Optimal Number of Choices in Rating Contexts

Sam Ganzfried, Florida International University SCIS, sganzfri@cis.fiu.edu

Overview

In many settings people give numerical scores to entities from a small discrete set.

For instance, attractiveness from 1-5 on dating sites and papers from 1-10 for
conference reviewing. We study the problem of understanding when using a

different number of options is optimal. We study several natural processes for score
generation. One may expect that using more options always improves performance,
but we show that this is not the case, and that using fewer choices -- even just two -

- can surprisingly be optimal. Our results suggest that using fewer options than
typical could be optimal in certain situations. This would have many potential

applications, as settings requiring entities to be ranked by humans are ubiquitous.

Select 4 12803 o st Mie pext petre. 125
9T 2 2 3 —r n e 7 B8 ' 9 18 HOT

HOTor NOT

O cial Babngy o o[wen sadwomen o [danyage »

100

Messages
received 75| °

Measured attractiveness

Figure 1: Hot or Not users rate attractiveness 1-10. Figure 2: OkCupid users rate attractiveness 1-5.
Summary Rating (*). main score

» +++++ (strong accept)

5

4. +4+++
3 +++
2: ++

1

: + (weak accept)

-1: - {(weak reject)

%
e
P o)

5 ; . -8 -—--- (strong reject
Figure 3: Tinder users rate attractiveness 1-2. (g rel)

Figure 4: IJCAI reviewers rate papers -3-3.

Model

Users have underlying integral ground truth score for each itemin {1,...,n} and are

required to submit an integral rating in {1,...,k}, for k << n.

Two generative models:

1. Uniform: the fraction of scores for each value from 1 to n is chosen uniformly
at random (by choosing a random value for each and then normalizing)

2. Gaussian: the scores chosen according to a Gaussian distribution with a given
mean and variance

We then compute compressed' score distribution by mapping each full score s

from {1,...,n} to {1,...,k} by applying s €< floor(s / (k/n)). We compute the average

“compressed” score a, and its error e, = |a;— [(n-1)/k] * e, |, where a;is the

ground truth average score. The goal is to pick argmin,e,.

Theoretical characterization

Suppose scores are given by continuous pdf f (with cdf F) on (0, 100), and we wish (o compress k-1 o)
them to two options, {0, 1}. Scores below 50 are mapped to 0, and scores above 50 are mapped to 1. ap = Z f if(z)dr
=0 v I=T

k-1

- S (e () ()]

1

The average of the full distribution is

1040
ar = E[X] = f rf(zx)dz.
=[]

k

i=1

The average of the compressed version is = (k—1)F(n) - F (E)
50 100 100
ag = /. O0f(x)dz + [1f(z)dr = f flz)dr = F(100) — F(50) = 1 — F(50). k1
dr=0 dr=50 r=50 - (k—1)- Z r (?)
So ez = |ay — 100(1 — F(50))| = |E[X] — 100 + 100F(50)|. =1

For three options,
2003

100/3 1
ay = [Of(x)dr + [1f{x)dr + [2f(z)dz
Jr=0 Jr=100/3 Jr=200/3
F(200/3) — F(100/3) + 2(1 — Fi(200/3)) = 2 — F(100/3) — Fi(200/3)

« = o (eo0-Er (3)
k-1 - ;
B -ns 72527 ()

e3 = |a; — 50(2 — F(100/3) — F(200/3))| = |E[X] — 100 + 50F (100/3) + 50F (200/3)| Equation 3 allows us to ch;rac_tcrizc th: relative pcrfn_nnancc +:+_f c_huir:ﬂs of I for a given distribution

' f. For each k the characterization requires only knowing k statistics of f (the £ —1 values of F {“T‘}
plus E[X]). In practice these could likely be closely approximated from historical data for small
values of k.

Example where k=2 outperforms k=3

As an example we see that e, < e, iff

|E[X] - 100 + 100 F(50)| < | E[X] - 100 + 50F(100/3) + 50F(200/3)]|.

a; = E[X] =0.5*30+0.5* 60 =45. If we use k = 2, then the mass at 30 will be
mapped down to O (since 30 < 50) and the mass at 60 will be mapped up to 1
(since 60 >50). Soa, =0.5*0+0.5*1=0.5. Using normalization of n/k = 100, e,
= |45 -100 (0.5)| = |45-50| = 5. If we use k = 3, then the mass at 30 will also be
mapped down to O (since 0 < 100/3); but the mass at 60 will be mapped to 1 (not
the maximum possible value of 2 in this case), since 100/3 < 60 < 200/3. So again
a; =0.5*0+0.5*1=0.5, but now using normalization of n/k = 50 we have e, =
|45 - 50 (0.5)| = |45 - 25| = 20. So, surprisingly, in this example allowing more
ranking choices actually significantly increases the error.

(3)

In general for n total and J: compressed options,

1

0.9
0.8
é 0.7
3.0.6
% 0.5
2 0.4
& 03
0.2
0.1
O I I T T T T T I T I I T S T T T T T
1 AN NN AN MON A NMO N AN 1
AH NN TTN O ONNO®OGO O
0.9 Choice 0.3
0.8 0.8
(72 w
8 0.7 é 0.7
€os6 506
£ 05 £ 05
o
©04 804
03 203
& a
0.2 - 0.2
0.1 - 0.1
0 0
1 0 1 2

Choice Choice

Computational simulations and analysis

For our simulations we used n = 100, and considered k = 2,3,4,5,10, which are popular and
natural values. For the Gaussian model we used s = 1000, u = 50, o = 50/3. For each set of
simulations we computed the errors for all considered values of k for m = 100,000 "items"
(each corresponding to a different distribution generated according to the specified
model). The main quantities we are interested in computing are the number of times that
each value of k produces the lowest error over the m items, and the average value of the
errors over all items for each k value.

Algorithm 1 Procedure for generating full scores in uniform model

Algorithm 3 Procedure for generating full scores in Gaussian model

puts: Number of scores n

scoreSum + 0
fori=0:ndo
r + randomi{0,1)
scores[i] « r r=10
scoreSum = scoreSum +r
fori=0:ndo
scores|i] = scores[{] / scoreSum

Inputs: Number of scores n, number of samples s, mean ., standard deviation o

fori=0:=do
r + randomGaussian(y, o)
if < (0 then

elseif r = n — 1 then
re—n—1
++scores[round(r)]

fori=0:ndo

scores[i] = scores[i] / =

Algorithm 2 Procedure for compressing scores

Inputs: scores[], number of total scores n, desired number of compressed scores &
Z(n, k) + T
for: =0:ndo

scoresCompressed H z-:fi,m” += scores|i]

- Normalization

2 3 4 5 10
Uniform number of victories | 5564 | Y265 | 14870 | 1674 | 533327
Uniform average error 1.32 | 0.86 | 053 0.41 0.19
Gaussian number of victories | 3025 | 7336 | 14435 | 17800 | 57404
(Jaussian average error .14 | 059 | 0.30 0.22 0.10

Table 1: Number of times each value of k in {2,3,4,5,10} produces minimal error and average error

values, over 100,000 items generated according to both generative models.

™

3

Uniform number of victories
Uniform average error
(Gaussian number of victories
(jaussian average error

1.31

1.13

36805
30454

631495
0.86
69546

0.58

Table 2: Number of times each value of k in {2,3} produces minimal error and average error values,

over 100,000 items generated according to both generative models.

2 10
Uniform number of victones | 8253 | 91747
Uniform average error 1.32 | Q.19
(Gaussian number of victories | 4369 | 95631
Gaussian average error 1.13 | Q.10

Table 3: Number of times each value of k in {2,10} produces minimal error and average error values,

over 100,000 items generated according to both generative models.

2 10
Uniform number of victories | 32250 | 67750
Uniform average error 1.31 0.74
Gaussian number of victories | 10859 | 89141
(aussian average error 1.13 0.20

Table 4: Number of times each value of & in {2,10} produces minimal error and average error
values, over 100,000 items generated according to both models. For &k = 10, we only permitted
scores between 3 and 6 (inclusive). If a score was below 3 we set it to be 3, and above 6 to 6.

2 10
Uniform number of victories | 93226 | 6774
Uniform average error 1.31 0.74
(aussian number of victories | 54459 | 45541
(Gaussian average error 1.13 1.09

Table 5: Number of times each value of k in { 2,10} produces minimal error and average error values,
over 100,000 items generated according to both generative models. For & = 10, we only permitted
scores between 3 and 7 (inclusive). If a score was below 3 we set it to be 3, and above 7 to 7.

Example where k=2 significantly outperforms k=10

0023

0.02

=
o
it
L

0.01

Probabhility mas

0.005

Figure 8: Example distribution for which compressing with k = 2 produces significantly lower error
than & = 10. The full distribution has mean 54.188, while the k = 2 compression has mean 0.548
(534.253 after normalization) and the & = 10 compression has mean 5.009 (35.(009 after normal-
ization). The normalized errors between the means were 0.906 for £ = 10 and 0.048 for k = 2,
yielding a difference of (.859 in favor of k = 2.

1 016

0.9 .14

0.8 .
07 #t..
E E 0.1
=06 e:c
EI}S EE-EIE
L';'?" 'J';ESIE-
k! e
& & 004

2

a1 0.0z

0 0

0 l P 1 2 3 4 5 & T B 9
Choice Choice

Figure 9: Compressed distribution for k = 2. Figure 10: Compressed distribution for k = 10,

Related work

The most closely related work [Dubey10] studies the impact of using finely grained
numerical grades (e.g., 100, 99, 98) vs. coarse letter grades (e.g., A, B, C). They conclude that
if students care primarily about their rank in class (relative to the other students), they are
often best motivated to work by assigning them to coarse categories (letter grades) than by
the exact numerical exam scores. In a specific setting of disparate' student abilities they
show that the optimal absolute grading scheme is always coarse. Their model is game-
theoretic; each player (student) selects an effort level, seeking to optimize a utility function
that depends on both the relative score and effort level. Their setting is quite different from
ours in many ways. For one, they assume that the underlying 'ground truth' score is
known, yet may be disguised for strategic reasons. In our setting the ultimate goal is to
approximate the ground truth score as closely as possible.

