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Overview

In many settings people give numerical scores to entities from a small discrete set. 
For instance, attractiveness from 1-5 on dating sites and papers from 1-10 for 
conference reviewing. We study the problem of understanding when using a 
different number of options is optimal. We study several natural processes for score 
generation. One may expect that using more options always improves performance, 
but we show that this is not the case, and that using fewer choices -- even just two -
- can surprisingly be optimal. Our results suggest that using fewer options than 
typical could be optimal in certain situations. This would have many potential 
applications, as settings requiring entities to be ranked by humans are ubiquitous.

Model
Users have underlying integral ground truth score for each item in {1,…,n} and are 
required to submit an integral rating in {1,…,k}, for k << n.
Two generative models:
1. Uniform: the fraction of scores for each value from 1 to n is chosen uniformly 

at random (by choosing a random value for each and then normalizing)
2. Gaussian: the scores chosen according to a Gaussian distribution with a given 

mean and variance
We then compute ``compressed'' score distribution by mapping each full score s 
from {1,…,n} to {1,…,k} by applying s  floor(s / (k/n)). We compute the average 
“compressed” score ak and its error ek = |af – [(n-1)/k] * ek |, where af is the 
ground truth average score. The goal is to pick argminkek.

Theoretical characterization

Computational simulations and analysis
For our simulations we used n = 100, and considered k = 2,3,4,5,10, which are popular and 
natural values. For the Gaussian model we used s = 1000, μ = 50, σ = 50/3. For each set of 
simulations we computed the errors for all considered values of k for m = 100,000 ``items'' 
(each corresponding to a different distribution generated according to the specified 
model). The main quantities we are interested in computing are the number of times that 
each value of k produces the lowest error over the m items, and the average value of the 
errors over all items for each k value. 

Related work
The most closely related work [Dubey10] studies the impact of using finely grained 
numerical grades (e.g., 100, 99, 98) vs. coarse letter grades (e.g., A, B, C). They conclude that 
if students care primarily about their rank in class (relative to the other students), they are 
often best motivated to work by assigning them to coarse categories (letter grades) than by 
the exact numerical exam scores. In a specific setting of ``disparate'' student abilities they 
show that the optimal absolute grading scheme is always coarse. Their model is game-
theoretic; each player (student) selects an effort level, seeking to optimize a utility function 
that depends on both the relative score and effort level. Their setting is quite different from 
ours in many ways. For one, they assume that the underlying ``ground truth'' score is 
known, yet may be disguised for strategic reasons. In our setting the ultimate goal is to 
approximate the ground truth score as closely as possible.

Example where k=2 outperforms k=3
As an example we see that e2 < e3 iff
|E[X] - 100 + 100 F(50)| < |E[X] - 100 + 50F(100/3) + 50F(200/3)|.
af = E[X] = 0.5 * 30 + 0.5 * 60 = 45. If we use k = 2, then the mass at 30 will be 
mapped down to 0 (since 30 < 50) and the mass at 60 will be mapped up to 1 
(since 60 > 50). So a2 = 0.5 * 0 + 0.5 * 1 = 0.5. Using normalization of n/k = 100, e2

= |45 - 100 (0.5)| = |45 - 50| = 5. If we use k = 3, then the mass at 30 will also be 
mapped down to 0 (since 0 < 100/3); but the mass at 60 will be mapped to 1 (not 
the maximum possible value of 2 in this case), since 100/3 < 60 < 200/3. So again 
a3 = 0.5 * 0 + 0.5 * 1 = 0.5, but now using normalization of n/k = 50 we have e2 = 
|45 - 50 (0.5)| = |45 - 25| = 20. So, surprisingly, in this example allowing more 
ranking choices actually significantly increases the error.

Example where k=2 significantly outperforms k=10


