathbb{Z}_r = \overline{D_{2pq}} \times \langle \overline{c} \rangle.
$$

Then $\overline{D_{2pq}} \cong D_{2q}$, so $(a, b)^q$ is a hamiltonian cycle in Cay $(\overline{D_{2pq}}; a, b)$. With this in mind, it is easy to see that

$$
(c^{r-1}, a, ((b, a)^{q-1}, c^{-1}, (a, b)^{q-1}, c^{-1})^{(r-1)/2}, (b, a)^{q-1}, b).
$$

is a hamiltonian cycle in Cay $(\overline{G}; S)$. This contains the string

$$
(c, a, (b, a)^{q-1}, c^{-1}, a),
$$

which can be replaced with the string

$$
(b, c, (b, a)^{q-1}, b, c^{-1})
$$

to obtain another hamiltonian cycle. Since

$$
ca(ba)^{q-1}c^{-1}a = (cac^{-1}a)(ba)^{-(q-1)}
$$
 (*ba* $\in T$ is inverted by *a*)
\n
$$
= ((wz)a(wz)^{-1}a)(ba)^{-(q-1)}
$$
(*a* inverts *w* and centralizes *z*)
\n
$$
\neq (w^{-2})(ba)^{-(q-1)}
$$

\n
$$
= (b(wz)b(wz)^{-1})(ba)^{-(q-1)}
$$
(*b* inverts *w* and centralizes *z*)
\n
$$
= (bcbc^{-1})(ba)^{-(q-1)}
$$

\n
$$
= bc(ba)^{q-1}bc^{-1},
$$
 (*ba* $\in T$ is inverted by *b*)

 $(note A.6)$ $(note A.6)$ $(note A.6)$

 $(note A.5)$ $(note A.5)$ $(note A.5)$

 $(note A.3)$ $(note A.3)$ $(note A.3)$

 $(note A.4)$ $(note A.4)$ $(note A.4)$

these two hamiltonian cycles have different voltages. Therefore at least one of them must have a nontrivial voltage. This nontrivial voltage must generate \mathbb{Z}_p , so the Factor Group Lemma [\(2.2\)](#page-2-0) provides a hamiltonian cycle in $Cay(G;S)$. \Box

Proposition 2.10. Suppose

- $|G| = 30p$, where p is prime, and
- |G| is not square-free (i.e., $p \in \{2, 3, 5\}$).

Then every Cayley graph on G has a hamiltonian cycle.

Proof. We know $|G|$ is either 60, 90, or 150, and it is known that every connected Cayley graph of any of these three orders has a hamiltonian cycle. This can be verified by exhaustive computer search, or see [\[10,](#page-22-2) Props. 7.2 and 9.1] and [\[6\]](#page-21-7). \Box

Lemma 2.11. Suppose

- $|G| = 30p$, where p is prime, and
- $p \geq 7$.

Then

- 1. G' is cyclic,
- 2. $G' \cap Z(G) = \{e\},\$
- 3. $G \cong \mathbb{Z}_n \ltimes G'$, for some $n \in \mathbb{Z}^+$, and
- 4. if b is a generator of \mathbb{Z}_n , and we choose $\tau \in \mathbb{Z}$, such that $x^b = x^{\tau}$ for all $x \in G'$, then $gcd(\tau - 1, |\alpha|) = 1$.

Proof. Since |G| is square-free (because $p \geq 7$), we know that every Sylow subgroup of G is cyclic. Therefore the conclusions follow from [\[7,](#page-21-8) Thm. 9.4.3, $(note A.7)$ $(note A.7)$ $(note A.7)$ p. $146]$ $146]$ ¹. \Box

¹The condition $[(r-1), nm] = 1$ in the statement of [\[7,](#page-21-8) Cor. 9.4.3, p. 146] suffers from a typographical error — it should say $gcd((r-1)n, m) = 1$.

3. Proof of the Main Theorem

Proof of Theorem [1.1.](#page-0-0) Because of Proposition [2.10,](#page-5-1) we may assume

 $p \geq 7$,

so the conclusions of Lemma [2.11](#page-5-2) hold.

We may also assume $|G'|$ is not prime (otherwise Theorem [2.1](#page-2-6) applies). Furthermore, if $|G'| = 15p$, then G is a dihedral group, so Lemma [2.8](#page-3-0) applies. ($(note A.8)$ $(note A.8)$ $(note A.8)$ In addition, if $|G'| = 15$, then $G \cong D_{30} \times \mathbb{Z}_p$, so Lemma [2.9](#page-3-1) applies. Thus, $(note A.9)$ $(note A.9)$ $(note A.9)$ we may assume $|G'| = pq$, where $q \in \{3, 5\}$. So $(note A.10)$ $(note A.10)$ $(note A.10)$

$$
G = \mathbb{Z}_{2r} \ltimes \mathbb{Z}_{pq}
$$
, with $\{q, r\} = \{3, 5\}$ (and $G' = \mathbb{Z}_{pq}$).

Note that \mathbb{Z}_r centralizes \mathbb{Z}_q , because there is no nonabelian group of order 15, so \mathbb{Z}_2 must act nontrivially on \mathbb{Z}_q . Therefore $(note A.11)$ $(note A.11)$ $(note A.11)$

 $y^x = y^{-1}$ whenever $y \in \mathbb{Z}_q$ and $\langle x \rangle = \mathbb{Z}_{2r}$.

We also assume

 \mathbb{Z}_r does not centralize \mathbb{Z}_p ,

because otherwise $G \cong D_{2pq} \times \mathbb{Z}_r$, so Lemma [2.9](#page-3-1) applies.

Given a minimal generating set S of G , we may assume

$$
S \cap G' = \emptyset,
$$

for otherwise Lemma [2.5\(](#page-2-2)[2\)](#page-2-7) applies.

Case 1. Assume $\#S = 2$. Write $S = \{a, b\}$.

Subcase 1.1. Assume |a| is odd. This implies a has order r in G/G' , so $(a^{-(r-1)}, b^{-1}, a^{r-1}, b)$ is a hamiltonian cycle in Cay $(G/G'; S)$. Its voltage is

$$
a^{-(r-1)}b^{-1}a^{r-1}b = [a^{r-1}, b].
$$

Since $gcd(r-1, |a|) | gcd(r-1, 15p) = 1$, we know $\langle a^{r-1}, b \rangle = \langle a, b \rangle = G$. So ($(note A.13)$ $(note A.13)$ $(note A.13)$ $\langle [a^{r-1}, b] \rangle = G'$ (see Lemma [2.7\)](#page-3-2). Therefore the Factor Group Lemma [\(2.2\)](#page-2-0) applies.

Subcase 1.2. Assume a and b both have even order.

Subsubcase 1.2.1. Assume a has order 2 in G/G' . Note that $q \nmid |a|$, since \mathbb{Z}_2 does not centralize \mathbb{Z}_q . Also, if $|a|=2p$, then Corollary [2.3](#page-2-1) applies. (note [A.14](#page-27-0))

 $(note A.12)$ $(note A.12)$ $(note A.12)$

Therefore, we may assume $|a|=2$.

Now b must generate G/G' (since $\langle a, b \rangle = G$, and b has even order), so b has trivial centralizer in \mathbb{Z}_{pq} . Then, since $|a| = 2$ and $\langle a, b \rangle = G$, it follows that a must also have trivial centralizer in \mathbb{Z}_{pq} . Therefore (up to isomorphism), we must have either:

1. $a = x^3$ and $b = xyw$, in $G = \mathbb{Z}_6 \ltimes (\mathbb{Z}_5 \times \mathbb{Z}_p) = \langle x \rangle \ltimes (\langle y \rangle \times \langle w \rangle)$, with $y^x = y^{-1}$ and $w^x = w^d$, where d is a primitive 6th root of 1 in \mathbb{Z}_p (so $d^2 - d + 1 \equiv 0 \pmod{p}$, or

 $(note A.15)$ $(note A.15)$ $(note A.15)$

 $(note A.16)$ $(note A.16)$ $(note A.16)$

2. $a = x^5$ and $b = xyw$, in $G = \mathbb{Z}_{10} \ltimes (\mathbb{Z}_3 \times \mathbb{Z}_p) = \langle x \rangle \ltimes (\langle y \rangle \times \langle w \rangle)$ with $y^x = y^{-1}$ and $w^x = w^d$, where d is a primitive 10th root of 1 in \mathbb{Z}_p (so $d^4 - d^3 + d^2 - d + 1 \equiv 0 \pmod{p}.$

For [\(1\)](#page-7-0), we note that the sequence $((a, b^{-5})^4, a, b^5)$ is a hamiltonian cycle in Cay $(G/\mathbb{Z}_p;S)$:

$$
\overline{e} \xrightarrow{\overline{a}} \overline{x^3} \xrightarrow{\overline{b^{-1}}} \overline{x^2y} \xrightarrow{\overline{b^{-1}}} \overline{x} \xrightarrow{\overline{b^{-1}}} \overline{y} \xrightarrow{\overline{b^{-1}}} \overline{x^5}
$$
\n
$$
\xrightarrow{\overline{b^{-1}}} \overline{x^4y} \xrightarrow{\overline{a}} \xrightarrow{\overline{a}} \overline{xy^4} \xrightarrow{\overline{b^{-1}}} \overline{y^2} \xrightarrow{\overline{b^{-1}}} \overline{x^5y^4} \xrightarrow{\overline{b^{-1}}} \overline{x^4y^2}
$$
\n
$$
\xrightarrow{\overline{b^{-1}}} \overline{x^3y^4} \xrightarrow{\overline{b^{-1}}} \overline{x^2y^2} \xrightarrow{\overline{a}} \overline{x} \xrightarrow{\overline{y^3}} \xrightarrow{\overline{b^{-1}}} \overline{x^4y^3} \xrightarrow{\overline{b^{-1}}} \overline{x^3y^3}
$$
\n
$$
\xrightarrow{\overline{b^{-1}}} \overline{x^2y^3} \xrightarrow{\overline{b^{-1}}} \overline{x^3y^3} \xrightarrow{\overline{b^{-1}}} \overline{y^3} \xrightarrow{\overline{a}} \overline{x} \xrightarrow{\overline{y^2}} \xrightarrow{\overline{b^{-1}}} \overline{x^2y^4}
$$
\n
$$
\xrightarrow{\overline{b^{-1}}} \overline{x^2y^2} \xrightarrow{\overline{b^{-1}}} \overline{y^4} \xrightarrow{\overline{b^{-1}}} \overline{x^5y^2} \xrightarrow{\overline{b^{-1}}} \overline{x^4y^4} \xrightarrow{\overline{a}} \overline{x^3} \xrightarrow{\overline{xy}}
$$
\n
$$
\xrightarrow{\overline{b}} \overline{x^2} \xrightarrow{\overline{b}} \overline{x^3y} \xrightarrow{\overline{b}} \overline{x^4} \xrightarrow{\overline{b}} \overline{x^5y} \xrightarrow{\overline{b}} \overline{x}
$$
\n
$$
\xrightarrow{\overline{b}} \overline{x^5y} \xrightarrow{\overline{b}} \overline{x}
$$
\n
$$
\xrightarrow{\overline{b}} \overline{x^5y} \xrightarrow{\overline{b}} \overline{x}
$$

Calculating modulo the normal subgroup $\langle y \rangle$, its voltage is

$$
(ab^{-5})^4(ab^5) = (ab)^4(ab^{-1})
$$
\n
$$
\equiv (x^3 (xw))^4 (x^3 (xw)^{-1})
$$
\n
$$
= (x^4w)^4 ((xw^{-1})^{-1}x^3)
$$
\n
$$
= (x^{16}w^{d^{12}+d^8+d^4+1}) ((wx^{-1})x^3)
$$
\n
$$
= x^{-2}w^{1+d^2-d+2}x^2
$$
\n
$$
= x^{-2}w^{d^2+2}x^2
$$
\n
$$
= x^{-2}w^{d+1}x^2
$$
\n
$$
(d^2 - d + 1 \equiv 0 \pmod{p}),
$$

which is nontrivial. Therefore, the voltage generates \mathbb{Z}_p , so the Factor Group Lemma (2.2) provides a hamiltonian cycle in Cay $(G; S)$.

For [\(2\)](#page-7-1), here is a hamiltonian cycle in $\text{Cay}(G/\mathbb{Z}_p;S)$:

$$
\overline{e} \quad \xrightarrow{a} \quad \overline{x^5} \quad \xrightarrow{b} \quad \overline{x^6y} \quad \xrightarrow{b} \quad \overline{x^7} \quad \xrightarrow{b} \quad \overline{x^8y} \quad \xrightarrow{b} \quad \overline{x^9}
$$
\n
$$
\xrightarrow{a} \quad \overline{x^4} \quad \xrightarrow{b} \quad \overline{x^5y} \quad \xrightarrow{a} \quad \overline{y^2} \quad \xrightarrow{b} \quad \overline{x^2y} \quad \xrightarrow{b} \quad \overline{x^2y^2}
$$
\n
$$
\xrightarrow{b} \quad \overline{x^3y^2} \quad \xrightarrow{b} \quad \overline{x^4y^2} \quad \xrightarrow{a} \quad \overline{x^9y} \quad \xrightarrow{b^{-1}} \quad \overline{x^8} \quad \xrightarrow{b^{-1}} \quad \overline{x^7y}
$$
\n
$$
\xrightarrow{b^{-1}} \quad \overline{x^6} \quad \xrightarrow{a} \quad \overline{x} \quad \xrightarrow{b} \quad \overline{y} \quad \xrightarrow{a} \quad \overline{x^5y^2} \quad \xrightarrow{b} \quad \overline{x^6y^2}
$$
\n
$$
\xrightarrow{b} \quad \overline{x^7y^2} \quad \xrightarrow{a} \quad \overline{x^2y} \quad \xrightarrow{b} \quad \overline{x^3} \quad \xrightarrow{b} \quad \overline{x^4y} \quad \xrightarrow{a} \quad \overline{x^9y^2}
$$
\n
$$
\xrightarrow{b^{-1}} \quad \overline{x^8y^2} \quad \xrightarrow{a} \quad \overline{x^3y} \quad \xrightarrow{b^{-1}} \quad \overline{x^2} \quad \xrightarrow{b^{-1}} \quad \overline{x^2} \quad \xrightarrow{b^{-1}} \quad \overline{x^3} \quad \xrightarrow{b} \quad \overline{x^6y} \quad \xrightarrow{c} \quad \overline{x}
$$

Calculating modulo $\langle y \rangle$, its voltage is

$$
ab^{4}(aba)b^{4}(ab^{-3}a)b^{-1}(ab^{2})^{2}(ab^{-1}a)b^{-3}
$$

\n
$$
\equiv x^{5}(xw)^{4}(x^{5}(xw)x^{5})(xw)^{4}(x^{5}(xw)^{-3}x^{5})
$$

\n
$$
\cdot (xw)^{-1}(x^{5}(xw)^{2})^{2}(x^{5}(xw)^{-1}x^{5})(xw)^{-3}
$$

\n
$$
= x^{5}(xw)^{4}(xw^{-1})(xw)^{4}(xw^{-1})^{-3}
$$

\n
$$
\cdot (xw)^{-1}((xw^{-1})^{2}(xw)^{2})(xw^{-1})^{-1}(xw)^{-3}
$$

\n
$$
= x^{5}(x^{4}w^{d^{3}+d^{2}+d+1})(xw^{-1})(x^{4}w^{d^{3}+d^{2}+d+1})(w^{d^{2}+d+1}x^{-3})
$$

\n
$$
\cdot (w^{-1}x^{-1})(x^{4}w^{-d^{3}-d^{2}+d+1})(wx^{-1})(w^{-(d^{2}+d+1)}x^{-3})
$$

\n
$$
= w^{d(d^{3}+d^{2}+d+1)}w^{-1}w^{d^{6}(d^{3}+d^{2}+d+1)}w^{d^{6}(d^{2}+d+1)}
$$

\n
$$
\cdot w^{-d^{9}}w^{d^{6}(-d^{3}-d^{2}+d+1)}w^{d^{6}}w^{-d^{7}(d^{2}+d+1)}
$$

\n
$$
= w^{-2d^{9}+2d^{7}+4d^{6}+d^{4}+d^{3}+d^{2}+d-1}.
$$

Modulo p , the exponent of w is:

$$
-2d^{9} + 2d^{7} + 4d^{6} + d^{4} + d^{3} + d^{2} + d - 1
$$

\n
$$
\equiv 2d^{4} - 2d^{2} - 4d + d^{4} + d^{3} + d^{2} + d - 1
$$
 (because $d^{5} \equiv -1$)
\n
$$
= 3d^{4} + d^{3} - d^{2} - 3d - 1
$$

\n
$$
= 3(d^{4} - d^{3} + d^{2} - d + 1) + 4(d^{3} - d^{2} - 1)
$$

\n
$$
\equiv 3(0) + 4(d^{3} - d^{2} - 1)
$$

\n
$$
= 4(d^{3} - d^{2} - 1).
$$

This is nonzero (mod p), because $d^4 - d^3 + d^2 - d + 1 \equiv 0 \pmod{p}$ and $(d^3 - d^2)(d^3 - d^2 - 1) - (d^2 - d - 1)(d^4 - d^3 + d^2 - d + 1) = 1.$

Therefore the voltage generates $\langle w \rangle = \mathbb{Z}_p$, so the Factor Group Lemma [\(2.2\)](#page-2-0) applies.

Subsubcase 1.2.2. Assume a and b both have order $2r$ in G/G' . Then $|a| = |b| = 2r$ (because \mathbb{Z}_{2r} has trivial centralizer in \mathbb{Z}_{pq}). $(note A.17)$ $(note A.17)$ $(note A.17)$

We have $a \in b^i G'$ for some i with $gcd(i, 2r) = 1$. We may assume $1 \leq i <$ r by replacing α with its inverse if necessary. Here is a hamiltonian cycle in $Cay(G/G';S)$: (S) : $($

$$
((a, b, a^{-1}, b)^{(i-1)/2}, a, b^{2r+1-2i}).
$$

 $(note A.18)$ $(note A.18)$ $(note A.18)$

To calculate its voltage, write $a = b^i yw$, where $\langle y \rangle = \mathbb{Z}_q$ and $\langle w \rangle = \mathbb{Z}_p$. We have $y^b = y^{-1}$ and $w^b = w^d$, where d is a primitive r^{th} or $(2r)^{\text{th}}$ root of unity ($(note A.19)$ $(note A.19)$ $(note A.19)$ in \mathbb{Z}_p . Then the voltage of the walk is:

$$
(aba^{-1}b)^{(i-1)/2}ab^{2r+1-2i} = ((b^iyw)b(b^iyw)^{-1}b)^{(i-1)/2}(b^iyw)b^{1-2i}
$$

\n
$$
= ((b^iyw)b(w^{-1}y^{-1}b^{-i})b)^{(i-1)/2}(b^iyw)b^{1-2i}
$$

\n
$$
= (b^2y^{-2}w^{(d-1)d^{1-i}})^{(i-1)/2}(b^iyw)b^{1-2i}
$$
 (note A.20)
\n
$$
= (b^{i-1}y^{-(i-1)}w^{(d-1)d^{1-i}(d^{i-3}+d^{i-5}+\cdots+d^2+1)})(b^iyw)b^{1-2i}
$$
 (note A.21)

$$
= b^{2i-1} y^{(i-1)+1} w^{(d-1)d(d^{i-3}+d^{i-5}+\cdots+d^2+1)+1} b^{1-2i}.
$$
 (note A.22)

Now:

- The exponent of y is $(i-1)+1=i$. If q | i, then, since $i < r$, we must have $q = 3, r = 5,$ and $i = 3$. $(note A.23)$ $(note A.23)$ $(note A.23)$
- The exponent of w is

$$
(d-1)d(d^{i-3} + d^{i-5} + \dots + d^2 + 1) + 1 = d(d-1)\frac{d^{i-1}-1}{d^2-1} + 1
$$

$$
= d\frac{d^{i-1}-1}{d+1} + 1 = \frac{d^i - d}{d+1} + \frac{d+1}{d+1} = \frac{d^i + 1}{d+1}.
$$

This is not divisible by p, because d is a primitive rth or $(2r)th$ root of 1 in \mathbb{Z}_p , and $gcd(i, 2r) = 1$.

Thus, the voltage generates G' (so the Factor Group Lemma (2.2) applies) unless $q = 3$, $r = 5$, and $i = 3$.

In this case, since $i = 3$, we have $a = b³ yw$. Also, we may assume $b = x$. Then a hamiltonian cycle in $Cay(G/\mathbb{Z}_p;S)$ is:

$$
\overline{e} \quad \xrightarrow{a^{-1}} \quad \overline{x^7y} \quad \xrightarrow{a^{-1}} \quad \overline{x^4} \quad \xrightarrow{a^{-1}} \quad \overline{x^y} \quad \xrightarrow{a^{-1}} \quad \overline{x^8} \quad \xrightarrow{a^{-1}} \quad \overline{x^5y}
$$
\n
$$
\xrightarrow{a^{-1}} \quad \overline{x^2} \quad \xrightarrow{a^{-1}} \quad \overline{x^9y} \quad \xrightarrow{a^{-1}} \quad \overline{x^6} \quad \xrightarrow{a^{-1}} \quad \overline{x^3y} \quad \xrightarrow{b} \quad \overline{x^4y^2}
$$
\n
$$
\xrightarrow{a} \quad \overline{x^7y^2} \quad \xrightarrow{a} \quad \overline{y^2} \quad \xrightarrow{a} \quad \overline{x^3y^2} \quad \xrightarrow{a} \quad \overline{x^6y^2} \quad \xrightarrow{a} \quad \overline{x^9y^2}
$$
\n
$$
\xrightarrow{a} \quad \overline{x^2y^2} \quad \xrightarrow{a} \quad \overline{x^5y^2} \quad \xrightarrow{a} \quad \overline{x^8y^2} \quad \xrightarrow{a} \quad \overline{x^4y} \quad \xrightarrow{a} \quad \overline{x^2y}
$$
\n
$$
\xrightarrow{a} \quad \overline{x^5} \quad \xrightarrow{a} \quad \overline{x^8y} \quad \xrightarrow{a} \quad \overline{x} \quad \xrightarrow{a} \quad \overline{x^4y} \quad \xrightarrow{a} \quad \overline{x^7}
$$
\n
$$
\xrightarrow{a} \quad \overline{y} \quad \xrightarrow{a} \quad \overline{x^3} \quad \xrightarrow{a} \quad \overline{x^6y} \quad \xrightarrow{a} \quad \overline{x^9} \quad \xrightarrow{b} \quad \overline{e}.
$$

Calculating modulo $\langle y \rangle$, and noting that $|a| = 2r = 10$, its voltage is

$$
a^{-9}b(a^9b)^2 = ab(a^{-1}b)^2 \equiv ((x^3w)x)(w^{-1}x^{-2})^2
$$

= $(x^4w^d)(w^{-1-d^2}x^{-4}) = x^4w^{-(d^2-d+1)}x^{-4}.$

Since d is a primitive 5th or 10th root of 1 in \mathbb{Z}_p , we know that it is not a primitive 6th root of 1, so $d^2 - d + 1 \not\equiv 0 \pmod{p}$. Therefore the voltage is nontrivial, and hence generates \mathbb{Z}_p , so the Factor Group Lemma [\(2.2\)](#page-2-0) applies.

Case 2. Assume $\#S = 3$, and S remains minimal in $G/\mathbb{Z}_p = \overline{G}$. Since $G = \mathbb{Z}_{2r} \ltimes \mathbb{Z}_{pq}$ and \mathbb{Z}_r centralizes \mathbb{Z}_q , we know $\overline{G} \cong (\mathbb{Z}_2 \ltimes \mathbb{Z}_q) \times \mathbb{Z}_r$. Also, since \mathbb{Z}_2 inverts \mathbb{Z}_q , we have $\mathbb{Z}_2 \ltimes \mathbb{Z}_q \cong D_{2q}$. Therefore, $\overline{G} \cong D_{2q} \times \mathbb{Z}_r$, so we may write $S = \{a, b, c\}$ with $\langle \overline{a}, \overline{b} \rangle = D_{2q}$ and $\langle \overline{c} \rangle = \mathbb{Z}_r$. Since $S \cap G' = \emptyset$, we $(note A.24)$ $(note A.24)$ $(note A.24)$ know that \bar{a} and b are reflections, so they have order 2 in G/\mathbb{Z}_p . Therefore, we may assume $|a| = |b| = 2$, for otherwise Corollary [2.3](#page-2-1) applies. Also, since \mathbb{Z}_r does not centralize \mathbb{Z}_p , we know that $|c| = r$. Replacing c by a conjugate, $(note A.25)$ $(note A.25)$ $(note A.25)$ we may assume $\langle c \rangle = \mathbb{Z}_r$.

We may assume $\mathbb{Z}_r \not\subset Z(G)$ (otherwise Lemma [2.9](#page-3-1) applies), so we may $(note A.26)$ $(note A.26)$ $(note A.26)$ assume $[a, c] \neq e$ (by interchanging a and b if necessary). Let

$$
W = ((b, a)^{q-1}, c, (c^{r-2}, a, c^{-(r-2)}, b)^{q-1}).
$$

Then

$$
(W, c^{r-2}, a, c^{-(r-1)}, a)
$$
 and $(W, c^{r-3}, a, c^{-(r-1)}, a, c)$

are hamiltonian cycles in Cay $(G/G';S)$. Let v be the voltage of the first of (note [A.27](#page-30-3))

these, and let $\gamma = [a, c] [a, c]^{ac}$. Then the voltage of the second is

$$
v \cdot (c^{r-2}ac^{-(r-1)}a)^{-1}(c^{r-3}ac^{-(r-1)}ac) = v \cdot (ac^{r-1}ac^{-(r-2)})(c^{r-3}ac^{-(r-1)}ac)
$$

= $v \cdot (ac^{-1}ac^{-1}acac)$
= $v \cdot (ac^{-1}[a, c]ac)$
= $v \cdot (ac^{-1}ac[a, c]^{ac})$
= $v \cdot ([a, c] [a, c]^{ac})$
= $v \gamma$.

Since [a, c] generates \mathbb{Z}_p , and ac does not invert \mathbb{Z}_p (this is because a inverts \mathbb{Z}_p , and c does not centralize \mathbb{Z}_p , we know $\gamma \neq e$. Therefore v and $v\gamma$ cannot both be trivial, so at least one of them generates \mathbb{Z}_p . Then the Factor Group Lemma (2.2) provides a hamiltonian cycle in Cay $(G; S)$.

Case 3. Assume $\#S = 3$, and S does not remain minimal in G/\mathbb{Z}_p . Choose a 2-element subset $\{a, b\}$ of S that generates G/\mathbb{Z}_p . As in Case [2,](#page-4-0) we have $G/\mathbb{Z}_p \cong D_{2q} \times \mathbb{Z}_r$. From the minimality of S, we see that $\langle a, b \rangle = D_{2q} \times \mathbb{Z}_r$ (up to a conjugate). The projection of $\{a, b\}$ to D_{2q} must be of the form $(note A.28)$ $(note A.28)$ $(note A.28)$ ${f,y}$ or ${f,fy}$, where f is a reflection and y is a rotation. Thus, using z to denote a generator of \mathbb{Z}_r (and noting that $y \notin S$, because $S \cap G' = \emptyset$), we see that $\{a, b\}$ must be of the form $(note A.29)$ $(note A.29)$ $(note A.29)$

- 1. $\{f, yz\}$, or
- 2. $\{f, fyz\}$, or
- 3. $\{fz, yz^{\ell}\}\text{, with } \ell \not\equiv 0 \pmod{r}$, or
- 4. $\{fz, fyz^{\ell}\}\text{, with } \ell \not\equiv 0 \pmod{r}.$

Let c be the final element of S . We may write

$$
c = f^i y^j z^k w \quad \text{with} \quad 0 \le i < 2, \ \ 0 \le j < q, \ \ \text{and} \ \ 0 \le k < r.
$$

Note that, since $S \cap G' = \emptyset$, we know that i and k cannot both be 0. Let d be a primitive r^{th} root of unity in \mathbb{Z}_p , such that

$$
w^z = w^d \text{ for } w \in \mathbb{Z}_p.
$$

Subcase 3.1. Assume $a = f$ and $b = yz$. From the minimality of S, we know $\langle b, c \rangle \neq G$, so $i = 0$, so we must have $k \neq 0$. $(note A.30)$ $(note A.30)$ $(note A.30)$

Subsubcase 3.1.1. Assume $k = 1$. Then $b \equiv c \pmod{G'}$, so we have the hamiltonian cycles $(a, b^{-(r-1)}, a, b^{r-2}, c)$ and $(a, b^{-(r-1)}, a, b^{r-3}, c^2)$ in $\text{Cay}(G/G';S)$. The voltage of the first is

$$
ab^{-(r-1)}ab^{r-2}c = (ab^{-(r-1)}ab^{r-1})(b^{-1}c)
$$

= ((f)(yz)^{-(r-1)}(f)(yz)^{r-1})((yz)^{-1}(y^{j}zw))
= (y^{2(r-1)})(y^{j-1}w) \t (note A.31)
=
$$
\begin{cases} y^{j+3}w \text{ if } r = 3 \text{ and } q = 5, \\ y^{j+7}w \text{ if } r = 5 \text{ and } q = 3 \end{cases}
$$

=
$$
y^{j-2}w, \t (note A.32)
$$

which generates $\mathbb{Z}_q \times \mathbb{Z}_p = G'$ if $j \neq 2$.

So we may assume $j = 2$ (for otherwise the Factor Group Lemma (2.2)) applies). In this case, the voltage of the second hamiltonian cycle is

$$
ab^{-(r-1)}ab^{r-3}c^2 = (ab^{-(r-1)}ab^{r-1})(b^{-2}c^2)
$$

\n
$$
= ((f)(yz)^{-(r-1)}(f)(yz)^{r-1})((yz)^{-2}(y^2zw)^2)
$$

\n
$$
= (y^{2(r-1)})(y^2w^{d+1})
$$

\n
$$
= \begin{cases} y^6w^{d+1} & \text{if } r = 3 \text{ and } q = 5, \\ y^{10}w^{d+1} & \text{if } r = 5 \text{ and } q = 3 \end{cases}
$$

\n
$$
= yw^{d+1},
$$
 (note A.34)

which generates $\mathbb{Z}_q \times \mathbb{Z}_p = G'$. So the Factor Group Lemma [\(2.2\)](#page-2-0) provides a (note [A.35](#page-33-0)) hamiltonian cycle in $Cay(G;S)$.

Subsubcase 3.1.2. Assume $k > 1$. We may replace c with its inverse, so we may assume $k \leq (r-1)/2$. Therefore $r \neq 3$, so we must have $r = 5$ and $k = 2$. So $a = f$, $b = yz$, and $c = y^j z^2 w$.

Subsubsubcase 3.1.2.1. Assume $j = 0$. Here is a hamiltonian

cycle in Cay $(G/\mathbb{Z}_p;S)$:

$$
\overline{e} \xrightarrow{\underline{a}} \overline{f} \xrightarrow{\underline{b}} \overline{fyz} \xrightarrow{\underline{a}} \overline{y^2z} \xrightarrow{\underline{b}} \overline{z^2} \xrightarrow{\underline{a}} \overline{fz^2}
$$
\n
$$
\xrightarrow{\underline{b}} \overline{fyz^3} \xrightarrow{\underline{a}} \overline{y^2z^3} \xrightarrow{\underline{b}} \overline{z^4} \xrightarrow{\underline{a}} \overline{fz^4} \xrightarrow{\underline{b^{-1}}} \overline{fyz^3}
$$
\n
$$
\xrightarrow{\underline{a}} \overline{yz^3} \xrightarrow{\underline{b}} \overline{y^2z^4} \xrightarrow{\underline{c^{-1}}} \overline{y^2z^2} \xrightarrow{\underline{a}} \overline{fyz^2} \xrightarrow{\underline{c}} \overline{fyz^4}
$$
\n
$$
\xrightarrow{\underline{b^{-1}}} \overline{fz^3} \xrightarrow{\underline{a}} \overline{z^3} \xrightarrow{\underline{b}} \overline{y} \xrightarrow{\underline{a}} \overline{fyz^4} \xrightarrow{\underline{a}} \overline{fyz^2z^4} \xrightarrow{\underline{c^{-1}}} \overline{fyz^2z^2}
$$
\n
$$
\xrightarrow{\underline{a}} \overline{yz^2} \xrightarrow{\underline{c^{-1}}} \overline{y} \xrightarrow{\underline{a}} \overline{fyz} \xrightarrow{\underline{b}} \overline{fz} \xrightarrow{\underline{a}} \overline{z}
$$
\n
$$
\xrightarrow{\underline{b^{-1}}} \overline{y^2} \xrightarrow{\underline{a}} \overline{fy} \xrightarrow{\underline{b}} \overline{fyz^2} \xrightarrow{\underline{a}} \overline{yz} \xrightarrow{\underline{b^{-1}}} \overline{e}.
$$

Letting $\epsilon \in {\pm 1}$, such that $w^f = w^{\epsilon}$, and calculating modulo $\langle y \rangle$, its voltage is

$$
(ab)^{4}(ab^{-1}ab)(c^{-1}ac)(b^{-1}ab)(ac^{-1})^{2}(abab^{-1})^{2}
$$

\n
$$
\equiv (fz)^{4}(fz^{-1}fz)(w^{-1}z^{-2}fz^{2}w)(z^{-1}fz)(fw^{-1}z^{-2})^{2}(fzfz^{-1})^{2}
$$

\n
$$
= (z^{4})(e)(w^{\epsilon-1}f)(f)(w^{-(\epsilon+d^{2})}z^{-4})(e)
$$

\n
$$
= z^{4}w^{-(d^{2}+1)}z^{-4}.
$$
\n(Note A.36)

Since d is a primitive 5th root of unity in \mathbb{Z}_p , we know that $d^2 + 1 \not\equiv 0 \pmod{p}$, so the voltage is nontrivial, and hence generates \mathbb{Z}_p , so the Factor Group Lemma [\(2.2\)](#page-2-0) applies.

Subsubcase 3.1.2.2. Assume $j \neq 0$. Since $\langle a, c \rangle \neq G$, this implies f centralizes \mathbb{Z}_p , so $G = D_6 \times (\mathbb{Z}_5 \ltimes \mathbb{Z}_p)$. $(note A.37)$ $(note A.37)$ $(note A.37)$ If $j = 1$ (so $c = yz^2w$), here is a hamiltonian cycle in Cay(G/\mathbb{Z}_p ; S):

$$
\overline{e} \quad \xrightarrow{a} \quad \overline{f} \quad \xrightarrow{b} \quad \overline{fyz} \quad \xrightarrow{a} \quad \overline{y^2z} \quad \xrightarrow{b} \quad \overline{z^2} \quad \xrightarrow{a} \quad \overline{fz^2}
$$
\n
$$
\xrightarrow{b} \quad \overline{fyz^3} \quad \xrightarrow{a} \quad \overline{y^2z^3} \quad \xrightarrow{b} \quad \overline{z^4} \quad \xrightarrow{b} \quad \overline{y} \quad \xrightarrow{a} \quad \overline{f\overline{y^2}}
$$
\n
$$
\xrightarrow{b} \quad \overline{fz} \quad \xrightarrow{a} \quad \overline{z} \quad \xrightarrow{b^{-1}} \quad \overline{y^2} \quad \xrightarrow{a} \quad \overline{f\overline{y}} \quad \xrightarrow{b} \quad \overline{f\overline{y^2z}}
$$
\n
$$
\xrightarrow{a} \quad \overline{yz} \quad \xrightarrow{b} \quad \overline{y^2z^2} \quad \xrightarrow{a} \quad \overline{f\overline{yz^2}} \quad \xrightarrow{c} \quad \overline{f\overline{y^2z^4}} \quad \xrightarrow{a} \quad \overline{yz^4}
$$
\n
$$
\xrightarrow{b^{-1}} \quad \overline{z^3} \quad \xrightarrow{a} \quad \overline{fz^3} \quad \xrightarrow{b} \quad \overline{f\overline{yz^4}} \quad \xrightarrow{a} \quad \overline{y^2z^4} \quad \xrightarrow{b^{-1}} \quad \overline{yz^3}
$$
\n
$$
\xrightarrow{a} \quad \overline{f\overline{y^2z^3}} \quad \xrightarrow{b} \quad \overline{fz^4} \quad \xrightarrow{c^{-1}} \quad \overline{f\overline{y^2z^2}} \quad \xrightarrow{a} \quad \overline{yz^2} \quad \xrightarrow{c^{-1}} \quad \overline{e}.
$$

Calculating modulo the normal subgroup $D_6 = \langle f, y \rangle$, its voltage is

$$
(ab)^{4}(ba)^{2}(b^{-1}a)(ba)^{2}(c)(ab^{-1}ab)^{2}(c^{-1}ac^{-1})
$$

\n
$$
\equiv (ez)^{4}(ze)^{2}(z^{-1}e)(ze)^{2}(z^{2}w)(ez^{-1}ez)^{2}(w^{-1}z^{-2}ew^{-1}z^{-2})
$$

\n
$$
= z^{7}w^{-1}z^{-2}
$$

\n
$$
= z^{2}w^{-1}z^{-2},
$$

because $|z| = r = 5$. Since this voltage generates \mathbb{Z}_p , the Factor Group Lemma (2.2) provides a hamiltonian cycle in Cay $(G; S)$.

If $j = 2$ (so $c = y^2 z^2 w$), here is a hamiltonian cycle in Cay(G/\mathbb{Z}_p ; S):

$$
\overline{e} \quad \xrightarrow{b^{-1}} \overline{y^2 z^4} \quad \xrightarrow{a} \quad \overline{f y z^4} \quad \xrightarrow{b} \quad \overline{f y^2} \quad \xrightarrow{b} \quad \overline{f z} \quad \xrightarrow{a} \quad \overline{z}
$$
\n
$$
\xrightarrow{b} \quad \overline{y z^2} \quad \xrightarrow{a} \quad \overline{f y^2 z^2} \quad \xrightarrow{b} \quad \overline{f z^3} \quad \xrightarrow{a} \quad \overline{z^3} \quad \xrightarrow{c} \quad \overline{y^2}
$$
\n
$$
\xrightarrow{b^{-1}} \quad \overline{y z^4} \quad \xrightarrow{a} \quad \overline{f y^2 z^4} \quad \xrightarrow{b} \quad \overline{f} \quad \xrightarrow{b} \quad \overline{f y z} \quad \xrightarrow{a} \quad \overline{y^2 z}
$$
\n
$$
\xrightarrow{b} \quad \overline{z^2} \quad \xrightarrow{a} \quad \overline{f z^2} \quad \xrightarrow{b} \quad \overline{f y z^3} \quad \xrightarrow{a} \quad \overline{y^2 z^3} \quad \xrightarrow{c} \quad \overline{y}
$$
\n
$$
\xrightarrow{b^{-1}} \quad \overline{z^4} \quad \xrightarrow{a} \quad \overline{f z^4} \quad \xrightarrow{b} \quad \overline{f y} \quad \xrightarrow{b} \quad \overline{f y^2 z} \quad \xrightarrow{a} \quad \overline{y z}
$$
\n
$$
\xrightarrow{b} \quad \overline{y^2 z^2} \quad \xrightarrow{a} \quad \overline{f y z^2} \quad \xrightarrow{b} \quad \overline{f y^2 z^3} \quad \xrightarrow{a} \quad \overline{y z} \quad \xrightarrow{c} \quad \overline{e}.
$$

Calculating modulo the normal subgroup $D_6 = \langle f, y \rangle$, its voltage is

$$
(b^{-1}ab^{2}(ab)^{2}(ac))^{3} \equiv (z^{-1}ez^{2}(ez)^{2}(ez^{2}w))^{3} = (z^{5}w)^{3} = w^{3},
$$

because $|z| = r = 5$. Since this voltage generates \mathbb{Z}_p , the Factor Group Lemma (2.2) provides a hamiltonian cycle in Cay $(G; S)$.

Subcase 3.2. Assume $a = f$ and $b = fyz$. Since $\langle b, c \rangle \neq G$, we must have $c \in \langle fy, z \rangle w$, so $(note A.38)$ $(note A.38)$ $(note A.38)$

$$
c = (fy)^i z^k w \quad \text{ with } \ 0 \le i < 2 \ \text{ and } \ 0 \le k < r.
$$

Subsubcase 3.2.1. Assume $k = 0$. Then $c = f y w$, so we have $c \equiv a \pmod{G'}$. Therefore $(b^{-(r-1)}, a, b^{r-1}, c)$ is a hamiltonian cycle in $Cay(G/G';S)$. Since

$$
b^{r-1} = (fyz)^{r-1} = (fy)^{r-1}(z^{r-1}) = (e)(z^{-1}) = z^{-1},
$$
\n(note A.39)

its voltage is

$$
b^{-(r-1)}ab^{r-1}c = (b^{-(r-1)}ab^{r-1}a)(ac) = [b^{r-1}, a](ac) = [z^{-1}, f](yw) = yw,
$$

which generates $\mathbb{Z}_q \times \mathbb{Z}_p = G'$, so the Factor Group Lemma [\(2.2\)](#page-2-0) provides a hamiltonian cycle in $Cay(G;S)$.

Subsubcase 3.2.2. Assume $i = 0$. Then $c = z^k w$, and we know $k \neq 0$, because $S \cap G' = \emptyset$.

If $k = 1$, then $((a, c)^{r-1}, a, b)$ is a hamiltonian cycle in Cay $(G/G'; S)$. ($(note A.40)$ $(note A.40)$ $(note A.40)$ Letting $\epsilon \in {\pm 1}$, such that $w^f = w^{\epsilon}$, its voltage is

$$
(ac)^{r-1} a b = (ac)^r (c^{-1} b)
$$
\n
$$
= (fzw)^r ((zw)^{-1} (fyz))
$$
\n
$$
= (f^r z^r w^{(\epsilon d)^{r-1} + (\epsilon d)^{r-2} + \dots + 1}) (w^{-1} z^{-1} fyz)
$$
\n
$$
= f w^{(\epsilon d)^{r-1} + (\epsilon d)^{r-2} + \dots + \epsilon d} f y
$$
\n
$$
= w^{\epsilon((\epsilon d)^{r-1} + (\epsilon d)^{r-2} + \dots + \epsilon d)} y
$$
\n
$$
= w^{d((\epsilon d)^{r-2} + (\epsilon d)^{r-3} + \dots + 1)} y.
$$
\n(note A.43)

Since ϵd is a primitive rth or $(2r)th$ root of unity in \mathbb{Z}_p , it is clear that the exponent of w is nonzero (mod p). Therefore the voltage generates \mathbb{Z}_p × $(note A.44)$ $(note A.44)$ $(note A.44)$ $\mathbb{Z}_q = G'$, so the Factor Group Lemma [\(2.2\)](#page-2-0) provides a hamiltonian cycle in $Cay(G;S)$.

We may now assume $k \geq 2$. However, we may also assume $k \leq (r-1)/2$ (by replacing c with its inverse if necessary). So $r = 5$ and $k = 2$. In this case, here is a hamiltonian cycle in $Cay(G/\mathbb{Z}_p;S)$:

$$
\overline{e} \quad \xrightarrow{\alpha} \quad \overline{f} \quad \xrightarrow{\beta} \quad \overline{fyz} \quad \xrightarrow{\alpha} \quad \overline{y^2z} \quad \xrightarrow{\beta^{-1}} \quad \overline{y} \quad \xrightarrow{\alpha} \quad \overline{f\overline{y^2}}
$$
\n
$$
\xrightarrow{\alpha} \quad \overline{fz} \quad \xrightarrow{\alpha} \quad \overline{z} \quad \xrightarrow{\beta^{-1}} \quad \overline{y^2} \quad \xrightarrow{\alpha} \quad \overline{f\overline{y}} \quad \xrightarrow{\beta} \quad \overline{f\overline{y^2z}}
$$
\n
$$
\xrightarrow{\alpha} \quad \overline{yz} \quad \xrightarrow{\beta} \quad \overline{y^2z^2} \quad \xrightarrow{\alpha} \quad \overline{fyz^2} \quad \xrightarrow{\beta} \quad \overline{f\overline{y^2z^3}} \quad \xrightarrow{\alpha} \quad \overline{yz^3}
$$
\n
$$
\xrightarrow{\beta} \quad \overline{y^2z^4} \quad \xrightarrow{\alpha} \quad \overline{fyz^4} \quad \xrightarrow{\beta^{-1}} \quad \overline{fz^3} \quad \xrightarrow{\alpha} \quad \overline{z^3} \quad \xrightarrow{\beta} \quad \overline{yz^4}
$$
\n
$$
\xrightarrow{\alpha^{-1}} \quad \overline{yz^2} \quad \xrightarrow{\alpha} \quad \overline{f\overline{y^2z^2}} \quad \xrightarrow{\alpha} \quad \overline{f\overline{y^2z^4}} \quad \xrightarrow{\beta^{-1}} \quad \overline{f\overline{yz^3}} \quad \xrightarrow{\alpha} \quad \overline{y^2z^3}
$$
\n
$$
\xrightarrow{\beta} \quad \overline{z^4} \quad \xrightarrow{\alpha} \quad \overline{fz^4} \quad \xrightarrow{\alpha^{-1}} \quad \overline{fz^2} \quad \xrightarrow{\alpha} \quad \overline{z^2} \quad \xrightarrow{\alpha^{-1}} \quad \overline{e}.
$$

Its voltage is

$$
(abab^{-1})^2(ab)^4(ab^{-1}ab)(c^{-1}ac)(b^{-1}ab)(ac^{-1})^2.
$$

Since the voltage is in \mathbb{Z}_p , it is a power of w, and it is clear that the only terms that contribute a power of w to the product are contained in the last three parenthesized expressions (because c does not appear anywhere else). Choosing $\epsilon \in {\pm 1}$, such that $w^f = w^{\epsilon}$, we calculate the product of these three expressions modulo $\langle y \rangle$:

$$
(c^{-1}ac)(b^{-1}ab)(ac^{-1})^2 \equiv ((z^2w)^{-1}f(z^2w))((fz)^{-1}f(fz))(f(z^2w)^{-1})^2
$$

= $(w^{\epsilon-1}f)(f)(w^{-(\epsilon+d^2)}z^{-4})$ (note A.45)
= $w^{-(d^2+1)}z^{-4}$

Since the power of w is nonzero, the voltage generates \mathbb{Z}_p , so the Factor Group Lemma (2.2) provides a hamiltonian cycle in Cay $(G; S)$.

Subsubcase 3.2.3. Assume i and k are both nonzero. Since $\langle a, c \rangle \neq$ G, this implies that f centralizes w. Therefore $G = D_{2q} \times (\mathbb{Z}_r \ltimes \mathbb{Z}_p)$. Also, $(note A.46)$ $(note A.46)$ $(note A.46)$ since $0 \leq i < 2$, we know $i = 1$, so $c = fyz^kw$. We may assume $k \neq 1$ (for otherwise $b \equiv c \pmod{\mathbb{Z}_p}$, so Corollary [2.3](#page-2-1) applies). Since we may also assume that $k \leq (r-1)/2$ (by replacing c with its inverse if necessary), then we have $r = 5$ and $k = 2$.

Here is a hamiltonian cycle in $Cay(G/\mathbb{Z}_p;S)$:

$$
\overline{e} \xrightarrow{a} \overline{f} \xrightarrow{b} \overline{yz} \xrightarrow{a} \overline{f y^2 z} \xrightarrow{b} \overline{y^2 z^2} \xrightarrow{a} \overline{f y z^2}
$$
\n
$$
\xrightarrow{c} \overline{z^4} \xrightarrow{a} \overline{f z^4} \xrightarrow{b^{-1}} \overline{y z^3} \xrightarrow{a} \overline{f y^2 z^3} \xrightarrow{c} \overline{y^2}
$$
\n
$$
\xrightarrow{a} \overline{f y} \xrightarrow{b} \overline{z} \xrightarrow{a} \overline{f z} \xrightarrow{b} \overline{y z^2} \xrightarrow{a} \overline{f y^2 z^2}
$$
\n
$$
\xrightarrow{c} \overline{y^2 z^4} \xrightarrow{a} \overline{f y z^4} \xrightarrow{b^{-1}} \overline{z^3} \xrightarrow{a} \overline{f z^3} \xrightarrow{c} \overline{y}
$$
\n
$$
\xrightarrow{a} \overline{f y^2} \xrightarrow{b} \overline{y^2 z} \xrightarrow{a} \overline{f y z} \xrightarrow{b} \overline{z^2} \xrightarrow{a} \overline{f z^2}
$$
\n
$$
\xrightarrow{c} \overline{y z^4} \xrightarrow{a} \overline{f y^2 z^4} \xrightarrow{b^{-1}} \overline{y^2 z^3} \xrightarrow{a} \overline{f y z^3} \xrightarrow{c} \overline{e}.
$$

Calculating modulo the normal subgroup $D_6 = \langle f, y \rangle$, its voltage is

$$
((ab)^{2}acab^{-1}ac)^{3} \equiv ((ez)^{2}e(z^{2}w)ez^{-1}e(z^{2}w)))^{3}
$$

= $(z^{4}wzw)^{3}$
= $w^{3(d+1)}$, (note A.47)

which generates $\langle w \rangle = \mathbb{Z}_p$, so the Factor Group Lemma [\(2.2\)](#page-2-0) applies. $(note A.48)$ $(note A.48)$ $(note A.48)$

Subcase 3.3. Assume $a = fz$ and $b = yz^{\ell}$, with $\ell \neq 0$. Since $\langle a, c \rangle \neq G$ and $\langle b, c \rangle \neq G$, we must have $c \in \langle f, z \rangle w$ and $c \in \langle y, z \rangle w$. So $c \in \langle z \rangle w$; write (note [A.49](#page-37-2)) $c = z^k w$ (with $k \neq 0$, because $S \cap G' = \emptyset$).

Subsubcase 3.3.1. Assume $\ell = k$. Then $b \equiv c \equiv z^{\ell} \pmod{G'}$, so

$$
(a^{-1}, b^{-(r-1)}, a, b^{r-2}, c)
$$

is a hamiltonian cycle in $Cay(G/G';S)$. Its voltage is

$$
a^{-1}b^{-(r-1)}ab^{r-2}c = (fz)^{-1}(yz^{\ell})^{-(r-1)}(fz)(yz^{\ell})^{r-2}(z^{\ell}w)
$$

= $(f^{-1}y^{-(r-1)}f)y^{r-2}w$
= $(y^{r-1})y^{r-2}w$
= $y^{2r-3}w$.
(f inverts y)

Since $2(3) - 3 \not\equiv 0 \pmod{5}$ and $2(5) - 3 \not\equiv 0 \pmod{3}$, we have $2r - 3 \not\equiv 0$ 0 (mod q), so y^{2r-3} is nontrivial, and hence generates \mathbb{Z}_q . Therefore, this voltage generates $\mathbb{Z}_q \times \mathbb{Z}_p = G'$. So the Factor Group Lemma [\(2.2\)](#page-2-0) provides a hamiltonian cycle in $Cay(G;S)$.

Subsubcase 3.3.2. Assume $\ell \neq k$. We may assume $\ell, k \leq (r - 1)/2$ (perhaps after replacing b and/or c by their inverses). Then we must have $r = 5$ and $\{\ell, k\} = \{1, 2\}.$

 $(note A.50)$ $(note A.50)$ $(note A.50)$

For $(\ell, k) = (1, 2)$, here is a hamiltonian cycle in Cay(G/\mathbb{Z}_p ; S):

$$
\overline{e} \quad \xrightarrow{a} \quad \overline{f}z \quad \xrightarrow{b} \quad \overline{f}yz^2 \quad \xrightarrow{a^{-1}} \quad \overline{y^2z} \quad \xrightarrow{a^{-1}} \quad \overline{f}y \quad \xrightarrow{b^{-1}} \quad \overline{f}z^4
$$
\n
$$
\xrightarrow{a} \quad \overline{z^3} \quad \xrightarrow{a^{-1}} \quad \overline{f}z^2 \quad \xrightarrow{a^{-1}} \quad \overline{z} \quad \xrightarrow{a^{-1}} \quad \overline{f} \quad \xrightarrow{b^{-1}} \quad \overline{f}y^2z^4
$$
\n
$$
\xrightarrow{a} \quad \overline{y} \quad \xrightarrow{a} \quad \overline{f}yz^2 \quad \xrightarrow{a} \quad \overline{yz^2} \quad \xrightarrow{a} \quad \overline{f}y^2z^3 \quad \xrightarrow{a} \quad \overline{y}z^4
$$
\n
$$
\xrightarrow{a^{-1}} \quad \overline{f}yz^3 \quad \xrightarrow{a^{-1}} \quad \overline{y^2z^2} \quad \xrightarrow{a^{-1}} \quad \overline{f}yz \quad \xrightarrow{a^{-1}} \quad \overline{f}yz \quad \xrightarrow{a^{-1}} \quad \overline{y^2} \quad \xrightarrow{a^{-1}} \quad \overline{f}yz^4
$$
\n
$$
\xrightarrow{a^{-1}} \quad \overline{y^2z^3} \quad \xrightarrow{b} \quad \overline{z^4} \quad \xrightarrow{a^{-1}} \quad \overline{f}z^3 \quad \xrightarrow{a^{-1}} \quad \overline{z^2} \quad \xrightarrow{c^{-1}} \quad \overline{e}.
$$

Its voltage is

$$
aba^{-2}b^{-1}a^{-4}b^{-1}a^{9}ba^{-6}ba^{-2}c^{-1}.
$$

Since there is precisely one occurrence of c in this product, and therefore only one occurrence of w , it is impossible for this appearance of w to cancel. So the voltage is nontrivial, and therefore generates \mathbb{Z}_p , so the Factor Group Lemma (2.2) provides a hamiltonian cycle in Cay $(G; S)$.

For $(\ell, k) = (2, 1)$, here is a hamiltonian cycle in Cay $(G/\mathbb{Z}_p; S)$:

$$
\overline{e} \quad \xrightarrow{a^{-1}} \quad \overline{f}z^4 \quad \xrightarrow{a^{-1}} \quad \overline{z^3} \quad \xrightarrow{a^{-1}} \quad \overline{f}z^2 \quad \xrightarrow{a^{-1}} \quad \overline{z} \quad \xrightarrow{a^{-1}} \quad \overline{f}
$$
\n
$$
\xrightarrow{a^{-1}} \quad \overline{f}y^2z^4 \quad \xrightarrow{a^{-1}} \quad \overline{yz^3} \quad \xrightarrow{a^{-1}} \quad \overline{f}y^2z^2 \quad \xrightarrow{c} \quad \overline{f}y^2z^3 \quad \xrightarrow{a^{-1}} \quad \overline{yz^2}
$$
\n
$$
\xrightarrow{a^{-1}} \quad \overline{f}y^2z \quad \xrightarrow{b} \quad \overline{f}z^3 \quad \xrightarrow{a^{-1}} \quad \overline{f}y^2z^2 \quad \xrightarrow{c} \quad \overline{f}y^2z^3 \quad \xrightarrow{a^{-1}} \quad \overline{f}yz^3
$$
\n
$$
\xrightarrow{a^{-1}} \quad \overline{y^2z^2} \quad \xrightarrow{a^{-1}} \quad \overline{f}yz \quad \xrightarrow{c} \quad \overline{f}yz^2 \quad \xrightarrow{a^{-1}} \quad \overline{f}yz \quad \xrightarrow{a^{-1}} \quad \overline{f}yz^3 \quad \xrightarrow{a^{-1}} \quad \overline{f}yz^4 \quad \xrightarrow{a^{-1}} \quad \overline{y^2z^3} \quad \xrightarrow{b} \quad \overline{f}y
$$
\n
$$
\xrightarrow{a^{-1}} \quad \overline{y^2z^4} \quad \xrightarrow{c} \quad \overline{y^2} \quad \xrightarrow{a^{-1}} \quad \overline{f}yz^4 \quad \xrightarrow{a^{-1}} \quad \overline{y^2z^3} \quad \xrightarrow{b} \quad \overline{e}.
$$

Choosing $\epsilon \in {\pm 1}$, such that $w^f = w^{\epsilon}$, we calculate the voltage, modulo $\langle y \rangle$:

$$
a^{-4}\left((a^{-2}ba^{-2})ca^{-3}c(a^{-2}b)\right)^2
$$

\n
$$
\equiv (fz)^{-4}\left(((fz)^{-2}z^2(fz)^{-2})(zw)(fz)^{-3}(zw)((fz)^{-2}z^2)\right)^2
$$

\n
$$
= z^{-4}((z^{-2})(zw)(fz^{-3})(zw)(e))^2
$$
 (note A.51)
\n
$$
= z^{-4}(z^{-1}wfz^{-2}w)^2
$$

\n
$$
= z^{-4}(w^{d^6 + \epsilon d^4 + \epsilon d^3 + d}z^{-6})
$$
 (note A.52)
\n
$$
= z^{-4}(w^{d(\epsilon d^3 + \epsilon d^2 + 2)}z^4).
$$

Since d is a primitive rth root of unity in \mathbb{Z}_p , and $r = 5$, we know $d^4 + d^3 +$ $d^2 + d + 1 \equiv 0 \pmod{5}$. Combining this with the fact that

$$
-(d3 + d2 - 1)(d3 + d2 + 2) + (d2 + d - 1)(d4 + d3 + d2 + d + 1) = 1,
$$

and

$$
(d3+d2+3)(-d3+-d2+2)+(d2+d-1)(d4+d3+d2+d+1) = 5 \not\equiv 0 \pmod{p},
$$

we see that $\epsilon d^3 + \epsilon d^2 + 2$ is nonzero in \mathbb{Z}_p . Therefore the voltage is nontrivial, so it generates \mathbb{Z}_p . Hence, the Factor Group Lemma [\(2.2\)](#page-2-0) provides a hamiltonian cycle in $Cay(G;S)$.

Subcase 3.4. Assume $a = fz$ and $b = fyz^{\ell}$, with $\ell \neq 0$. Since $\langle a, c \rangle \neq G$ and $\langle b, c \rangle \neq G$, we must have $c \in \langle f, z \rangle w$ and $c \in \langle fy, z \rangle w$. So $c \in \langle z \rangle w$; (note [A.54](#page-39-1)) write $c = z^k w$ (with $k \neq 0$ because $S \cap G' = \emptyset$).

We may assume $k, \ell \le (r - 1)/2$, by replacing either or both of b and c with their inverses if necessary. We may also assume $\ell \neq 1$, for otherwise $a \equiv b \pmod{\langle y \rangle}$, so Corollary [2.3](#page-2-1) applies. Therefore, we must have $r = 5$ $(note A.55)$ $(note A.55)$ $(note A.55)$ and $\ell = 2$. We also have $k \in \{1, 2\}$.

For $k = 1$, here is a hamiltonian cycle in Cay $(G/\mathbb{Z}_p; S)$:

$$
\overline{e} \quad \xrightarrow{a} \quad \overline{fz} \quad \xrightarrow{b^{-1}} \quad \overline{yz^4} \quad \xrightarrow{a^{-1}} \quad \overline{fy^2z^3} \quad \xrightarrow{a^{-1}} \quad \overline{yz^2} \quad \xrightarrow{b} \quad \overline{fz^4}
$$
\n
$$
\xrightarrow{a^{-1}} \quad \overline{z^3} \quad \xrightarrow{a^{-1}} \quad \overline{fz^2} \quad \xrightarrow{a^{-1}} \quad \overline{z} \quad \xrightarrow{a^{-1}} \quad \overline{f} \quad \xrightarrow{b^{-1}} \quad \overline{yz^3}
$$
\n
$$
\xrightarrow{a} \quad \overline{fy^2z^4} \quad \xrightarrow{a} \quad \overline{y} \quad \xrightarrow{a} \quad \overline{fy^2z} \quad \xrightarrow{c^{-1}} \quad \overline{fy^2} \quad \xrightarrow{a} \quad \overline{yz}
$$
\n
$$
\xrightarrow{a} \quad \overline{fy^2z^2} \quad \xrightarrow{b} \quad \overline{y^2z^4} \quad \xrightarrow{a^{-1}} \quad \overline{fyz^3} \quad \xrightarrow{a^{-1}} \quad \overline{y^2z^2} \quad \xrightarrow{a^{-1}} \quad \overline{fyz}
$$
\n
$$
\xrightarrow{a^{-1}} \quad \overline{y^2} \quad \xrightarrow{a^{-1}} \quad \overline{fyz^4} \quad \xrightarrow{a^{-1}} \quad \overline{y^2z^3} \quad \xrightarrow{a^{-1}} \quad \overline{fyz^2} \quad \xrightarrow{a^{-1}} \quad \overline{y^2z}
$$
\n
$$
\xrightarrow{a^{-1}} \quad \overline{fy} \quad \xrightarrow{b} \quad \overline{z^2} \quad \xrightarrow{a} \quad \overline{fz^3} \quad \xrightarrow{a} \quad \overline{z^4} \quad \xrightarrow{c} \quad \overline{e}.
$$

Its voltage is

$$
ab^{-1}a^{-2}ba^{-4}b^{-1}a^{3}c^{-1}a^{2}ba^{-9}ba^{2}c
$$

Calculating modulo y, the product between the occurrence of c^{-1} and the $occurrence of c is$

$$
a^2ba^{-9}ba^2 \equiv (fz)^2(fz^2)(fz)^{-9}(fz^2)(fz)^2 = z^{-1},
$$
 (note A.51)

which does not centralize w. So the occurrence of w^{-1} in c^{-1} does not cancel the occurrence of w in c . Therefore the voltage is nontrivial, so it generates \mathbb{Z}_p , so the Factor Group Lemma [\(2.2\)](#page-2-0) applies.

For $k = 2$, here is a hamiltonian cycle in Cay $(G/\mathbb{Z}_p; S)$:

$$
\overline{e} \xrightarrow{\underline{a}} \overline{f} \xrightarrow{\underline{b}} \overline{y} \xrightarrow{\underline{a}} \overline{f} \xrightarrow{\underline{a}} \overline{
$$

Its voltage is

$$
ab^2a^4b^{-1}a^5ca^2ba^9ba^{-2}c^{-1}.
$$

Calculating modulo y , the product between the occurrence of c and the occurrence of c^{-1} is

$$
a^2ba^9ba^{-2} \equiv (fz)^2(fz^2)(fz)^9(fz^2)(fz)^{-2} = fz^{13} = fz^3,
$$
 (note A.56)

 $(note A.57)$ $(note A.57)$ $(note A.57)$

 $(note A.58)$ $(note A.58)$ $(note A.58)$

which does not centralize w. So the occurrence of w^{-1} in c^{-1} does not (cancel the occurrence of w in c . Therefore the voltage is nontrivial, so it generates \mathbb{Z}_p , so the Factor Group Lemma [\(2.2\)](#page-2-0) applies.

Case 4. Assume $\#S \geq 4$. Write $S = \{s_1, s_2, \ldots, s_\ell\}$, and let $G_i =$ $\langle s_1, \ldots, s_i \rangle$ for $i = 1, 2, \ldots, \ell$. Since S is minimal, we know

$$
\{e\} \subsetneq G_1 \subsetneq G_2 \subsetneq \cdots \subsetneq G_\ell \subseteq G.
$$

Therefore, the number of prime factors of $|G_i|$ is at least i. Since $|G| = 30p$ is the product of only 4 primes, and $\ell = \#S \geq 4$, we conclude that $|G_i|$ has exactly i prime factors, for all i. (In particular, we must have $\#S = 4$.) By permuting the elements of $\{s_1, s_2, \ldots, s_\ell\}$, this implies that if S_0 is any subset of S, then $|\langle S_0 \rangle|$ is the product of exactly $\#S_0$ primes. In particular, by letting $#S_0 = 1$, we see that every element of S must have prime order.

Now, choose $\{a, b\} \subset S$ to be a 2-element generating set of $G/G' \cong$ $\mathbb{Z}_2 \times \mathbb{Z}_r$. From the preceding paragraph, we see that we may assume $|a|=2$ and $|b| = r$ (by interchanging a and b if necessary). Since $|\langle a, b \rangle|$ is the product of only two primes, we must have $|\langle a, b \rangle| = 2r$, so $\langle a, b \rangle \cong G/G'$. Therefore

$$
G = (\langle a \rangle \times \langle b \rangle) \ltimes G'.
$$

Since $\langle S \rangle = G$, we may choose $s_1 \in S$, such that $s_1 \notin \langle a, b \rangle \mathbb{Z}_p$. Then $\langle a, b, s_1 \rangle = \langle a, b \rangle \mathbb{Z}_q$. Since a centralizes both a and b, but does not centralize \mathbb{Z}_q , which is contained in $\langle a, b, s_1 \rangle$, we know that $[a, s_1]$ is nontrivial. Therefore $\langle a, s_1 \rangle$ contains $\langle a, b, s_1 \rangle' = \mathbb{Z}_q$. Then, since $|\langle a, s_1 \rangle|$ is only divisible by two primes, we must have $|\langle a, s_1 \rangle| = 2q$. Also, since $S \cap G' = \emptyset$, we must have $|s_1| \neq q$; therefore $|s_1| = 2$. Hence $2r | \langle b, s_1 \rangle|$, so we must have $|\langle b, s_1 \rangle| = 2r$. Therefore

$$
[b,s_1] \in \langle b,s_1 \rangle \cap \langle a,b,s_1 \rangle' = \langle b,s_1 \rangle \cap \mathbb{Z}_q = \{e\},\
$$

so b centralizes s_1 . It also centralizes a, so b centralizes $\langle a, s_1 \rangle = \mathbb{Z}_2 \ltimes \mathbb{Z}_q$.

Similarly, if we choose $s_2 \in S$ with $s_2 \notin \langle a, b \rangle \mathbb{Z}_q$, then a centralizes $\langle b, s_2 \rangle = \mathbb{Z}_r \ltimes \mathbb{Z}_p.$

Therefore $G = \langle a, s_1 \rangle \times \langle b, s_2 \rangle$, so

$$
\mathrm{Cay}(G;S) \cong \mathrm{Cay}(\langle a,s_1 \rangle;\{a,s_1\}) \times \mathrm{Cay}(\langle b,s_2 \rangle;\{b,s_2\}).
$$

This is a Cartesian product of hamiltonian graphs and therefore is hamilto- \Box nian.

References

- [1] B. Alspach: Lifting Hamilton cycles of quotient graphs, Discrete Math. 78 (1989), 25–36.
- [2] C. C. Chen and N. Quimpo: On strongly hamiltonian abelian group graphs, in K. L. McAvaney, ed.: Combinatorial Mathematics VIII (Proceedings, Geelong, Australia 1980), Springer-Verlag, Berlin, 1981, pp. 23–24.
- [3] S. J. Curran and J. A. Gallian: Hamiltonian cycles and paths in Cayley graphs and digraphs—a survey, Discrete Math. 156 (1996) 1–18.
- [4] S. J. Curran, D.W. Morris, and J. Morris: Cayley graphs of order 16p are hamiltonian, Ars Math. Contemp. (to appear). <http://amc.imfm.si/index.php/amc/article/view/207>
- [5] E. Ghaderpour and D.W. Morris: Cayley graphs of order $27p$ are hamiltonian, Internat. J. Comb. 2011, Article ID 206930, 16 pages. <http://www.hindawi.com/journals/ijct/2011/206930/>
- [6] E. Ghaderpour and D.W. Morris: Cayley graphs of order 150 are hamiltonian (unpublished). <http://arxiv.org/src/1102.5156/anc/150.pdf>
- [7] M. Hall: *The Theory of Groups*, Macmillan, New York, 1959.
- [8] D. Jungreis and E. Friedman: Cayley graphs on groups of low order are hamiltonian (unpublished).
- [9] K. Keating and D.Witte: On Hamilton cycles in Cayley graphs with cyclic commutator subgroup, Ann. Discrete Math. 27 (1985) 89–102.
- [10] K. Kutnar, D. Marušič, J. Morris, D. W. Morris, and P. Šparl: Hamiltonian cycles in Cayley graphs whose order has few prime factors, Ars Math. Contemp. 5 (2012), no. 1, 27–71. <http://amc.imfm.si/index.php/amc/article/view/177>
- [11] D. Marušič: Hamiltonian circuits in Cayley graphs, *Discrete Math.* 46 (1983), no. 1, 49–54.
- [12] I. Pak and R. Radoičić: Hamiltonian paths in Cayley graphs, *Discrete* Math. 309 (2009) 5501–5508.
- [13] D.Witte: On hamiltonian circuits in Cayley diagrams, Discrete Math. 38 (1982) 99–108.
- [14] D.Witte and J. A. Gallian: A survey: Hamiltonian cycles in Cayley graphs, Discrete Math. 51 (1984) 293–304.

Appendix A. Notes to aid the referee

A.1. By assumption, there is a hamiltonian cycle $C = (s_i)_{i=1}^n$ in Cay $(G/N; S)$, such that $s_i = s$, for some i. Replacing s_i with t does not change the hamiltonian cycle in Cay($G/N; S$), because $t \equiv s = s_i \pmod{N}$, but the voltage of the new cycle is

$$
s_1s_2\cdots s_{i-1}ts_{i+1}s_{i+2}\cdots s_n.
$$

Since $t \neq s_i$, this is not equal to the voltage of the original cycle. So at least one of the two cycles has a voltage that is $\neq e$. Since |N| is prime, it is generated by any of its nontrivial elements, so the Factor Group Lemma [\(2.2\)](#page-2-0) applies.

A.2. The walk traverses all of the vertices in $\langle S_0 \rangle$, then the vertices in the coset $a \langle S_0 \rangle$, then the vertices in $a^2 \langle S_0 \rangle$, etc., so it visits all of the vertices in G. Also, note that, for any $h \in H$, we have

$$
\left(\prod_{x\in\langle a\rangle} h^x\right)^a = \prod_{x\in\langle a\rangle} h^{xa} = \prod_{x\in\langle a\rangle} h^x,
$$

so $\prod_{x \in \langle a \rangle} h^x \in C_H(a)$. Therefore, letting $h = s_1 s_2 \cdots s_m \in H$, we have

$$
(ha)^{|a|} = a^{|a|}(a^{-|a|}ha^{|a|}) \cdots (a^{-3}ha^3)(a^{-2}ha^2)(a^{-1}ha)
$$

\n
$$
= \prod_{x \in \langle a \rangle} h^x \qquad \text{(because } a^{|a|} = e)
$$

\n
$$
\in C_H(a)
$$

\n
$$
= H \cap Z(G)
$$

\n
$$
= \{e\},
$$

\n
$$
(A \subset \langle S_0 \rangle \text{ and } \langle S_0 \rangle \text{ abelian } \Rightarrow
$$

\n
$$
C_H(a) \subset C_H(\langle S_0, a \rangle) = C_H(G)
$$

so the walk is closed. Since the length of the walk is $|G|$, these facts imply that it is a hamiltonian cycle in $Cay(G;S)$.

A.3. Suppose S_0 is a minimal generating set of D_{2pq} , and S_0 contains 3 reflections a, at^i , and at^j , where t is a rotation that generates T. Since $|D_{2pq}|$ is the product of 3 primes, and the minimality of S_0 implies

$$
\langle a \rangle \subsetneq \langle a, at^i \rangle \subsetneq \langle a, at^i, at^j \rangle,
$$

we must have $\langle a, at^i, at^j \rangle = D_{2pq}$. From the minimality of S_0 , we know $\langle at^i, at^j \rangle$ is a proper subgroup D_{2pq} , so we may assume $q \mid (i - j)$ (after interchanging p and q if necessary). Since $\langle a, at^i \rangle$ and $\langle a, at^j \rangle$ must also be proper subgroups (and are not equal to each other), we may assume $p \mid i$ and $q \mid j$ (after interchanging i and j if necessary). Then

$$
q \mid (i - j) + j = i.
$$

So pq | i, which means $at^i = a$. This contradicts the fact that a and at^i are two different reflections.

A.4. If $\langle \varphi(c) \rangle = T$, then $\langle c \rangle = T \times \mathbb{Z}_r$ has index 2 in G. So $\langle a, c \rangle = G$, which contradicts the fact that S is a minimal generating set.

A.7. From the cited theorem of [\[7\]](#page-21-8) (but replacing the symbol r with τ), we know that G is "metacyclic", and there exist $a, b \in G$, such that

- $G = \langle b \rangle \ltimes \langle a \rangle$, and
- gcd $((\tau 1)|b|, |a|) = 1$, where $\tau \in \mathbb{Z}$ is chosen so that $a^b = a^{\tau}$.

[\(1\)](#page-5-3) Since G is metacyclic, we know G' is cyclic. In fact, the proof points out that $G' = \langle a \rangle$. (This follows easily from the fact that $gcd(\tau - 1, |a|) = 1$.)

[\(2\)](#page-5-4) Suppose $a^k \in Z(G)$. This means

$$
e = [a^k, b] = a^{-k} (a^k)^b = a^{-k} a^{k\tau} = a^{(\tau - 1)k},
$$

so |a| $|(\tau - 1)k$. Since $gcd(\tau - 1, |\alpha|) = 1$, this implies $|\alpha| | k$, so $\alpha^k = e$.

[\(3\)](#page-5-5) Let $\mathbb{Z}_n = \langle b \rangle$. Then $G = \langle b \rangle \ltimes \langle a \rangle = \mathbb{Z}_n \ltimes G'.$

[\(4\)](#page-5-6) This is one of the conclusions of the cited theorem of [\[7\]](#page-21-8) (except that we have replaced r with τ).

A.8. From Lemma [2.11,](#page-5-2) we may write $G = \langle b \rangle \times \langle a \rangle$ with $|b| = 2$ and $\langle a \rangle = G' \cong \mathbb{Z}_{15p}$. Choose $\tau \in \mathbb{Z}$, such that $a^b = a^{\tau}$. Since $|b| = 2$, we must have $\tau^2 \equiv 1 \pmod{15p}$, so $\tau \equiv \pm 1 \pmod{10p}$ each prime divisor of 15p. Also, we know

$$
\gcd(\tau - 1, 15p) = \gcd(\tau - 1, |a|) = 1,
$$

which means $\tau \neq 1$ modulo any prime divisor of 15p. We conclude that $\tau \equiv -1 \pmod{15p}$, so $G \cong D_{30p}$.

A.9. From Lemma [2.11,](#page-5-2) we may write $G = \langle b \rangle \times \langle a \rangle$ with $\langle b \rangle \cong \mathbb{Z}_{2p} \cong \mathbb{Z}_2 \times \mathbb{Z}_p$ and $\langle a \rangle = G' \cong \mathbb{Z}_{15}$. Since

$$
gcd(|\mathbb{Z}_p|, |\text{Aut}(\mathbb{Z}_{15})|) = gcd(p, \phi(15)) = gcd(p, 8) = 1,
$$

we know that \mathbb{Z}_p centralizes \mathbb{Z}_{15} . So $G = (\mathbb{Z}_2 \ltimes \mathbb{Z}_{15}) \times \mathbb{Z}_p$. Since $G' = \mathbb{Z}_{15}$, the argument of [A.8](#page-25-2) implies that $\mathbb{Z}_2 \ltimes \mathbb{Z}_{15} \cong D_{30}$.

A.10. From Lemma [2.11,](#page-5-2) we may write $G = \langle b \rangle \times \langle a \rangle$, with $G' = \langle a \rangle$. Choose $\tau \in \mathbb{Z}$, such that $a^b = a^{\tau}$.

We claim $|a|$ is odd. Suppose not. From Lemma [2.11\(](#page-5-2)[4\)](#page-5-6), we know that $\gcd(\tau-1, |a|) = 1$, so τ is even. But this contradicts the fact that τ must be relatively prime to $|a|$.

So |G'| is an odd divisor of 30p. In other words, $|G'|$ is a divisor of 15p. However, we are assuming that $|G'|$ is not prime, and that it is not 15. Therefore, $|G'|$ is either 3p or 5p.

A.11. From Lemma [2.11,](#page-5-2) we know $G' \cap Z(G) = \{e\}$, so some element of \mathbb{Z}_{2r} must act nontrivially on \mathbb{Z}_q .

A.12. We already know that \mathbb{Z}_r centralizes \mathbb{Z}_q . Obviously, it also centralizes \mathbb{Z}_{2r} . If it also centralizes \mathbb{Z}_p , then it centralizes all of G, so it is in $Z(G)$. This implies that $G = (\mathbb{Z}_2 \ltimes \mathbb{Z}_{pq}) \times \mathbb{Z}_r$. Since $G' = \mathbb{Z}_{pq}$, the argument of [A.8](#page-25-2) implies that $\mathbb{Z}_2 \ltimes \mathbb{Z}_{pq} \cong \overline{D}_{2pq}$.

A.13. Since $r \in \{3, 5\}$, we have $r - 1 \in \{2, 4\}$. Since 15p is odd, this implies $gcd(r-1, 15p) = 1.$

A.14. If q | |a|, then $\langle a \rangle$ contains a subgroup of order q, which is obviously centralized by a. However, \mathbb{Z}_q is the unique subgroup of order q in G (since a normal Sylow quality is unique). So a centralizes \mathbb{Z}_q . Since the image of a in G/G' has order 2, this implies that \mathbb{Z}_2 centralizes \mathbb{Z}_q .

A.15. Since b has even order, there is some $k \in \mathbb{Z}$, such that $|b^k| = 2$. Then $\langle a \rangle$ and $\langle b^k \rangle$ are Sylow 2-subgroups of G, so they must be conjugate. Since b generates G/G' and centralizes b^k , this implies there is some $x \in G'$, such that $a^x = b^k$. Writing $G' = C_{G'}(a) \times H$, for some subgroup H, we may write $x = ch$ with $c \in C_{G'}(a)$ and $h \in H$. Then

$$
a^h = a^{ch} = a^x = b^k \in \langle b \rangle,
$$

so $a \in \langle b, h \rangle = \langle b \rangle \ltimes H$. Since $\langle a, b \rangle = G$, we conclude that $\langle b \rangle \ltimes H = G$, so $H = G'$. Therefore $C_{G'}(a)$ is trivial.

A.16. We have either $r = 3$ or $r = 5$. We now show that, for a given choice of r, we need only consider the single situation described in the text.

Since all elements of order 2 are conjugate, we may assume α is the unique element of order 2 in \mathbb{Z}_{2r} ; in other words, $a = x^r$. Since b generates G/G' , there is no harm in assuming that the projection of b to \mathbb{Z}_{2r} is the generator x, so $b = xg'$ for some $g' \in G'$. Since $\langle a, b \rangle = G$, we must have $\langle g' \rangle = G'$, so there is no harm in assuming that $g' = yw$.

We said earlier that $y^x = y^{-1}$.

Choose $d \in \mathbb{Z}$, such that $w^x = w^d$. Since a does not centralize \mathbb{Z}_p , we know that x^r does not centralize \mathbb{Z}_p , so $d^r \not\equiv 1 \pmod{p}$. Also, we said earlier that \mathbb{Z}_r does not centralize \mathbb{Z}_p , so x^2 does not centralize \mathbb{Z}_p , so $d^2 \not\equiv 1 \pmod{p}$. On the other hand, $x^{2r} = e$ does centralize \mathbb{Z}_p , so $d^{2r} \equiv 1 \pmod{p}$. Therefore d is a primitive $(2r)^{\text{th}}$ root of 1 in \mathbb{Z}_p . This implies that $d^r \equiv -1 \pmod{p}$. Since $d \not\equiv -1 \pmod{p}$, we may divide by $d+1$, so, since r is odd, we have

$$
\sum_{i=0}^{r-1} (-1)^i d^i = \frac{d^r + 1}{d+1} \equiv \frac{0}{d+1} \equiv 0 \pmod{p}.
$$

A.17. We have $a^{2r} \in G'$ (since $|G/G'| = 2r$), and a obviously centralizes a^{2r} . Since $\langle a \rangle$ has trivial centralizer in G', this implies $a^{2r} = e$, so $|a| = 2r$. Similarly, $|b| = 2r$.

A.19. Since $|b| = 2r$, we know $d^{2r} \equiv 1 \pmod{p}$. Also, since $\langle b^2 \rangle = \mathbb{Z}_r$ does not centralize y, we have $d^2 \not\equiv 1 \pmod{p}$. Therefore d is either a primitive rth or $(2r)th$ root of unity modulo p.

A.20. To calculate the exponents of b and y, we can work modulo the normal subgroup $\langle w \rangle$. Since $gcd(i, 2r) = 1$, we know $1 - i$ is odd, so b^{1-i} inverts y (but b inverts y). Therefore

$$
(biy)b(y-1b-i)b = biy2b2-i
$$
 (*b* inverts *y*)
=
$$
b2y-2
$$

$$
\begin{pmatrix} \gcd(i, 2r) = 1, \text{ so } 2-i \text{ is odd,} \\ \text{so } b2-i \text{ inverts } y \end{pmatrix}.
$$

Now, to calculate the exponent of y , we can work modulo the normal subgroup $\langle y \rangle$. Since $w^b = w^d$, we have

$$
(biw)b(w-1b-i)b = bi+1wd-1b1-i = b2w(d-1)d1-i.
$$

A.21. To calculate the exponents of b and y, we work modulo $\langle w \rangle$. Since b inverts y, we know b^2 centralizes y, so

$$
(b2y-2)(i-1)/2 = (b2)(i-1)/2(y-2)(i-1)/2 = bi-1y-(i-1).
$$

Now, to calculate the exponent of w , we can work modulo the normal subgroup $\langle y \rangle$. For convenience, let $\underline{b} = b^2$, $\underline{w} = w^{(d-1)d^{1-i}}$, and $i' = (i-1)/2$. Then

$$
(b^2 w^{(d-1)d^{1-i}})^{(i-1)/2} = (\underline{bw})^{i'}
$$

= $\underline{b}^{i'} (\underline{b}^{-(i'-1)} \underline{w} \underline{b}^{i'-1}) (\underline{b}^{-(i'-2)} \underline{w} \underline{b}^{i'-2}) \cdots (\underline{b}^{-1} \underline{w} \underline{b}^1) (\underline{b}^{-0} \underline{w} \underline{b}^0)$
= $b^{i-1} (b^{-(i-3)} \underline{w} \underline{b}^{i-3}) (b^{-(i-5)} \underline{w} \underline{b}^{i-5}) \cdots (b^{-2} \underline{w} \underline{b}^2) (b^{-0} \underline{w} \underline{b}^0)$
= $b^{i-1} (\underline{w}^{d^{i-3}}) (\underline{w}^{d^{i-5}}) \cdots (\underline{w}^{d^2}) (\underline{w}^{d^0})$
= $b^{i-1} \underline{w}^{d^{i-3}+d^{i-5}+\cdots+d^2+1}$
= $b^{i-1} w^{(d-1)d^{1-i}(d^{i-3}+d^{i-5}+\cdots+d^2+1)}$.

A.22. For convenience, let
$$
\underline{w} = w^{(d-1)(d^{i-3}+d^{i-5}+\cdots+d^2+1)}
$$
. Then
\n
$$
(b^{i-1}y^{-(i-1)}w^{(d-1)d^{1-i}(d^{i-3}+d^{i-5}+\cdots+d^2+1)})(b^i yw)
$$
\n
$$
= (b^{i-1}y^{-(i-1)}\underline{w}^{d^{1-i}})(b^i yw)
$$
\n
$$
= (b^{2i-1}y^{i-1}(\underline{w}^{d^{1-i}})^{d^i})(yw)
$$
\n
$$
(b^i \text{ inverts } y, \text{ since } i \text{ is odd})
$$
\n
$$
= b^{2i-1}y^{(i-1)+1}\underline{w}^d(w)
$$
\n
$$
\begin{pmatrix} y \text{ commutes with } w, \\ \text{since both are in } \mathbb{Z}_{pq} \end{pmatrix}.
$$

Also, we have

$$
\underline{w}^d(w) = (w^{(d-1)(d^{i-3}+d^{i-5}+\cdots+d^2+1)})^d(w) = w^{(d-1)d(d^{i-3}+d^{i-5}+\cdots+d^2+1)+1}.
$$

A.23. Recall that $\{q, r\} = \{3, 5\}$. Since $q \mid i$ and $i < r$, we must have $q < r$, so $q = 3$ and $r = 5$. Then, since $q \mid i$ and $i < r$, we have $3 \mid i$ and $i < 5$, so it is obvious that $i = 3$.

A.24. Let c be an element of S with nontrivial projection to \mathbb{Z}_r , so $\mathbb{Z}_r \subset \langle c \rangle$. Since S is minimal and $\#(S \setminus \{c\}) > 1$, we know that $|\overline{G}/\langle \overline{c} \rangle|$ cannot be prime. Therefore $\langle \overline{c} \rangle = \mathbb{Z}_r$.

The other elements of S must have trivial projection to \mathbb{Z}_r . (Otherwise, the previous paragraph implies they belong to $\mathbb{Z}_r = \langle \bar{c} \rangle$, contradicting the minimality of \overline{S} . So $\overline{a}, \overline{b} \in D_{2q}$.

A.25. We have $c^r \in \mathbb{Z}_p$ (since $\overline{c}^r = \overline{e}$), and c obviously centralizes c^r . Since $\langle \overline{c} \rangle = \mathbb{Z}_r$ acts nontrivially on \mathbb{Z}_p , and hence has trivial centralizer in \mathbb{Z}_p , this implies $c^r = e$, so $|c| = r$.

This implies that $\langle c \rangle$ is a Sylow r-subgroup of G, so it is conjugate to any other Sylow r-subgroup, including \mathbb{Z}_r .

A.26. If $\mathbb{Z}_r \subset Z(G)$, then $G = \langle a, b \rangle \times \mathbb{Z}_r$. Also, since $|a| = |b| = 2$, we know that $\langle a, b \rangle$ is a dihedral group. Therefore Lemma [2.9](#page-3-1) applies.

31

A.28. Let $H = \langle a, b \rangle$. Since $\langle \overline{a}, \overline{b} \rangle = \overline{G}$, we know $2qr \mid |H|$. On the other hand, the minimality of S implies $H \neq G$, so H is a proper divisor of $|G|$ = 2pqr. Therefore $|H| = 2qr$. Since G is solvable, any two Hall subgroups of the same order are conjugate [\[7,](#page-21-8) Thm. $9.3.1(2)$, p. 141], so H is conjugate to $D_{2q} \times \mathbb{Z}_r$.

A.29. Let $\varphi: \langle a, b \rangle \to D_{2q}$ be the projection with kernel \mathbb{Z}_r .

Case 1. Assume the projection of a to \mathbb{Z}_r is trivial. This means $a = f$. Then b must project nontrivially to \mathbb{Z}_r (since $\langle a, b \rangle = D_{2q} \times \mathbb{Z}_r$). Therefore, we may assume the projection of b to \mathbb{Z}_r is z (since every nontrivial element of \mathbb{Z}_r is a generator). Therefore b is either yz or fyz , depending on whether $\varphi(b)$ is y or fy, respectively.

Case 2. Assume the projection of a to \mathbb{Z}_r is nontrivial. We may assume $a = fz$ (since every nontrivial element of \mathbb{Z}_r is a generator).

We have $b = \varphi(b) z^{\ell}$ for some $\ell \in \mathbb{Z}$, and we wish to show that we may assume $\ell \not\equiv 0 \pmod{r}$. That is, we wish to show that we may assume $b \neq \varphi(b).$

- Since $y \notin S$, we know that $b \neq \varphi(b)$ if $\varphi(b) = y$.
- If $b = \varphi(b) = fy$, then interchanging a and b would put us in Case [1.](#page-3-3)

A.30. Suppose $i \neq 0$, which means $i = 1$. Since y and z commute, we have $\langle yz \rangle = \langle y \rangle \times \langle z \rangle$. Therefore

$$
\langle b, c \rangle = \langle y, z, f y^j z^k w \rangle = \langle y, z, f w \rangle.
$$

This contains

$$
(fw)^{-1}(fw)^{z} = (fw)^{-1}(fw^{d}) = w^{d-1}.
$$

Since $d \neq 1$, we have $\langle w^{d-1} \rangle = \mathbb{Z}_p$, so $\langle b, c \rangle$ contains w. Since it also contains y, z, and fw, we conclude that $\langle b, c \rangle = G$.

A.31. We have

$$
((f)(yz)^{-(r-1)}(f))(yz)^{r-1} = f^2(y^{-1}z)^{-(r-1)}(yz)^{r-1} \quad (f \text{ inverts } y \text{ and centralizes } z)
$$

= $y^{2(r-1)}$ $(|f| = 2 \text{ and } y \text{ commutes with } z).$

Also, $(yz)^{-1}(y^jzw) = y^{j-1}w$, since y commutes with z.

A.32. Since $|y| = q$, it suffices to check (for each of the two possible values of q) that the given exponent of y is congruent to $j - 2$, modulo q:

- If $q = 5$, then $j + 3 \equiv j 2 \pmod{q}$.
- If $q = 3$, then $j + 7 \equiv j 2 \pmod{q}$.

A.33. We have

 $((f)(yz)^{-(r-1)}(f))(yz)^{r-1} = f^{2}(y^{-1}z)^{-(r-1)}(yz)^{r-1}$ (f inverts y and centralizes z) $=y^{2(r-1)}$ (|f| = 2 and y commutes with z).

Also,

$$
(y2zw)2 = (y2zw)(y2zw)
$$

= (y⁴zw)(zw) (y commutes with both z and w)
= y⁴z²w⁴⁺¹ (w^z = w^d),

so

$$
(yz)^{-2}(y^2zw)^2 = (yz)^{-2}(y^4z^2w^{d+1}) = y^2w^{d+1},
$$

since y commutes with z .

A.34. Since $|y| = q$, it suffices to check (for each of the two possible values of q) that the given exponent of y is congruent to 1, modulo q:

- If $q = 5$, then $6 \equiv 1 \pmod{q}$.
- If $q = 3$, then $10 \equiv 1 \pmod{q}$.

A.35. Since d is a primitive rth root of unity in \mathbb{Z}_p , we know $d \not\equiv -1 \pmod{p}$. Therefore w^{d+1} is nontrivial, and hence generates \mathbb{Z}_p .

A.36. Since y commutes with z , we have

$$
(fz)^4 = f^4 z^4 = z^4,
$$

\n
$$
f z^{-1} f z = f^2 = e,
$$

\n
$$
w^{-1} z^{-2} f z^2 w = w^{-1} f w = w^{-1+\epsilon} f,
$$

\n
$$
z^{-1} f z = f,
$$

\n
$$
(f z f z^{-1})^2 = (f^2)^2 = e^2 = e.
$$

Also,

$$
(fw^{-1}z^{-2})^2 = (fw^{-1}z^{-2})(fw^{-1}z^{-2})
$$

= $fw^{-1}fw^{-d^2}z^{-4}$ (*z* commutes with *f*, but $w^z = w^d$)
= $f^2w^{-\epsilon-d^2}z^{-4}$ ($w^f = w^{\epsilon}$)
= $w^{-(\epsilon+d^2)}z^{-4}$ ($|f| = 2$).

A.37. Since y centralizes both z and w (and $j \neq 0$), we have

$$
\langle c \rangle = \langle y^j z^2 w \rangle = \langle y \rangle \times \langle z^2 w \rangle.
$$

Therefore $\langle a, c \rangle = \langle f, y, z^2w \rangle$.

Since f centralizes z , this contains

$$
(z2w)-1(z2w)f = (z2w)-1(z2wf) = [w, f].
$$

If f does not centralize \mathbb{Z}_p , then $[w, f]$ is nontrivial, so it generates $\mathbb{Z}_p = \langle w \rangle$. This implies that $\langle a, c \rangle$ contains w. Since it also contains a, c, and z^2w , this would imply that $\langle a, c \rangle = G$, which is a contradiction. Therefore f centralizes \mathbb{Z}_p .

So f and y each centralize both z and w . Therefore

$$
G = \langle f, y \rangle \times \langle z, w \rangle = D_{2q} \times (\mathbb{Z}_r \ltimes \mathbb{Z}_p) = D_6 \times (\mathbb{Z}_5 \ltimes \mathbb{Z}_p).
$$

A.38. Since z commutes with f and y, we have $\langle fyz \rangle = \langle fy \rangle \times \langle z \rangle$. Also, since $c = f^i y^j z^k w$, we have $c \in \langle fy, z \rangle y^{\ell} w$ for some $\ell \in \mathbb{Z}$. Therefore

$$
\langle b, c \rangle = \langle fy, z, c \rangle = \langle fy, z, y^{\ell}w \rangle.
$$

This contains

$$
(y^{\ell}w)^{-1}(y^{\ell}w)^{z} = (y^{\ell}w)^{-1}(y^{\ell}w^{z})
$$

\n
$$
= w^{-1}w^{z}
$$

\n
$$
= [w, z].
$$

\n
$$
(z \text{ centralizes } y)
$$

Since \mathbb{Z}_r does not centralize \mathbb{Z}_p , this commutator is nontrivial, so it generates $\mathbb{Z}_p = \langle w \rangle$. Therefore $\langle b, c \rangle$ contains w. It also contains fy, z , and $y^{\ell}w$. If $\ell \neq 0$, this implies $\langle b, c \rangle = G$, which contradicts the minimality of S.

Therefore, we must have $\ell = 0$, so $c \in \langle fy, z \rangle y^{\ell} w = \langle fy, z \rangle w$.

A.39.

- z commutes with both f and y, so $(fyz)^{r-1} = (fy)^{r-1}z^{r-1}$
- fy is a reflection, so it has order 2, so $(fy)^{r-1} = e$, since $r-1$ is even.
- $z^r = e$, since $z \in \mathbb{Z}_r$, so $z^{r-1} = z^{-1}$.

A.40. Modulo $G' = \langle y, w \rangle$, we have $a \equiv f, b \equiv fz$, and $c \equiv z$. Since f commutes with z , we have

$$
(ac)^{r-1}ab) \equiv (fz)^{r-1}f\,f z = f^{r+1}z^r = e,
$$

since $|f| = 2, r+1$ is even, and $|z| = r$. Therefore, the walk in Cay($G/G';S$) is closed.

A.41.
\n
$$
(ac)^{r-1}ab = (ac)^{r-1}((ac)(ac)^{-1})ab = ((ac)^{r-1}(ac))(c^{-1}a^{-1})ab = (ac)^r(c^{-1}b)
$$

A.42.

$$
(fxw)^r = ((fz)w)((fz)w) \cdots ((fz)w)((fz)w)
$$

= $(fz)^r((fz)^{-(r-1)}w(fz)^{r-1})((fz)^{-(r-2)}w(fz)^{r-2}) \cdots ((fz)^{-1}w(fz)^1)((fz)^{-0}w(fz)^0)$
= $f^r z^r w^{(\epsilon d)^{r-1}+(\epsilon d)^{r-2}+\cdots+1}.$

A.43.

- $f^r = f$ because $|f| = 2$ and r is odd.
- $\bullet \ \vert z \vert = r$ and z commutes with both f and $y.$

A.44. Let $\omega \in \mathbb{Z}$. If

$$
\omega^{r-2} + \omega^{r-3} + \cdots \omega + 1 \equiv 0 \; (\text{mod } p),
$$

then

$$
\omega^{r-1} - 1 = (\omega - 1)(\omega^{r-2} + \omega^{r-3} + \cdots + \omega + 1) \equiv (\omega - 1)(0) = 0 \pmod{p},
$$

so ω is an $(r-1)$ st root of unity in \mathbb{Z}_p . Therefore, it cannot be a primitive rth or $(2r)th$ root of unity.

A.45. We have

$$
(z2w)-1 f(z2w) = (w-1 z-2) f(z2w)
$$

\n
$$
= w-1 f w
$$
 (z commutes with f)
\n
$$
= w-1 (fwf) f
$$
 (f² = e)
\n
$$
= w\epsilon-1 f,
$$

\n(fz)⁻¹ f(fz) = (z⁻¹ f⁻¹) f(fz)
\n
$$
= f
$$
 (f and z commute).

and

$$
(f(z^2w)^{-1})^2 = (fw^{-1}z^{-2})(fw^{-1}z^{-2})
$$

= $(fw^{-1}f)(z^{-2}w^{-1}z^2)z^{-4}$ (*f* and *z* commute)
= $(w^{-\epsilon})(w^{-d^2})z^{-4}$
= $w^{-(\epsilon+d^2)}z^{-4}$.

A.46. Since $0 \le i < 2$ and we are assuming that $i \ne 0$, we have $c = fyz^kw$, so

$$
\langle a, c \rangle = \langle f, f y z^k w \rangle = \langle f, y z^k w \rangle.
$$

Since y commutes with both z and w , we have

$$
\langle y z^k w \rangle = \langle y \rangle \times \langle z^k w \rangle,
$$

so $\langle a, c \rangle$ contains both y and $z^k w$. Therefore, since f centralizes z, it also contains

$$
(z^k w)^{-1} (z^k w)^f = (w^{-1} z^{-k}) (z^k w^f) = w^{-1} w^f = [w, f].
$$

If f does not centralize w , then this commutator is nontrivial, so it generates $\mathbb{Z}_p = \langle w \rangle$. This implies that $\langle a, c \rangle$ contains w. Since it also contains f, y, and $z^k w$ (with $k \neq 0$), we conclude that $\langle a, c \rangle = G$. This is a contradiction. So f must centralize w .

Hence, f and y each centralize both z and w , so

$$
G = \langle f, y \rangle \times \langle z, w \rangle = D_{2q} \times (\mathbb{Z}_r \ltimes \mathbb{Z}_p).
$$

A.47.

$$
(z4wzw)3 = ((z-1wz)w)3
$$

= (w^dw)³
= w^{3(d+1)}.

A.48. *d* is a primitive r^{th} root of unity in \mathbb{Z}_p , so $d+1 \not\equiv 0 \pmod{p}$. Since $p \ge 7$, this implies $3(d+1) \not\equiv 0 \pmod{p}$. Therefore $w^{3(d+1)}$ is nontrivial, and hence generates \mathbb{Z}_p .

A.49. We have $c = f^i y^j z^k w$.

We claim that $j = 0$ (which means $c \in \langle f, z \rangle w$). Since z commutes with f , we have

$$
\langle a\rangle=\langle fz\rangle=\langle f\rangle\times\langle z\rangle.
$$

Therefore

$$
\langle a, c \rangle = \langle f, z, f^i y^j z^k w \rangle = \langle f, z, y^j w \rangle,
$$

which contains

$$
(yjw)-1(yjw)z = (w-1y-j)(yjwz) = w-1wz = [w, z].
$$

Since \mathbb{Z}_r does not centralize \mathbb{Z}_p , this commutator is nontrivial, so it generates $\mathbb{Z}_p = \langle w \rangle$. Therefore $\langle a, c \rangle$ contains w. So it contains $(y^j w) w^{-1} = y^j$.

If $j \neq 0$, this implies that $\langle a, c \rangle$ contains y. Since it also contains f, z, and w, we would have $\langle a, c \rangle = G$, which is a contradiction. Therefore $j = 0$, as claimed.

We claim that $i = 0$ (which means $c \in \langle y, z \rangle w$). Since z commutes with y (and $\ell \neq 0$), we have

$$
\langle b \rangle = \langle y z^{\ell} \rangle = \langle y \rangle \times \langle z^{\ell} \rangle = \langle y \rangle \times \langle z \rangle.
$$

Therefore

$$
\langle b, c \rangle = \langle y, z, f^i y^j z^k w \rangle = \langle y, z, f^i w \rangle,
$$

which contains

$$
(fiw)-1(fiw)z = (w-1f-i)(fiwz) = w-1wz = [w, z].
$$

Since \mathbb{Z}_r does not centralize \mathbb{Z}_p , this commutator is nontrivial, so it generates $\mathbb{Z}_p = \langle w \rangle$. Therefore $\langle b, c \rangle$ contains w. So it contains $(f^iw)w^{-1} = f^i$.

If $i \neq 0$, this implies that $\langle b, c \rangle$ contains f. Since it also contains y, z, and w, we would have $\langle b, c \rangle = G$, which is a contradiction. Therefore $i = 0$, as claimed.

Since $i = 0$ and $j = 0$, we have $c = z^k w$.

A.50. If $r = 3$, then $(r - 1)/2 = 1$, so $\ell = k = 1$, contradicting the fact that $\ell \neq k$.

Thus, we must have $r = 5$, so $(r - 1)/2 = 2$. Since $\ell \neq k$, we must have $\{\ell, k\} = \{1, 2\}.$

A.51. Recall that f commutes with z, and $f^2 = e$

A.52.

$$
(z^{-1}wfz^{-2}w)^2 = ((z^{-1}wz)f(z^{-3}wz^3)z^{-3})^2
$$
 (f commutes with z)
\n
$$
= ((w^d)f(w^{d^3})z^{-3})^2
$$

\n
$$
= (fw^{d^3 + \epsilon d}z^{-3})^2
$$

\n
$$
= (fw^{d^3 + \epsilon d}z^{-3})(fw^{d^3 + \epsilon d}z^{-3})
$$

\n
$$
= (fw^{d^3 + \epsilon d}f)(z^{-3}w^{d^3 + \epsilon d}z^3)z^{-6}
$$
 (f commutes with z)
\n
$$
= (w^{\epsilon(d^3 + \epsilon d)})(w^{d^3(d^3 + \epsilon d)})z^{-6}
$$

\n
$$
= (w^{d^6 + \epsilon d^4 + \epsilon d^3 + d})z^{-6}
$$
 ($\epsilon^2 = 1$).

A.53. Since d is an r^{th} root of unity in \mathbb{Z}_p , and $r = 5$, we have $d^6 \equiv d \pmod{p}$, so, modulo p , we have

$$
d^{6} + \epsilon d^{4} + \epsilon d^{3} + d \equiv d + \epsilon d^{4} + \epsilon d^{3} + d = \epsilon d^{4} + \epsilon d^{3} + 2d = d(\epsilon d^{3} + \epsilon d^{2} + 2).
$$

Also, since $|z| = r = 5$, we have $z^{-6} = z^4$.

A.54. If we write $c = f^{i}y^{j}z^{k}w$, then, exactly as in note [A.49,](#page-37-2) we must have $j = 0$ (which means $c \in \langle f, z \rangle w$).

We may also write write $c = (fy)^i y^{j'} z^k w$. We claim that $j' = 0$ (which means $c \in \langle fy, z \rangle w$). Since z commutes with both f and y (and $\ell \neq 0$), we have

$$
\langle b \rangle = \langle f y z^{\ell} \rangle = \langle f y \rangle \times \langle z^{\ell} \rangle = \langle f y \rangle \times \langle z \rangle.
$$

Therefore

$$
\langle b, c \rangle = \langle fy, z, (fy)^i y^{j'} z^k w \rangle = \langle fy, z, y^{j'} w \rangle,
$$

which contains

$$
(y^{j'}w)^{-1}(y^{j'}w)^z = (w^{-1}y^{-j'})(y^{j'}w^z) = w^{-1}w^z = [w, z].
$$

Since \mathbb{Z}_r does not centralize \mathbb{Z}_p , this commutator is nontrivial, so it generates $\mathbb{Z}_p = \langle w \rangle$. Therefore $\langle b, c \rangle$ contains w. So it contains $(y^{j'}w)w^{-1} = y^{j'}$.

If $j' \neq 0$, this implies that $\langle b, c \rangle$ contains y. Since it also contains fy, z , and w, we would have $\langle b, c \rangle = G$, which is a contradiction. Therefore $j' = 0$, as claimed.

Therefore

$$
c \in \langle f, z \rangle w \cap \langle fy, z \rangle w = \big(\langle f, z \rangle \cap \langle fy, z \rangle\big) w = \langle z \rangle w.
$$

A.55. If $r = 3$, we have $1 < \ell \le (r-1)/2 = 1$, which is impossible. Therefore $r = 5$. So we have $1 < \ell \le (r - 1)/2 = 2$, which implies $\ell = 2$. Also, since $1 \leq k \leq (r-1)/2 = 2$, we have $k \in \{1,2\}$.

A.56. Recall that f commutes with z, and $f^2 = e$. Also, we have $z^5 = z^r = e$, so $z^{13} = z^3$.

A.57. We have

$$
(f z3)-1 w (f z3) = z-3 (f-1 w f) z3 = z-3 wε z3 = wε d3.
$$

Since d is a primitive rth root of unity in \mathbb{Z}_p , we know $d^3 \not\equiv \pm 1 \pmod{p}$. Therefore $\epsilon d^3 \not\equiv 1 \pmod{p}$, so $(fz^3)^{-1}w(fz^3) \not=w$.

A.58. Since $|\langle a, b, s_1 \rangle|$ is the product of only three primes (and is divisible by $|\langle a, b \rangle| = 2r$, it must be either 2qr or 2pr.

However, if $|\langle a, b, s_1 \rangle| = 2pr$, then $\langle a, b, s_1 \rangle$ contains \mathbb{Z}_p (since \mathbb{Z}_p is a normal Sylow p -subgroup of G , and hence is the unique subgroup of order p in G). So

$$
\langle a, b, s_1 \rangle \supset \langle a, b \rangle \mathbb{Z}_p.
$$

Since they have the same order, these two subgroups must be equal, so

$$
s_1 \in \langle a, b, s_1 \rangle = \langle a, b \rangle \, \mathbb{Z}_p.
$$

This contradicts the choice of s_1 .

Therefore $|\langle a, b, s_1 \rangle| = 2qr$. Since \mathbb{Z}_q is a normal Sylow q-subgroup of G, we know that it is the unique subgroup of order q in G. So $\mathbb{Z}_q \subset \langle a, b, s_1 \rangle$. Hence (by comparing orders) we must have $\langle a, b, s_1 \rangle = \langle a, b \rangle \mathbb{Z}_q$.