

Black Belt Review

Dr. Bob Gee Dean Scott Bonney Professor William G. Journigan American Meridian University

AMU / Bon-Tech, LLC, Journi-Tech Corporation Copyright 2015

BB Exam Logistics

- Exam class begins at 8pm (EST) next Thursday, January 28, 2016
- Exam is 60 multiple choice questions
- All questions are equally weighted
- There is no penalty for guessing
- Exam is open books and open notes, but closed neighbor (You may use whatever references you want, but you may **not** "phone a friend")
- Faculty will be dialed in and available to assist you if you have any questions
- Please do not be late
- Total expected exam duration is two (2) hours. You may take longer
- Once you begin the exam, you will have 24 hours to complete it
- You are not required to begin the exam on Thursday night, January 28th, 2016
- You ARE required to complete and submit the exam prior to midnight on Thursday, February 4th, 2016
- If you do not intend to begin the exam at the scheduled time on the evening of January 28th, 2016 you
 must notify Prof. Journigan and Dean Bonney immediately to schedule your exam starting time
- You must have an approved AMU Faculty member present with you when you begin the exam
- You are *strongly encouraged* to "get it done" and take / complete the exam on January 28th

BB Exam Logistics

 Exam class begins at 8pm (EST) next Thursday, January 28, 2016 (yes, we said this already – but it's earlier than you're used to, so please write it down, set your alarms, have a friend remind you!)

Prior to class, you will need to...

- Watch for the email with your password (arriving by close of business Friday)
- Log onto <u>https://www.AMU-EDU.com</u> and select "MyAMU"
- Sign in with your AMU email address and assigned password
- You will be prompted to change your password
- You will see AMU's new Learning Management System
- This is where you will need to go on exam night. If you can log onto the site this week, you can log on for the exam. If you CAN'T log on this week, notify Willie, Scott, and gregory.sanders@amu-edu.com

BB Exam Logistics (cont.)

All https://www.amu-edu.com			C ^e Q Search	🟠 🗎 💟 🔸 🏠 😕 🗧 Conference MyAMU imail Support
		ERICAN MERID	ιαν ΓΥ	
Abo	ut AMU Academic Programs	Admissions & Aid	Publishing Initiative	
Office DEPOT		SLEFE HE P		Log in
HOID POINT Phone Hold POINT Phone Hold POINT		13		Username
HAMPAIL IN COP		B		Password
AMU meets with the National Black E	Black Belt Cohort	1 PP		Remember username Log in
Pro the stand work i		C B B		Forgotten your username or password?
For details, watch for	the email with yo	our passwo	rd, and	Cookies must be enabled in your browser 👔
4 watch the Exam Logist	tics video on the	student we	ebsite!	

Jon-Tech

Deployment Process for Driving Sustainable Results

Bon-Teck

Executive Planning Session Objectives

- Align Lean efforts with Corporate Priorities and Guidance
- Identify core value streams and funding flow
- Prioritize based on value to Customers
- Develop charters/plans that address resources (Champions, BBs, GBs), improvement objectives and metrics, and schedule

Note: It sounds intimidating, but the core tool to facilitate an effective Executive Planning Session is just a simple SIPOC / SIPOOC. Call your MBB for help the first time, and you can run the next one all by yourself.

Deployment Strategy

SIPOC Overview – High Level

- Acronym meaning:
 - Suppliers
 - Inputs
 - Process
 - Outputs
 - Outcomes
 - Customers (Clients)
- Represents the chain of elements to put a service or product into customer possession
- The heart of any SIPOOC is "IPO" and the Suppliers help us think about upstream inputs while Customers help us think about downstream outputs
- Always consider including "Supplier" and "Customer" representatives on your team
- Provides end-to-end context for your project scope and boundaries

10

Traditional SIPOOC Layout

S	Ι	Р	Ο	Ο	С
Customers Fulfillment Department	Customer Order Customer Invoice Requirements Invoicing System Shipment Verification	Receive Order Enter Order Validate Shipment Create Invoice Send Invoice Revise Invoice Receive Payment	Invoice Payment	Invoice Payment	Customer Accounts Receivable

AMU / Bon-Tech, LLC, Journi-Tech Corporation Copyright 2015

Connecting VOC to the Value Stream

Bon-Teck

Converting VOC to Metrics

JBon-Tech

Where Do We Use QFD?

JBon-Tech

- QFD begins with the Customer in order to:
 - *Develop* new products and / or services
 - *Improve* existing products and / or services
- Every new product, process, or service should improve customer satisfaction
- Every modification to an existing product, process, or service should improve customer satisfaction
- Customers include external and internal Customers.

Internal Customers and/or stakeholders should all be represented during the development of the QFD matrix.

Team <u>Development</u>

Bon-Tec.

Beware! Teams that appear to be high performing, and never argue or "storm" may have fallen victim to "Group Think", where they no longer challenge each other's assumptions.

Brainstorming

- Discuss the ground rules
 - No judgements
- Determine the method
 - Chaos, Nominal Group Technique (NGT), Round Robin
- State the question
 - Write it down in front of the room

- Restate the question
 - Necessary if the group seems too far afield
- Capture all ideas
 - Summarize and Reflect
 - Tag-team
- Immediate enforcement of rules
 - Keep it safe

Brainstorming

- Legibility is the victim of SPEED
- Facilitation is not NEAT
- Chaos is FUN
- Take pride in your ignorance
- Always forget to combine
- Assert
- Laughter fans the flames of creativity
- Chaos is FUN

Affinity

- Combine like items
- Group by function or other logical categories

What is Multivoting?

Multi-voting is a group decision-making technique used to reduce a long list of items to a manageable number by means of a structured series of votes.

The result is a short list identifying what is important to the team.

When should a team use Multivoting?

- Use multivoting whenever a brainstorming session has generated a list of items that is too extensive for all items to be addressed at once
- Multivoting provides a quick and easy way for a team to identify the most popular or highest priority items on a list, those that are worthy of immediate attention
- When you need to prioritize a large list without creating a situation in which there are *winners* and *losers* in the group that generated the list

Prioritization

- Used to decide on which items of the short list should be worked first
- ALL items are important and should be worked
- The team has some opinionated members who think they know the most important problem
- Several team members are not speaking

Prioritization

Several team members are not speaking

Each team member writes the letters A through G on a piece of paper

Then, each member ranks each issue from 1 to 7 (with the most important receiving 7 and the least important receiving 1), using each number only once

Quad Chart

	Project Title: XXX DBBC: (Department	XXX t Business Benef	fits Coordinator)	Qu	ad Shee	et Template	Serial Ni Status D Lean Ev Nuclear:	umber: (Provided by C100Pl) late: DDMmmYYYY ent: PROJ / RIE / JDI / No Yes / No
	I. <u>Project Desc</u>	eription: XX	xxxx			II. <u>Status</u> :		
	Project Out	come: XXX	XXX			Month Year Event or Mi XXXXXXX XXXXX	lestone	Status Pending / Active / Completed
	<u>POC</u> : (Name / Lean Facilit	Code / Shop / Pho	one Number) Code / Shop / Phor	e Number)				
	III. <u>Metrics / B</u>	<u>Benefits</u> :				IV. <u>Cost & Benefits</u> :		
	Metric	Units Bas	eline Proj	Proj % Change	Actual Actual % Change	Projected Cost: XXXXX		
	Throughput L	Jnits/Day				Projected Benefits: XXXX	x	
	Cycle Time I Touch Time	Min-Sec Min-Sec		AM				
	Man Hours	Hours	E P			Validated Benefits: XXXX	Х	
	(Describe Benefits))						
•	<u>Notes</u> : XXX	XXX						
AMU / Bon-Tech, LLC, Jour	ni-Tech Corporation	Copyright 20	15					

Bon-Tech

23

LSS Charter Overview

- Charter is your contract for success
 - You are the author of your charter and its associated success
 - Project Sponsor / Champion is the Owner of the Charter
 - Structure the charter (contract) so that you are successful
 - Specify boundaries, requisite resources, and support needed
- Download and use current LSS Charter Template from Bon-Tech.org Website

LSS Charter Overview

- Charter is an organic, living document
 - Charter transforms as LSS team gets "smarter" on project
 - Organic nature assures success
- Begin crafting charter at project inception
 - Preliminary data needed
 - Use the "Library" vs. "Laboratory" approach
 - Library approach data elements exist... somewhere Find Them
 - Laboratory approach original research (avoid whenever possible)

Lean Six Sigma Charter

Lean Six Sigma (LSS) Charter							
Event Description Date: Project Name: Project Sponsor Black Belt: Master Black Belt: Master Black Belt: Master Black Belt: Type 1 (Hat Type 2 (Cos Type 3 (Que	<u>vType</u> USA 	Project Kaize	n/RIE JDI	DFSS			
Opportunity or P Goal Statement - 1. Cost: 2. Schedule: 3. Performance:	Type 3 (Quality of Life) - Opportunity or Problem Statement - Defines the opportunity or problem of the project: <u>Coal Statement</u> - Defines the goals of the project: Schedule: Schedule:						
<u>Project Scope</u> – <i>L</i> In Scope: Out of Scope:	Survate: Survate: Survate: Project Scope - Defines the process boundaries of the project: In Scope: Out of Scope:						

	Lean Six Si Cha		₩ Im	rech	
Project Plan – Defines ti	he initial plan for comp	leting the LSS DMAIC .	Project		
Team Launch:					
Toligate	Scheduled	Revised		Complete	
Define:					
Measure:					
Analyze:					
Improve:					
Control:					
Project Roles and Utiliz	ation -	Nama	litilization	Stort	End
Project Roles and Utiliz Role Project Sponsor	ation –	Name	Utilization	Start	End
Project Roles and Utiliz Role Project Sponsor L SSMBB	ration –	Name	Utilization 1% 2%	Start	End
Project Roles and Utiliz Role Project Sponsor L SSMBB Process Owner	ation -	Name	Utilization 1% 2% 20%	Start	End
Project Roles and Utiliz Role Project Sponsor L SSMBB Process Owner Black Belt Candidate	ation –	Name	Utilization 1% 2% 20% 20%	Start	End
Project Roles and Utiliz Role Project Sponsor L SSMBB Process Owner Black Belt Candidate Team Process SMEs		Name	Utilization 1% 2% 20% 20% 20%	Start	End
Project Roles and Utiliz Role Project Sponsor L SSMBB Process Owner Black Belt Candidate Team Process SMEs Extended Team Process	sme	Name	Uiillizajion 1% 2% 20% 20% 20% 5%	Start	End
Project Roles and Utiliz Role Project Sponsor L SSMBB Process Owner Black Belt Candidate Team Process SMEs Extended Team Process Sile = Yellow Belt Selt	s <u>ation</u> –	Name Red = Black Beit	Utill28000 1% 20% 20% 20% 5% Purpl	Start le = Master	End
Project Roles and Utiliz Role Project Sponsor LSEMBE Process Owner Black Belt Candidate Team Process SMEs Extended Team Process Size = Vellow Belt Selt Approved By:: IVYYYYYYY	<u>ation</u> – SME Green = Green Belt	Name Red = Black Belt	Udilizetion 1% 2% 20% 20% 20% 5% Purp	Start le = Master	End
Project Roles and Utiliz Role Project Sponsor L SSMBB Process Owner Black Belt Candidate Team Process SMEs Extended Team Process Bine = Yellow Belt Selt Approved By; [XXXXXXXX Project Sponsor	sME Green = Green Belt	Name Red = Black Belt	Utilization 1% 2% 20% 20% 20% 5% Purpl	Start le = Master Dat	End Black
Project Roles and Utiliz Role Project Sponsor L \$SMBB Process Owner Black Belt Candidate Team Process SMEs Extended Team Process Siles - Yellow Belt Selt Approved By: XXXXXXXXX Project Sponsor XXXXXXXX Black Belt	iation -	Name Red = Black Belt	Utilization 1% 2% 20% 20% 5% 5% Purp	Start	End Black

Bon-Tech

26

Population Mean Formula

• The population mean is calculated using a formula:

$$u = \frac{\sum x}{n}$$

- μ (mu) is the symbol for the population mean
- "sum all the observations of x, and divide by n"

Sample Mean Formula

• The sample mean is calculated using a formula:

- \overline{X} is the symbol for the mean
- "sum all the observations of x, and divide by n"

Range, Variance, and Standard Deviation Range: highest value – lowest value

Variance (
$$\sigma^2$$
 or S²) = $\sigma^2 = \frac{\sum_{i=1}^{n} (X - \mu)^2}{N}$ or $S^2 = \frac{\sum_{i=1}^{n} (X - \overline{X})^2}{n - 1}$

Standard deviation is simply the square root of Variance:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (X - \mu)^2}{N}} \quad Or \qquad S = \sqrt{\frac{\sum_{i=1}^{n} (X - \overline{X})^2}{n - 1}}$$

Population	Sample
μ = Mean	\overline{X} = Mean
σ^2 = Variance	S ² = Variance
σ = Standard Deviation	S = Standard Deviation

Answers:

Measures of Spread or Dispersion

• Data: (8, 9, 12, 13, 14, 15, 16, 16, 16, 17, 17, 22, 33, 34, 45)

Range: 45 - 8 = \$37K difference between highest and lowest price

Number of Data Points

• Std Deviation of population sample: (assumed by Minitab or Excel)

$$\int [(8-19.13)^2 + (9-19.13)^2 + \dots (45-19.13)^2] (14)$$
s = \$10.31K Number of Data Points - 1

Process Capability

- C_p relates tolerance spread to process capability
- Process capability = 6σ
- FIND Cp: USL = 12, LSL = 4, σ = 1
- Cp = USL LSL = 12 4 = 1.33
- 6σ 6
- When Cp = 1.33, the process spread is 3/4 of the tolerance spread

Process Capability

* If the tolerance is 0.5" +/- 0.006", what must 6 σ be to yield a C $_{
m p}$ = 1.33?

 $\frac{\text{USL} - \text{LSL}}{6\sigma} = 0.506 - 0.494 = 1.33 (C_p)$

6σ = <u>0.012</u> = 0.009 1.33

* Using the calculated process capability above, find $\boldsymbol{\sigma}.$

 σ = 0.009/6 = 0.0015

* Given \overline{X} = 0.503, find C_{pk}.

Exercise

- Consider the following set of processes
- Customer needs 25 units in 15 minutes
- Order entry takes 20 seconds, delivery takes 10 minutes

- Where is the constraint? <u>P2</u>
- TAKT Time = <u>15 mins / 25 units = 0.6 minutes</u> or 36 seconds / unit
- Exit Time = <u>10 seconds</u>
- Throughput Time = $\frac{8 + 10 + 5 + 8}{8 + 31}$ seconds
- Lead Time = $20 \sec + 31 \sec + (24 \times 10 \sec) + 600 \sec = 14:51$

Note: Takt *Time* is always in time per unit (eg. 36 seconds per unit). Takt *Rate* is always in units per time (eg. 100 units per hour)

Poka Yoke

- A better way to prevent mistakes
 - Remove the opportunity for error (PREVENTION; most effective)
 - Improve the process
 - Make wrong actions more difficult
 - Make the error easy to detect (DETECTION; less effective, but still good)
 - If you cannot remove the opportunity for error, modify the process to make the error obvious
 - Obvious mistakes may be quickly corrected.

Detection Example

• My car beeps if I leave the key in the ignition

Bon-Tech.

Other poka yoke Examples

Bon-Teo

Locking devices on filing cabinet prevents opening multiple drawers which would lead to tipping

Other poka yoke Examples

Gas pumps are equipped with hose couplings that break-away and quickly shut-off the flow of gasoline

Other poka yoke Examples

Bon-Te

This rental truck has a door latch which will not allow the loading ramp to slide out while the latch is in the closed position

Theory of Constraints

Bon-Tech

- Stuff piles up at the constraint (look for the WIP!)
- If you don't break the constraint, you don't improve throughput. Period.
- Remember, "WIP" may be subtle, depending on what your process produces.
 - In manufacturing, WIP is piles of stuff.
 - In Project Management, WIP is time.
 - In marching a bunch of scouts through the woods, WIP is the space between the scouts (piles of "time" that show up as gaps).
 - There is ALWAYS inventory, and there is ALWAYS a constraint. You may have to be creative to figure out what to look for, but once you figure it out, identifying the constraint becomes super easy every time.

Value Stream & Process Mapping

- Help to see the full process from beginning to end
- Help the team to clearly distinguish between Value-Added and Non-Value-Added steps
- Can help to visually display constraints in time or flow (if data blocks are attached to the map)
- It will NOT identify where the root causes of your problem occur.

Value-Added vs. Non-Value-Added

"Value-Added" requires three things

- The customer wants you to do that process step (enough to pay for it!)
- The process step changes the form, fit, or function of the product or service
- You do the process step correctly the first time

Data collection

- Make sure your data accurately reflects your process. If you make 5 variations of a product, make sure they are all represented in your sample, in appropriate proportions. If your sample doesn't accurately reflect your population, your statistical inferences will be wrong.

Data types

- Qualitative: Fuzzy and non-quantified
 - "I'm cold!"
- Quantitative:
 - Discrete / Attribute Data
 - Binomial (only two categories; Defective vs. Not Defective)
 - Good / bad, Go / No-Go, Pass / Fail
 - Poisson (count data; counts the number of Defects)
 - 3 defects on this product, 5 defects on the next product, ...
 - Continuous / Variable data
 - Measured with a measurement device (thermometer, chronometer, micrometer, voltmeter)
 - Can be broken into "infinitely small" pieces (eg. time, distance, cost)

Which is "best"? Continuous is most powerful, but "best" is whatever is most appropriate to the situation.

44

Variables Control Charts

Lesson 12, slide 37

Note that Control Charts are, by design, "distribution independent". This means that they will always work regardless of whether your data are normally distributed or not.

With this understood, control charts are more "sensitive" for data that are normally distributed, or that are normalized due to a larger sample size. Control Charts that use the power of the central limit theorem to "normalize" their data, and thereby produce more sensitive results, include the x-bar/R chart and the x-bar/s chart.

Hypothesis Testing Decision Trees

Ref. Lesson 10, slides 23-30

Bon-Tech

AMU / Bon-Tech, LLC, Journi-Tech Corporation Copyright 2015

Key Tools

- Bon-Tech
- To graphically show center and spread of your continuous data, use a Histogram ("bell curve" graph)
- To show data in time-order, use a Control chart or Run chart
- To identify root causes, use a Fishbone Diagram
- To identify process flow and decision points, use a Process Map
- To prioritize data by category, use a Pareto chart

Hypothesis Testing

P-values

- P-value is a "probability" value. It shows the probability, from 0% to 100%, that the null hypothesis is true.
- There is always risk. In general, we want to be 95% confident (5% risk) in our decisions. Therefore, if the probability that the null is true remains greater than 5%, we are not willing to reject it. But, if p<0.05 (that is, if p is "low" compared to our acceptable risk of 0.05), we reject the null. Thus, we say, "If p is low, the null must go!" and we accept that alternative hypothesis

• Null & Alternative Hypothesis

- Null always includes the "equal sign" and assumes there is no difference between two conditions (eg. "the average time to complete the process before we did our project *equals* the average time to complete the process after we did our project")
- Alternative hypothesis is always not equal (eg. "the average time to complete the process before we
 did our project equals the average time to complete the process after we did our project")
- In general, we hope for a low p-value, so we can reject the null and accept the alternative hypothesis that there is a different between the two conditions being evaluating at a statistically significant level.

Cost of Quality

- It costs to send bad quality to the customer (EXPENSIVE!)
- It costs to inspect quality at the end of the production process
- It costs less to inspect at the point of doing each step
- It costs even less to prevent the defect in the first place

Which is cheapest? Prevention. But it DOES cost (this may be an expense in your LSS project, but the cost is always well worth it!)

Visual Display of Information

- A picture tells 1000 words
- Visual comparison
 - before vs. after
 - Good vs. bad examples
 - Best practice is to show examples side by side, within the eye-span (eg. Show "good" right next to "bad"; show "before" right next to "after")
 - Always display your images in context

(eg. Going from 100 defects / day to 50 defects / day should be displayed using a scale that begins at zero, not at 40)

- Best practice is simple, clean, clear images, not complicated by lots of colors and fonts and unnecessary distractions
- Minitab is a GREAT way to visually display your information

Measurement System Analysis

- Measurement System Analysis (MSA) evaluates the accuracy of your data collection methods, including looking at factors like bias, linearity, repeatability, reproducibility, etc. MSA should always be evaluated on every project, even if it's just talking to the people who collect the data about how they collect it, how they record it, what tools they use, how often, definitions of terms, etc.
- Gage Repeatability and Reproducibility (GR&R) is a specialized, extremely rigorous method for evaluating measurement differences between measurement devices (gages), individual's abilities to consistently take measurements (repeatability), and differences between different people's measurements (reproducibility). GR&R is complex and is usually not required for projects to move forward.
- When conducting a GR&R, let Minitab do the math, but remember:
 - <10% Gage Repeatability / Reproducibility (GR&R) is good</p>
 - 10%-30% is marginal, but generally acceptable, recognizing the measurement process will need to be improved as part of the overall process improvement project
 - >30% is BAD and unacceptable. If GR&R is greater than 30%, you cannot use the data that has been collected using this method; it is unreliable and should not be used for any kind of analysis.

7 Wastes (plus 1)

- TIM WOOD (U)
- Transportation (stuff moving)
- Inventory (stuff not being worked on)
- Motion (people moving)
- Waiting (people not working)
- Overproduction (making stuff no one needs)
- Overprocessing (making higher quality than required)
- Defects (making lower quality than required)
- Plus "Underutilization of people" as the "8th waste" (using people "from the neck down" and not taking best advantage of their minds and skills)

Design of Experiments

- Factors = Process inputs (x's) that may impact the output
- Levels = Two values of a given X that we intend to test
- Eg. Does tire pressure effect my fuel efficiency?
 - Factor = Tire pressure
 - Levels: Two levels might be 25PSI and 40PSI
- How do you calculate number of runs required for an experiment?
 L^F = Levels ^ Factors, where L or "Levels" always equals 2 (a low and a high level, like 25 PSI and 40 PSI)
- Thus, how many runs are required for a 5 factor DOE?
 - 2^5 = 2x2x2x2x2 = 32 runs
- How many runs are required for a 5 factor ½ fraction screening DOE?
 - 2^5 = 2x2x2x2x2 = 32 runs. ½ of 32 = 16 runs
- How many runs are required for a 5 factor ½ fraction screening DOE with 3 replications?
 - $2^5 = 2x2x2x2x2 = 32$ runs. $\frac{1}{2} = 16$ runs. 16 runs replicated 3 times each = 48 total runs

Design of Experiments (cont.)

- Full Factorial DOE = every combination of factors
- Fractional DOE (also known as a Screening DOE) = a fraction of the total runs = a fraction of the total number of combinations
- >4 factors? Recommend a fractional DOE to "screen out" factors that don't matter
- 2-4 factors? Go with a "Full factorial" DOE
- Remember, when running a fractional DOE, resolution becomes important (if you don't run a full DOE, you miss some data, and missing some data means you don't see the whole picture. Can you trust a picture with low resolution? Maybe...)
- Rule of thumb: Higher resolution is clearer. Never trust an experiment with Resolution of 3 or below.

Correlation & Regression

- NOTE: Before you even start looking at correlation or regression analysis, if p-value is >0.05, do not bother, because there is no significant correlation. But, if p<0.05, then the correlation is statistically significant; proceed to look at r and/or R²
- r = Correlation Coefficient
 - Negative value = negative correlation (as X gets bigger, Y gets smaller)
 - Positive value = positive correlation (as X gets bigger, Y gets bigger)
 - Close to zero (0) means nearly zero correlation
 - Close to 1 or -1 = close to 100% correlation
 - Correlation Coefficient is not a linear relationship to correlation, for that, use R²
- R² = the square of the Correlation Coefficient (r²)
- R² is always positive, so indicates % correlation, but NOT whether it is positive or negative

Change Agent

- A Change Agent is more than just a BB or a Champion or a supportive Executive.
- A Change Agent is anyone who consistently strives to improve process performance
- Anyone can be a change agent
- If anyone in a key role on your team is not a Change Agent, your task is to work with them to help them change their perspective to have a positive view of change.
- To effectively facilitate change, you must first effectively facilitate creating change agents!