Optimal Number of Choices in Rating Contexts

Sam Ganzfried, Florida International University SCIS, sganzfri@cis.fiu.edu

Overview

In many settings people give numerical scores to entities from a small discrete set. For instance, attractiveness from 1-5 on dating sites and papers from 1-10 for conference reviewing. We study the problem of understanding when using a different number of options is optimal. We study several natural processes for score generation. One may expect that using more options always improves performance, but we show that this is not the case, and that using fewer choices -- even just two -- can surprisingly be optimal. Our results suggest that using fewer options than typical could be optimal in certain situations. This would have many potential applications, as settings requiring entities to be ranked by humans are ubiquitous

Model

Users have underlying integral ground truth score for each item in $\{1, \ldots, \mathrm{n}\}$ and are required to submit an integral rating in $\{1, \ldots, k\}$, for $k \ll n$.
Two generative models:

1. Uniform: the fraction of scores for each value from 1 to n is chosen uniformly at random (by choosing a random value for each and then normalizing)
2. Gaussian: the scores chosen according to a Gaussian distribution with a given mean and variance
We then compute "compressed" score distribution by mapping each full score s from $\{1, \ldots, n\}$ to $\{1, \ldots, k\}$ by applying $s \leftarrow$ floor(s $/(k / n))$. We compute the average "compressed" score a_{k} and its error $e_{k}=\left|a_{f}-[(n-1) / k] * e_{k}\right|$, where a_{f} is the ground truth average score. The goal is to pick $\operatorname{argmin}_{k} \mathrm{e}_{\mathrm{k}}$.

Theoretical characterization

Example where $\mathrm{k}=2$ outperforms $\mathrm{k}=3$

As an example we see that $e_{2}<e_{3}$ iff
$|E[X]-100+100 F(50)|<|E[X]-100+50 F(100 / 3)+50 F(200 / 3)|$. $\mathrm{a}_{\mathrm{f}}=\mathrm{E}[\mathrm{X}]=0.5 * 30+0.5 * 60=45$. If we use $\mathrm{k}=2$, then the mass at 30 will be mapped down to 0 (since $30<50$) and the mass at 60 will be mapped up to 1 (since $60>50$). So $a_{2}=0.5 * 0+0.5 * 1=0.5$. Using normalization of $n / k=100, e_{2}$ $=|45-100(0.5)|=|45-50|=5$. If we use $k=3$, then the mass at 30 will also be mapped down to 0 (since $0<100 / 3$); but the mass at 60 will be mapped to 1 (not the maximum possible value of 2 in this case), since $100 / 3<60<200 / 3$. So again $a_{3}=0.5 * 0+0.5 * 1=0.5$, but now using normalization of $n / k=50$ we have $e_{2}=$ $|45-50(0.5)|=|45-25|=20$. So, surprisingly, in this example allowing more ranking choices actually significantly increases the error.

Computational simulations and analysis
For our simulations we used $n=100$, and considered $k=2,3,4,5,10$, which are popular and natural values. For the Gaussian model we used $s=1000, \mu=50, \sigma=50 / 3$. For each set of simulations we computed the errors for all considered values of k for $m=100,000$ "items" (each corresponding to a different distribution generated according to the specified model). The main quantities we are interested in computing are the number of times that each value of k produces the lowest error over the m items, and the average value of the errors over all items for each k value.

Table 2: Number of times each value of k in $\{2,3\}$ produces minimal error and average error values,
over 100,000 items generated according to both generative models.
 ?

Table 4: Number of times each value of k in $\{2,10\}$ produces minimal error and average error
values, over 100,000 items generated according to both models. For $k=10$, we only permitted scores between 3 and 6 (inclusive). If a score was below 3 we set it to be 3 , and above 6 to 6 .

 over 100,000 items generated according to both generative models. For $k=10$, we only permitte scores between 3 and 7 (inclusive). If a score was below 3 we set it to be 3 , and above 7 to 7 .

Example where $\mathrm{k}=2$ significantly outperforms $\mathrm{k}=10$

Figure 9: Compressed distribution for $k=2$. Figure 10: Compressed distribution for $k=10$.

Related work

The most closely related work [Dubey10] studies the impact of using finely grained numerical grades (e.g., 100, 99, 98) vs. coarse letter grades (e.g., A, B, C). They conclude that if students care primarily about their rank in class (relative to the other students), they are often best motivated to work by assigning them to coarse categories (letter grades) than by the exact numerical exam scores. In a specific setting of "disparate" student abilities they show that the optimal absolute grading scheme is always coarse. Their model is gametheoretic; each player (student) selects an effort level, seeking to optimize a utility function that depends on both the relative score and effort level. Their setting is quite different from ours in many ways. For one, they assume that the underlying "ground truth" score is known, yet may be disguised for strategic reasons. In our setting the ultimate goal is to approximate the ground truth score as closely as possible.

