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Abstract 

Cellulase production poses a challenge to the biofuel industries. In the present work, a mixture of 

surgical waste cotton and packaging card board was used for cellulase production, employing 

Trichoderma harzanium ATCC 20846. For a Submerged Fermentation (SMF), a statistical optimization 

was performed using Response Surface Methodology (RSM) for the following parameters: agitation, 

Dissolved Oxygen% (DO), aeration, viscosity, and temperature. Additionally, a Computational Fluid 

Dynamic (CFD) simulation was performed to study the optimum broth viscosity. A cellulase production 

SMF (model validation) performed using the parameter values given by the design and simulation 

yielded enzyme activities of: 1.85±0.1 FPU/mL; 12.4±0.2 CMCase/mL; 743±0.1 Xylanase/mL; and 

3165.8±0.25 Beta-glucosidase/mL. 12% variation was seen from the predicted results. Furthermore, the 

biomass yield coefficients (Yx/s, Yx/O2); Oxygen Uptake Rate (OUR); maintenance coefficients 

(mO2x);mass transfer coefficient (KLa); Oxygen Transfer Rate (OTR); and the effects of viscosity and 

sugar accumulation on cellulase production were studied for the SMF. 

Keywords: Statistical optimization; Biomass yield coefficient; Mass transfer coefficient; Oxygen 

uptake rate; Simulation. 

Introduction 

Cellulases sequentially hydrolyze cellulose to 

individual beta-D-glucose units [1]. Cellulase 

production incurs 40% of the total bio-ethanol 

production cost. Researchers have been working 

on process improvements [2,3]. Trichoderma 

harzanium, a noted producer of cellulase, can 

grow at various temperatures. It falls under 

Phylum Ascomycota and the family 

Hypocreaceae and multiplies using asexual 

spores [4]. 

A novel surgical cotton-waste cardboard 

mixture was chosen as the substrate for the 

following reasons: (a) Waste re-usability (b) the 

Higher cellulose content of cotton (c) Cardboard 

with varying lignin content that helps in 

providing mechanical support to aid complete 

pulverization of cotton and (d) Prevention of the 

competition to animal fodder by avoiding the use 

of rice/wheat straws. Moreover, improper 

disposal (usually in landfills) of municipal [5] 

and packaging wastes [6] has been posing a huge 

problem, globally. Since these wastes are rich 

sources of biomass [5], they could be used for 

energy production processes [7]. Cellulase 

production from waste has been attempted 

earlier from sources such as municipal waste by 

Solid State Fermentation (SSF) [8,9] coir using 

SSF and Submerged fermentation (SMF) [10] 

soybean hull and waste paper using SSF [11]. 

The SMF in a bioreactor is an extension 

of the microbial cultivation in an Erlen Meyer 

flask, the only difference being the controllable 

parameters such as temperature, aeration, pH, 

foaming, and agitation [12]. Apart from the 

reactor parameters, the media must possess the 

optimum C/N ratio [13] to enhance the microbial 

growth [14]. Scale up of the SMF from a lab 

scale bio reactor to a pilot scale/ production scale 

bioreactor can be performed using the 

calculation of various data such as the Biomass 

yield coefficient (Yx/s, Yx/O2); Oxygen Uptake 

Rate (OUR); maintenance coefficients (mO2x); 

mass transfer coefficient (KLa); Oxygen Transfer 

Rate (OTR) [15,16]. 

mailto:srenganathan@annauniv.edu


Navnit kumar et al., 2020.  Experimental validation of optimization by statistical and CFD simulation methods for cellulose.. 

©2020 The Authors. Published by G. J. Publications under the CC BY license. 46 

Process optimizations may aid in the 

enhancement of process economy [17]. Design 

of experiment (DoE) is widely applied in 

bioprocess engineering [18]. Response Surface 

Methodology (RSM) uses a factorial design to 

analyze the statistical results [19]. In this work, 

the Response Surface Methodology using a 

Central composite design (CCD) has been 

employed for the process optimization. Though 

many contemporary researchers have optimized 

cellulase production media [20], the current 

work presents an innovative approach of 

optimizing the bioreactor’s operational 

parameters (they impact each other) [21-24]. The 

impact of the different factors (aeration, 

temperature, viscosity, DO%, and agitation) 

(obtained from RSM-CCD) on the response 

(enzyme activities) was studied. The regression 

fit model provides a simple equation that 

elucidates the fit of the predicted model [25]. 

CFD helps in providing a numerical 

modeling of the field of flow impacted by an 

impeller and an aeration setup [26. CFD analyses 

and mixing designs provide considerable 

possibility and ideas for bioreactor scale-up [27, 

28]. In the present work, three values of 

viscosities were chosen to simulate the DO% in 

the SMF for cellulase production (within the 

bioreactor). A higher DO% implies better fungal 

growth and higher cellulase production [29]. The 

varying viscosities of the culture broth were the 

chosen values for the CFD simulation of the 

DO%. 

 In the present work, SMF for the 

production of cellulases was carried out in a 

bioreactor using a novel cotton-cardboard 

mixture. Prior to the SMF, the reactor’s optimum 

operational parameter values were obtained 

using statistical optimization techniques. It was 

hypothesized that after statistical optimization, 

the various parameters that influence an SMF for 

cellulase production would yield enhanced 

enzyme activities in an experimental validation 

(using the model predicted values).Furthermore, 

a CFD simulation was performed with 

anticipation of achieving the optimum viscosity 

value that needs to be maintained in the SMF for 

cellulase production. The results predicted by the 

experimental design, and the results of the actual 

experiment were compared. 

 

 

Materials and methods 

Statistical optimization of cellulase production 

from waste lignocellulosic mixture 

The model was developed using the following 

parameters: temperature (X1), viscosity (X2), 

aeration (X3), dissolved oxygen (X4) and 

agitation (X5). The response factor considered in 

the model was the enzyme activity (Y). The low 

and high factors were coded as (-1), and (+1), 

respectively; the mid-point setting was 0. The 

optimal factor values were obtained from the 

central composite face centered design.  The 

Central Composite Design’s (CCD) 

experimental runs are represented as 2
k, 

(k - the 

number of factors chosen for the process 

optimization) mathematically that resulted in 32 

runs as shown in table 1. 

Regression analysis 

The regression and graphical analyses of the data 

obtained were performed using MINITAB 

software (version 18). Response surface 

regression analysis is performed with a set of 

data to estimate the relationship between the 

parameters that are involved in the process. The 

statistical analysis of the model is presented in 

the form of an Analysis of Variance (ANOVA).  

Computation Fluid Dynamics (CFD) 

simulation 

Three varying culture broth viscosities of: 0.8 cP 

– media viscosity at the start of the fermentation; 

2.075 cP- suggested by the statistical 

optimization design; and 3.25 cP- obtained at the 

end of a batch cellulase production; were chosen 

for the simulation of DO% using CFD version 

2.2. For the simulation, the conditions assigned 

were unsteady state fluid flow; and a liquid with 

varying viscosity.    

Preparation of the novel cellulosic substrate 

mixture 

Surgical waste cotton used in this work includes 

ethanol cotton wipes for the topical procedure, 

bandages, shredded cellulosic lab gowns, cotton 

gauzes, which are devoid of heavy biological 

fluids. The substrate preparation techniques are 

as mentioned in our previous works with the 

mentioned substrate [30,31]. The cardboard and 

cotton mixture were combined in a 1:1 ratio 

(weight basis), as the other ratios would not 

facilitate complete pulverization of cotton. In 

lesser ratios, the cotton could not be pulverized 
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(20-minute operation) leading to it forming thin 

strands and winding around the pulverizer’s (M/s 

Classic, India, SKU SSM GM 001) blades, 

making it difficult for harvest. The 

lignocellulosic mixture, after pulverization was 

used as the substrate for cellulase production. 

Table 1. A central composite design for cellulase enzyme production 

Run 

order 
X1 X2 X3 X4 X5 

Experimental 

cellulose 

activity, 

FPU/mL 

1 33 0.9 0.5 40 80 1.62 

2 27.5 2.075 2 70 130 1.8 

3 33 0.9 3.5 40 180 1.74 

4 33 0.9 0.5 100 180 2.2 

5 22 3.25 3.5 40 180 1.6 

6 27.5 2.075 2 70 130 1.9 

7 27.5 2.075 2 70 130 1.9 

8 22 3.25 3.5 100 80 2.2 

9 27.5 2.075 2 100 130 2.2 

10 27.5 2.075 2 40 130 1.8 

11 27.5 2.075 2 70 180 1.9 

12 27.5 2.075 2 70 80 1.7 

13 22 0.9 0.5 100 80 2.2 

14 27.5 2.075 3.5 70 130 1.9 

15 27.5 2.075 2 70 130 1.9 

16 27.5 3.25 2 70 130 2 

17 33 3.25 3.5 100 180 1.9 

18 33 0.9 3.5 100 80 2.2 

19 33 3.25 0.5 40 180 1.6 

20 22 3.25 0.5 40 80 1.6 

21 27.5 2.075 2 70 130 1.87 

22 33 2.075 2 70 130 1.87 

23 22 0.9 3.5 40 80 1.7 

24 27.5 2.075 0.5 70 130 1.8 

25 22 2.075 2 70 130 1.9 

26 27.5 2.075 2 70 130 1.9 

27 22 3.25 0.5 100 180 2 

28 27.5 0.9 2 70 130 2.2 

29 22 0.9 0.5 40 180 1.8 

30 33 3.25 3.5 40 80 1.6 

31 22 0.9 3.5 100 180 2.2 

32 33 3.25 0.5 100 80 1.8 

Fermentation media and inoculum 

T. harzanium ATCC 20846 was purchased from 

The ATCC. The primary inoculum for the SMF 

was prepared in 200 mL Vogel’s media, 

containing 1%(w/v) Microcrystalline cellulose 

(99% purity analytical, 50 um, M/s Sigma 

Aldrich), as the substrate (for the primary 

inoculum). A spore suspension containing 

(3x10
9
/mL) was used for inoculation of the 

primary culture. It was incubated for 5 days, at 

28°C. 

 The composition of Vogel’s media (g/L) 

is as follows: Tryptone (1g/L) (Casitose Type I); 

Tri-sodium citrate (2.5 g/L)  (Cell culture grade); 

Di-Potassium hydrogen phosphate (5 g/L) (AR 
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grade); Ammonium nitrate (2 g/L) (AR grade); 

Magnesium sulphate heptahydrate (1.4 g/L) (AR 

grade); finely powdered surgical waste cotton-

card board mixture in 1:1 ratio (1% w/v); 

Calcium chloride dehydrate (0.1g/L) (AR grade); 

and Tween 80 – 0.2 % (v/v) (AR grade). A Trace 

element solution containing Citric acid 

monohydrate (5g/L) (AR grade); Zinc sulphate 

heptahydrate (5 g/L) (AR grade); ferrous 

ammonium sulphate (1 g/L) (AR grade); Copper 

sulphate (250 mg/L) (AR grade); Manganese 

sulphate (50 mg/L) (AR grade); Boric acid 

(50mg/L) (AR grade); Sodium molybdate (50 

mg/L) (AR grade); was prepared. 1 mL/L of the 

Trace element solution was added to the media 

components [32]. The pH was set at 5.5, before 

autoclaving. 

Submerged Fermentation on the basis of 

statistical design predictions 

The submerged batch fermentation of 1 L culture 

volume was carried out in a 3.2 L 

Bioengineering KLF Advanced Bioreactor (M/s 

Bioengineering, Switzerland) with automated 

controllers. 

Cultivation in the bioreactor 

A working volume of 1 litre (Vogel’s media + 

inoculum) was to be used in the bioreactor. 1% 

(w/v) surgical waste cotton-card board mixture 

(1:1 ratio) was used as the substrate in the 

fermentor.  20% (v/v) inoculum was used. The 

fermentor was set for the pH of 5.5. The other 

parameter values such as, agitation, aeration, 

DO%, temperature, and viscosity, were used 

from the statistical model. 100 mL of fresh 

autoclaved Vogel’s minimal media was added to 

the reactor, every 24 h, after 36-72 h of growth, 

to maintain the viscosity at 2 cP (as suggested by 

the experimental design). 

Estimation of the characteristics of the SMF 

The biomass yield coefficients based on 

substrate and oxygen consumptions (Yx/s and 

Yx/O2) of the fungal biomass were determined by 

estimating the amount of substrate and oxygen 

consumed, respectively. Dynamic gassing out 

method was used to estimate the Oxygen Uptake 

Rate (OUR), and the Oxygen Transfer Rate 

(OTR) [33] within the bioreactor. The KLa and 

the OTR varied as a result of the increase in the 

broth’s viscosity after 36-72 h of the submerged 

fermentation [34, 35]. The viscosity changes 

during the fermentation were monitored using a 

Viscometer (M/s Cole Parmer WW98965, 

Illinois). The amount of glucose, cellobiose, and 

xylose, accumulated in the broth was estimated 

using a HPLC (Agilent 1290, with Hi-PLex H 

column) [36] during the course of the 

fermentation. The KLa, OTR, and OUR, were 

calculated using the following relation (Eq. 1) 

[37]. 

    (1) 

OTR – Oxygen Transfer Rate (ppm O2/hr) 

KLa – volumetric mass transfer coefficient (hr
-1

) 

C* - Saturated oxygen concentration (ppm O2) 

CL- Dissolved oxygen concentration within the 

reactor (ppm O2) 

OUR - Oxygen Uptake Rate (ppm O2/hr)  

Enzyme harvest and enzyme activity estimation 

Sampling was done at an interval of 24 h to 

estimate the enzyme activity. The broth was 

centrifuged (Centrifuge: M/s. Beckman Coulter) 

at 6000 rpm, at 4°C, for 20 min. The enzyme 

activity (enzyme from the supernatant) was 

measured using the standard IUPAC DNSA 

method [38]. 

Dry mycelial weight measurement 

The dry mycelial weight was measured using a 

slightly modified method of Aftab and Patrick, 

2008 used in a previous work of ours [37]. The 

residual substrate concentration was also 

measured in this method.  

Measurement of enzyme activity 

The activity of the secreted cellulases was 

measured using the standard DNSA method of 

IUPAC [38]. Exoglucanases/FPases; 

Endoglucanases/CMCases; Beta-

glucosidases/Cellobiases; have a threshold value 

of sugar release. Xylanase, a class of 

hemicellulase, increased in yield. The activities 

were estimated by quantifying the amount of 

reducing sugar released from xylan using 

dinitrosalicylic acid (DNS) method.  

Results and discussion 

Statistical analysis 

The response surface contains a curvature; so a 

polynomial model of higher degree is used 

(MINITAB VERSION, 2018). The second-order 

polynomial equation obtained for the process 

optimization is as given in Eq. 2: 

Y = -0.246 + 0.0877 X1 - 0.398 X2 + 0.1613 X3 

+ 0.00316 X4 
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+ 0.01499 X5 - 0.00162 X1*X1 

+ 0.1203 X2*X2 

- 0.0373 X3*X3 + 0.000073 X4*X4 -

 0.000054 X5*X5 

- 0.00348 X1*X2 + 0.00091 X1*X3 

- 0.000136 X1*X4 + 0.000073 X1*X5 

+ 0.00993 X2*X3 - 0.000780 X2*X4 -

 0.000340 X2*X5 

+ 0.000389 X3*X4 - 0.000533 X3*X5 -

 0.000013 X4*X5     (2) 

Where, X1 = Temperature, X2 = Viscosity, X3 = 

Aeration, X4 = Dissolved Oxygen and X5 = 

Agitation& Y – Response (Enzyme activity). 

The regression analysis of the process is 

shown in table 2. The term coeff represents the 

change in the mean response. In terms of linear 

model, the factors temperature and viscosity 

have a negative value, which indicates that when 

the temperature and viscosity increase by 1, the 

response (enzyme activity) decreases 

approximately by 0.0372 and 0.0867, 

respectively accounting for the change. The p – 

value less than 0.05 (Level of significance) 

demonstrates that the relationship between the 

response and parameter is more statistically 

significant (MINITAB VERSION, 2018). 

Therefore, temperature, viscosity, and DO%, are 

considered to be more significant in terms of 

linear model. 

Table 2. Estimated regression coefficient for second-order polynomial model 

Term Coeff SE Coeff t-Value p-Value 

Constant 1.9101 0.0169 112.71 0.000 

Temperature -0.0372 0.0140 -2.66 0.022 

Viscocity -0.0867 0.0140 -6.20 0.000 

Aeration 0.0233 0.0140 1.67 0.123 

DO 0.2133 0.0140 15.26 0.000 

Agitation 0.0178 0.0140 1.27 0.230 

Temperature*Temperature -0.0489 0.0378 -1.29 0.222 

Viscocity*Viscocity 0.1661 0.0378 4.39 0.001 

Aeration*Aeration -0.0839 0.0378 -2.22 0.048 

DO*DO 0.0661 0.0378 1.75 0.108 

Agitation*Agitation -0.1339 0.0378 -3.54 0.005 

Temperature*Viscocity -0.0225 0.0148 -1.52 0.157 

Temperature*Aeration 0.0075 0.0148 0.51 0.623 

Temperature*DO -0.0225 0.0148 -1.52 0.157 

Temperature*Agitation 0.0200 0.0148 1.35 0.204 

Viscocity*Aeration 0.0175 0.0148 1.18 0.263 

Viscocity*DO -0.0275 0.0148 -1.86 0.091 

Viscocity*Agitation -0.0200 0.0148 -1.35 0.204 

Aeration*DO 0.0175 0.0148 1.18 0.263 

Aeration*Agitation -0.0400 0.0148 -2.70 0.021 

DO*Agitation -0.0200 0.0148 -1.35 0.204 

The regression model was highly 

significant with an R
2 

value of 0.9689, which 

implies that 96.89% variability of the response 

could be explained by the model [39]. The term 

“variation” stated in the above sentence refers to 

the variation of the response (Enzyme activities) 

obtained using the optimized reactor parameters. 

The predicted response (Enzyme activity) is in 
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96.89% agreement with the predicted 

optimization model. Dhaliwal Maninder and 

More, 2016 [40] reported 95.15% variability in 

the response influenced by the factors for 

optimization of cellulase production using soil 

bacteria. Mani et al. 2017 [41] reported 90.12% 

variability in the response when considering 

components for media optimization for cellulase 

production using Bacillus cereus. 

The adequacy and significance of the 

model was examined using an ANOVA. The 

results of the ANOVA are as summarized in 

table 3.  

Table 3. ANOVA for process optimization 

Source DF Adj SS Adj MS F-Value P-Value 

Model 20 1.20431 0.060215 17.13 0.000 

Linear 5 0.99483 0.198966 56.59 0.000 

Temperature 1 0.02494 0.024939 7.09 0.022 

Viscosity 1 0.13520 0.135200 38.45 0.000 

    Aeration 1 0.00980 0.009800 2.79 0.123 

    DO 1 0.81920 0.819200 232.98 0.000 

    Agitation 1 0.00569 0.005689 1.62 0.230 

  Square 5 0.12568 0.025136 7.15 0.003 

    

Temperature*Temperature 

1 0.00589 0.005890 1.68 0.222 

    Viscosity*Viscosity 1 0.06787 0.067871 19.30 0.001 

    Aeration*Aeration 1 0.01733 0.017332 4.93 0.048 

    DO*DO 1 0.01074 0.010744 3.06 0.108 

    Agitation*Agitation 1 0.04414 0.044136 12.55 0.005 

  2-Way Interaction 10 0.08380 0.008380 2.38 0.085 

    Temperature*Viscosity 1 0.00810 0.008100 2.30 0.157 

    Temperature*Aeration 1 0.00090 0.000900 0.26 0.623 

    Temperature*DO 1 0.00810 0.008100 2.30 0.157 

    Temperature*Agitation 1 0.00640 0.006400 1.82 0.204 

    Viscosity*Aeration 1 0.00490 0.004900 1.39 0.263 

    Viscosity*DO 1 0.01210 0.012100 3.44 0.091 

    Viscosity*Agitation 1 0.00640 0.006400 1.82 0.204 

    Aeration*DO 1 0.00490 0.004900 1.39 0.263 

    Aeration*Agitation 1 0.02560 0.025600 7.28 0.021 

    DO*Agitation 1 0.00640 0.006400 1.82 0.204 

Error 11 0.03868 0.003516       

  Lack-of-Fit 6 0.03059 0.005099 3.15 0.114 

  Pure Error 5 0.00808 0.001617       

Total 31 1.24299          

The p-value less than the level of 

significance of 0.05 imply that the factor is more 

significant [42]. Larger f-value denotes the better 

fit of the RSM model to the experimental data 

[43]. The f value with low p-value indicates that 

the model is statically significant (MINITAB 

VERSION, 2018). The largest F-value with 

lowest p-value was observed for DO% and 

Viscosity in linear terms. DO% is a major 

parameter influencing the fungal growth and 

cellulase production. As cellulase production 

increases, the viscosity of the culture broth 

increases, in turn negatively influencing the 

oxygen hold up of the broth, thereby decreasing 

oxygen availability to the growing cellulolytic 

fungus and reducing the enzyme activity 

(response) [44]. The largest f-value with lowest 

p-value was observed for aeration*agitation in 

interaction model. This confirms with the 

scientific fundamental that aeration and agitation 

are interrelated and contribute to the major 

parameter DO%, within the bioreactor [44, 45]. 
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Aeration is maintained by supplying air through 

the sparger line while the agitator breaks the air 

bubbles and helps in mixing and diffusion of the 

gas and uptake by the actively dividing culture 

[44]. The ANOVA study suggested that linear 

and square models were significant with low p-

values. The lack of fit test was also performed to 

describe the variation in the model. The f-value 

and p-value of lack of fit was found to be 3.15 

and 0.114 respectively which implies 

insignificant lack of fit. Insignificant lack of fit 

confirms that the model accounts the regress-

response relationship [46]. 

The absolute values of the standardized 

effects and the magnitude of the effects are 

shown in fig. 1. The reference line 2.20 indicates 

the standardized response at level of significance 

0.05. The bars that represents D, B, BB, EE, CE, 

A, and CC, cross the reference line 2.20 (enzyme 

activity response) where these factors are 

statistically significant at the 0.05 level with the 

current mode terms (MINITAB, 2018). 

 

Fig. 1. Pareto chart with response (enzyme 

activity) with level of significance of 0.05 

The parameter hold values (optimum 

suggested values obtained from the RSM curves) 

postulated were temperature = 27.5
o
C; Viscosity 

= 2.075 cP; agitation = 130 rpm; aeration = 2 

SLPM (Standard Litre Per Minute); and 

Dissolved Oxygen = 70%.The values of the 

combination are represented in the fig. 2. At 

temperatures lesser than 27.5-28
 o

C, constant 

FPU values close to 1.78 FPU/mL were 

obtained. As the temperature was raised from 

27.5-33
 o

C, the FPU values decreased to 1.7 

FPU/mLas seen from various RSM curves in 

fig.2. The optimum temperature was 27.5
 o

C, 

which can be supported by the fact that the 

cultivable temperatures of Trichoderma specie 

are within the range of 25-28
 o

C. It implies that 

the organism could grow well at the optimum 

suggested temperature [42]. A variation in the 

temperature was checked to perceive if a slight 

increase in the bioreactor’s cultivable 

temperature could reduce the viscosity of the 

culture broth [47], which usually causes a 

reduction in the dissolved oxygen concentration, 

and oxygen transfer rates [44]. Another reason 

for the fall in the enzyme activity with the raise 

in temperature could be because, at elevated 

temperatures, saccharification of cellulose may 

occur, causing catabolite repression due to 

accumulated glucose (as shown in the fig. 4, and 

cellobiose. These reducing sugars may be 

consumed by the organism in the bioreactor and 

as a result further production of cellulases may 

be inhibited [48]. Therefore, the optimum 

temperature that the design suggested was 27.5
 

o
C, which could give an enzyme activity of 1.9 

FPU/mL as seen in the fig. 2. 

The suggested optimum viscosity to be 

maintained was 2.075 cP, which could yield an 

enzyme activity of 1.9 FPU/mL as shown in the 

fig. 2.  At lower values of viscosities such as 0.8 

cP, at the start of the fermentation, higher 

cellulase yields could be obtained close to 2.2 

FPU/mL as shown in fig. 2. However, it is 

impractical to maintain the viscosity at 0.8 cP as 

the production of cellulases and the 

accumulation of exopolysaccharides [48] due to 

the produced cellulases between 36-72 h of 

fermentation results in viscosity increases close 

to 2 cP as shown in (fig. 5). At values of 

viscosities higher than the optimum of 2.07 cP, 

such as 3.5 cP (at the end of a cellulase 

production batch), 2 FPU/mL could be obtained 

as seen in RSM fig. 2, which could be attributed 

to the increase in agitation to match up the set 

80% Dissolved Oxygen values within the 

fermentor. An increase in agitation would break 

the mycelia and release the cellulases from the 

hyphal tips [49] contributing to more cellulases, 

and thereby an increased enzyme activity of 2 

FPU/mL.  

The aeration optimum suggested was 2 

SLPM (Standard Litre Per Minute), which could 

yield 1.9 FPU/mL, as seen in fig. 2. At lower 

values of aeration such as 1 SLPM, 1.7 FPU/mL 

shown in fig. 2 was obtained, which could be 

attributed to the fact that, as the biomass within 

the reactor increase, the Oxygen Uptake Rate 

(OUR) [50] of the organism increases and 

depletes the dissolved oxygen. Furthermore, the 

increase in viscosity of the culture broth due to 
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cellulase accumulation after 36-72 h of 

cultivation as shown in fig. 5, would result in the 

decreased oxygen solubility in the broth and 

decreased Oxygen Transfer Rates (OTR) [50] 

thereby resulting in retarded growth and 

decreased cellulase production. At higher values 

of aeration of 3 SLPM and more, excessive air 

passes through the reactor resulting in inevitable 

foaming. Though the foam sensor disburses a 

mild concentration of antifoam (Polypropylene 

glycol less than 200 ppm), repeated foaming 

causes frequent addition of antifoam and 

negatively influences the KLa (mass transfer 

coefficient) of the bioreactor. As a result, growth 

is hampered and 1.8 FPU/mL may be obtained as 

seen in fig. 2. 

 

Fig. 2. Response surface plot for various combinations of the parameters chosen for optimization with 

FPU/mL cellulase activity as the response. Hold values are the model-suggested parameter values 

The suggested optimum agitation was 

130 rpm, which could yield 1.9 FPU/mL as 

shown in fig. 2. At values lower than 150 rpm, 

from 90-130 rpm, the FPU/mL gradually 

increases from 1.6 FPU/mL to reach 1.9 

FPU/mL, at 130 rpm, as seen in fig. 2. This 

could be attributed to the fact that at lower 

agitation speeds, the mixing would be less [44], 

and the mixing of the sparged air into the broth 

would be reduced. At increased agitation rates 

above 130 rpm-180 rpm, the FPU values 

gradually decrease to reach 1.8 FPU/mL as 

shown in fig. 2. This could be attributed to 

breakage of mycelia by shear due to increased 

agitation rate  [49] and decrease in dissolved 

oxygen concentration within the reactor that 

further contribute to decreased fungal growth 

rates. The mycelia would require mild agitation 

rates such as that suggested by the design, which 

would just suffice providing appropriate nutrient 

mixing and oxygen homogeneity within the 

culture broth [44]. 

The suggested optimum DO% to be 

maintained within the reactor was 70%, which 

yielded 1.7-2 FPU/mL, as seen in fig. 2. From 

1.6 FPU/mL at 40% DO, values gradually 

increased until the optimum suggested value as 

seen in fig. 2. Reduced DO% contribute to lesser 

oxygen presence and hamper growth within the 

bioreactor, thereby decreasing enzyme 

production [34,35,44]. At values of DO% from 

70% to 100%, the enzyme activities could reach 

a maximum of 2.2 FPU/mL, as seen in fig. 2. 

However, it is impractical to maintain 100% DO 
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within the reactor, owing to the decreased 

oxygen transfer rates in the reactor due to 

increasing viscosity; increased Oxygen Uptake 

Rates [34, 35 & 44] by the organism; and 

decreased mass transfer coefficients due to 

antifoam addition. 

Computational Fluid Dynamics (CFD)-based 

simulation for Dissolved Oxygen concentration 

(DO%) 

 The Dissolved oxygen concentration 

(DO%) and viscosity were found to be the most 

significant parameters, which affect the SMF for 

cellulase production; the results of the 

experimental designs, as seen above, further 

elucidated the fact. As shown in fig.3, the 

oxygen mass transfer typically occurred in 

regions close to the impeller in highly viscous 

fluids, affecting the gas-liquid dispersion 

patterns [44]. The Dissolved oxygen 

concentration distribution for an unsteady state 

fluid flow and varying viscosities showed that, at 

the suggested optimum viscosity2.075cP, the 

DO% distribution varied between 63%-70% 

Dissolved Oxygen concentration as seen in the 

fig. 3. At lower viscosities of around 0.8cP, 

observed during the start of the fermentation, 

around 80%-99%DO% distribution was 

observed as shown in the fig. 3. However, it 

would be impractical to maintain the viscosity at 

0.8 cP, owing to the reasons cited above. 

Similarly, at the end of the fermentation, the 

viscosity usually rises to 3.5 cP, decreasing the 

DO% distribution to 27%-62% (shown in fig. 3), 

which may decrease the fungal growth and 

cellulase production. Hence, during the course of 

the experimental run, it was decided to maintain 

the viscosity at the optimized and simulation-

suggested 2 cP (approximately close to the 

model suggested value). At higher rates of 

agitation, the hyphae break and release the 

accumulated cellulase (from the hyphal tips) into 

the media. Under controlled agitation, the 

mycelia remain intact. 

 

Fig. 3. Computation Fluid Dynamic simulation of DO % for various broth viscosities 
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SMF for cellulase production based on the 

experimental design and CFD simulation 

 An SMF was carried out in a bioreactor 

using the suggested optimum values of 

temperature, viscosity, agitation, aeration, and 

DO%. It was observed that problems related to 

foaming; increased viscosity; and higher 

agitation shear rates were eliminated. The batch 

cellulase production was halted after reaching 

complete utilization of cellulose at 168 h as 

shown in Fig. 4 (a), with 3.8 g/L fungal biomass 

concentration. Catabolite repression may be 

observed [51] as the glucose accumulated to 3.2 

g/L (HPLC data not shown) at the end of 168 h 

as shown in fig. 4 (b) (after complete depletion 

of cellulose). The DO % decreases from 

70%,after 36-72 h (shown in fig.5 (b)) due to the 

viscosity increase to 2.2 cP (shown in fig. 5 (a), 

and the biomass increase of 2.8 g/L (as shown in 

fig. 4 (a)). DO% gradually decreased to a value 

of 55%, which may be due to the reduced 

Oxygen Transfer Rate of 190 ±0.02 ppm 

oxygen/day and an increased in oxygen uptake 

rate of 0.9 ± 0.04 ppm oxygen/day within the 

reactor [29]. However, 100 mL of minimal 

media was fed every 24 h after 72 h to maintain 

the viscosity at 2 cP as seen in fig. 5 (a). The 

culture volume increased to 1.4 L at the end of 

the fermentation due to the addition of minimal 

media. The biomass yield coefficient (Yx/s) was 

0.32 ± 0.01 g biomass /g substrate; Yx/O2-1.03 ± 

0.01g biomass/ ppm oxygen; the maximum 

specific growth rate was 0.03± 0.002 g biomass / 

hour; and the maintenance coefficient was 0.04 ± 

0.001 g biomass/ g substrate/hour [52]. The mass 

transfer coefficient (KLa) of the reactor 

decreased from 498/hour to 50/hour during the 

operation due to the increase in viscosity, and 

variations in OTR and OUR [29]. The critical 

oxygen concentration required was 0.9 ± 0.04 

ppm oxygen/day. The results (enzyme activities) 

obtained from the SMF varied around 12.2% 

from the model-predicted results of the statistical 

design. An algorithm based model usually 

predicts moderate values, which are generated on 

the basis of numerical effect or responses; the 

practical ambience varies greatly in comparison 

to an algorithm’s prediction [53]. The enzyme 

activities obtained were, 1.85 FPU/mL, 12.48 

CMCase/mL, 743.5 Xylanase/mL, and 3165.3 

Beta glucosidase/mL. 

 
 

Fig. 4. (a) Cellulose consumption (g/L) and 

fungal biomass (g/L) formation in the cellulase 

production process (SMF). (b) Glucose 

accumulation (g/L) throughout the course of the 

cellulase production process 

 
Fig. 5. (a) Variations in viscosity (cP) throughout 

the course of the cellulase production process. 

(b) Variations in Dissolved oxygen (%) and 

agitation (rpm) throughout the course of the 

cellulase production process 
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Conclusions 

A statistical optimization design and 

Computational Fluid Dynamic (CFD) simulation 

suggested certain optimum reactor’s parameter 

values. Once the values were known, an SMF 

was performed using the suggested values. The 

hypothesis was not proven to a greater extent as 

the experimental validation using the simulated 

parameters (as stated by the model) did not yield 

enhanced enzyme activities, as opposed to that 

predicted by the model. The variation between 

the predicted and actual experimental values was 

12.2%. However, the optimum values 

contributed to an unmonitored operation of the 

reactor to yield consistent enzyme activities of 

cellulases (though not enhanced). Such an 

unmonitored process may find wider 

applications in large-scale operations. This work 

is one of the few statistical optimization 

techniques that have been performed for process 

variables for a cellulase production process, 

which employs a novel substrate mixture. Such a 

design based approach may be applied for the 

production of cellulases with better enzyme 

activities by biofuel researchers and industries 

alike. 
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