Lesson

EUREKA MATH ${ }^{2}$.

Lesson 2:

Interpret a fraction as division by writing remainders as fractions.

CCSS Standard - 5.NF.B. 3

FLUENCY (10-min)

Counting on the Numbers Line

What FRACTIONAL UNIT does the number line show? Raise your hand when you know.

ThirdS Use the number line to count forward by thirds.

Now count forward by thirds again. This time rename the fractions as whole numbers when possible.

Now count forward by thirds again. This time rename the fractions as whole numbers and mixed numbers when possible.
Notice: Whole numbers and fractional units.

FLUENCY (10-min)

Choral Response: Equal Parts

How many EQUAL PARTS is the model portioned into?
2

What FRACTIONAL UNIT does the model show?
Halves
How many HALVES make 1 whole?

2 Halves

How many HALVES make 2 wholes?

4 Halves

```
FLUENCY (10-min)
```

Choral Response: Equal Parts

How many EQUAL PARTS is the model portioned into?
4

What FRACTIONAL UNIT does the model show?

Fourths

How many Fourths make 1 whole?

4 Fourths

How many Fourths make 2 wholes?

8 Fourths

Choral Response: Equal Parts

How many EQUAL PARTS is the model portioned into?
3

What FRACTIONAL UNIT does the model show?
Thirds
How many THIRDS make 1 whole?

3 Thirds

How many THIRDS make 2 wholes?

6 Thirds

Choral Response: Equal Parts

How many EQUAL PARTS is the model portioned into?
2

What FRACTIONAL UNIT does the model show?

Halves

How many HALVES make 1 whole?

2 Halves

How many HALVES make 2 wholes?

4 Halves

How many EQUAL PARTS is the model portioned into?
3

What FRACTIONAL UNIT does the model show?
Thirds
How many THIRDS make 1 whole?

3 Thirds

How many THIRDS make 2 wholes?

6 Thirds

How many EQUAL PARTS is the model portioned into?
4

What FRACTIONAL UNIT does the model show?
Fourths
How many Fourths make 1 whole?

4 Fourths

How many Fourths make 2 wholes?

8 Fourths

Write and complete the equation.
When possible, rename the sum as a WHOLE number.

$$
1 \frac{1}{4}+1 \frac{1}{4}=
$$

$$
1 \frac{3}{5}+2 \frac{1}{5}=
$$

$$
2 \frac{2}{6}+2 \frac{3}{6}=
$$

$2 \frac{3}{8}+3 \frac{4}{8}=$ \qquad

$$
1 \frac{7}{10}+2 \frac{3}{10}=\square=
$$

$$
2 \frac{3}{12}+4 \frac{6}{12}=
$$

$$
3 \frac{20}{100}+1 \frac{80}{100}=\quad=
$$

Some things to notice:

- Both models show 7 wholes.
- Model A has 2 wholes partitioned into fifths.
- Model B has all 7 wholes partitioned into fifths.
- Model A has 5 wholes that are not partitioned.
- Both represent $7 \div 5$.

The models show different ways to think about sharing units equally. Today, we will relate sharing units equally to division with remainders.

Suppose 4 friends want to share 5 brownies equally. Does each friend get more or less than $\mathbf{1}$ brownie? What division expression can we write to represent 4 friends sharing 5 brownies equally?

$5 \div 4$ or $5 / 4=11 / 4$

How do we know the expression is $5 \div 4$ and not $4 \div 5$?
TASK:
Each sticky note represents ONE brownie.
Use your materials to show how 4 friends could share 5 brownies equally.

LEARN (30-min)

Friend 1

Friend 3

$1 / 4$	$1 / 4$
$1 / 4$	$1 / 4$

$1 / 4$	$1 / 4$
$1 / 4$	$1 / 4$

$1 / 4$	$1 / 4$
$1 / 4$	$1 / 4$

$1 / 4$	$1 / 4$			
$1 / 4$	$1 / 4$		$1 / 4$	$1 / 4$
:---	:---			
$1 / 4$	$1 / 4$			

Friend 2

Friend 4

```
LEARN (30-min)
Equate Mixed Numbers and Fractions Greater Than 1
LEARN BOOK: Page 15
Adesh is training for a 22-mile relay race. He will run the race on a 4-person team. Each team member runs the same number of miles. How many miles will each team member run?
How many members are on the team? 4
What do we know about the 4 team members?
Each team member runs the same number of miles.
What is the total number of miles in the race? 22
What mathematically do we have to do to solve this? Divide
What division expression represents this situation? \(\quad 22 \div 4\)
What are some strategies we can use to solve this problem?
```


LEARN (30-min)

Equate Mixed Numbers and Fractions Greater Than 1

LEARN BOOK: Page 15

Adesh is training for a 22-mile relay race. He will run the race on a 4-person team. Each team member runs the same number of miles. How many miles will each team member run?

Tape Diagram

Divide using partial products method -orthe standard algorithm

Draw or use models to represent the solution.

$52 / 4$ or $51 / 2$ miles

The \# of WHOLE miles each runner runs.

The part of the race that must be SHARED. 2 miles. These two miles need to be shared by 4 runners, so $2 / 4$ or $1 / 2$ mile each. Each runner needs to run $51 / 2$ miles.

Look at Models A and B below.
What is an expression that matches each model?


```
LAND (10-min) Exit Ticket
```

Small Group Time:
Problem Set Pages 17-18
Homework:
Page 15 APPLY BOOK

