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CAP 5993/CAP 4993

Game Theory

Instructor: Sam Ganzfried

sganzfri@cis.fiu.edu
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Homework

• Proof of von Neumann Theorem:

– Base case

– Main case: first see whether white has A winning strategy, 

then check whether black can ensure a win FOR ALL 

strategies that follow.

• Technique: can convert game to equivalent and then 

apply von Neuman Theorem.

• To show a statement is true, you need to give a proof.

• To show a statement is false, you need to give a 

counterexample.
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Trembling-hand perfect equilibrium

L R

U 1, 1 2, 0

D 0, 2 2, 2
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• Two pure strategy equilibria (U,L) and (D,R).

• Assume row player is playing (1- ε, ε) for 0 < ε < 1 …
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• In game theory, trembling hand perfect 

equilibrium is a refinement of Nash

equilibrium due to Reinhard Selten. A trembling 

hand perfect equilibrium is an equilibrium that 

takes the possibility of off-the-equilibrium play 

into account by assuming that the players, 

through a “slip of the hand” or tremble, may 

choose unintended strategies, albeit with 

negligible probability.
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• First we define a perturbed game. A perturbed game is a copy 

of a base game, with the restriction that only totally mixed 

strategies are allowed to be played. A totally mixed strategy is a 

mixed strategy where every pure strategy is played with non-

zero probability. This is the "trembling hands" of the players; 

they sometimes play a different strategy than the one they 

intended to play. Then we define a strategy set S (in a base 

game) as being trembling hand perfect if there is a sequence of 

perturbed games that converge to the base game in which there 

is a series of Nash equilibria that converge to S.
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Extensive-form games

• Two ways of defining trembling hand perfect 

equilibrium:

– every strategy of the extensive-form game must be played 

with non-zero probability. This leads to the notion of a 

normal-form trembling hand perfect equilibrium.

– every move at every information set is taken with non-zero 

probability. Limits of equilibria of such perturbed games as 

the tremble probabilities goes to zero are called extensive-

form trembling hand perfect equilibria.

• These two notions are incomparable.
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• Theorem: Every finite strategic-form game has at least 

one perfect equilibrium.

• Theorem: In every perfect equilibrium, every (weakly) 

dominated strategy is chosen with probability zero.

• Theorem: Every equilibrium in completely mixed 

strategies in a strategic-form game is a perfect 

equilibrium.
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• Theorem: Every extensive-form game has a strategic-form 

perfect equilibrium.

• Theorem: Every extensive-form perfect equilibrium of 

extensive-form game Γ is a subgame perfect equilibrium.

• Every finite extensive-form game with perfect recall has an 

extensive-form perfect equilibrium.

• Every finite extensive-form game with perfect recall has a 

subgame perfect equilibrium in behavior strategies.
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Absent-minded driver
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Evolutionarily stable strategies

• A mixed strategy x* in a two-player symmetric game is an 

evolutionarily stable strategy (ESS) if for every mixed strategy x 

that differs from x* there exists ε0 = ε0(x) > 0 such that, for all ε

in (0, ε0),

(1- ε)u1(x,x*) + εu1(x,x) < (1- ε)u1(x*,x*) + εu1(x*,x)

• Interpret x* as distribution of types among “normal” individuals. 

Consider a mutation making use of strategy x, and assume that 

the proportion of this mutation in the population is ε.

• In ESS, the expected payoff of the mutation is smaller than the 

expected payoff of a normal individual, and hence the 

proportion of mutations will decrease and eventually disappear 

over time, with the composition of the population returning to 

being mostly x*. An ESS is therefore a mixed strategy of the 

column player that is immune to being overtaken by mutations.
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What are ESS of Prisoner’s dilemma?

D C

D 1, 1 4, 0

C 0, 4 3, 3
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Dove 

y

Hawk

1-y

Dove 4, 4 2, 8

Hawk 8, 2 1, 1
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• Suppose that a particular animal can exhibit one of two possible 

behaviors: aggressive behavior or peaceful behavior. We will describe 

this by saying that there are two types of animals: hawks (aggressive) 

and doves (peaceful). The different types of behavior are expressed 

when an animal invades the territory of another animal of the same 

species. A hawk will aggressively repel the invader. A dove, in 

constrast, will yield to the aggressor and be driven out of its territory. 

If one of the two animals is a hawk and the other a dove, the outcome 

of this struggle is that the hawk ends up in the territory, while the dove 

is driven out, exposed to predators, and other dangers. If both animals 

aredoves, one of them will end up leaving the territory. Suppose that 

each of them leaves in that situation with prob ½. If both are hawks, a 

fight ensues, during which both are injured, and at most one will 

remain in the territory and produce offspring.
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• Note that the game is symmetric. A mutation is an individual in 

the population characterized by a particular behavior: it may be 

of type dove or type hawk. Mutation type x (0 <= x <= 1), dove 

prob x, hawk prob 1-x. Expected number offspring depends on 

its type and type of individual it encounters (prob y of dove).

• Expected payoff of mutation is 4y + 2(1-y) for dove, 8y + (1-y) 

for hawk, and x(4y + 2(1-y))+(1-x)(8y+(1-y)) if it is type x.

• Eg 80% doves (y = 0.8) and 20% hawks, and a new mutation is 

called upon, what “should” the mutation choose?
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• Dove: 0.8 * 0.4 + 0.2*2 = 3.6

• Hawk: 0.8*8 + 0.2*1 = 6.6

• Mutation’s advantage to be born a hawk.

• Over the generations, number of hawks will rise and ration of 

doves to hawks will not be 80%/20%. So population of 80% 

doves:20% hawks is evolutionarily unstable.

• Similarly if 10% doves we are unstable.

• It can be shown that for 20% doves and 80% hawks, the 

expected number of offspring of each type will be equal.

• Note that y* = 0.2 is the symmetric equilibrium of the game. 
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• Theorem: If x* is an evolutionarily stable strategy in a 

two-player symmetric game, then (x*,x*) is a 

symmetric Nash equilibrium in the game.

• Theorem: A strategy x* is evolutionarily stable if and 

only if for each x != x* only one of the following two 

conditions obtains:

u1(x,x*) < u1(x*,x*),

or

u1(x,x*) = u1(x*,x*) and u1(x,x) < u1(x*,x),
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• First condition states that if a mutation deviates from 

x*, it will lose in its encounters with the normal 

population. The second condition says that if the 

payoff a mutation receives from encountering a normal 

individual is equal to that received by a normal 

individual encountering a normal individual, that 

mutation will receive a smaller payoff when it 

encounters the same mutation than a normal individual 

would in encountering the mutation. In both cases the 

population of normal individuals will increase faster 

than the population of mutations.
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Sequential equilibrium

• Sequential equilibrium is a refinement of Nash Equilibrium for 

extensive form games due to David M. Kreps and Robert 

Wilson. A sequential equilibrium specifies not only a strategy 

for each of the players but also a belief for each of the players. 

A belief gives, for each information set of the game belonging to 

the player, a probability distribution on the nodes in the 

information set. A profile of strategies and beliefs is called an 

assessment for the game. Informally speaking, an assessment is 

a perfect Bayesian equilibrium if its strategies are sensible given 

its beliefs and its beliefs are confirmed on the outcome path 

given by its strategies. The definition of sequential equilibrium 

further requires that there be arbitrarily small perturbations of 

beliefs and associated strategies with the same property.
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Proper equilibrium
• Proper equilibrium is a refinement of Nash Equilibrium due to 

Roger B. Myerson. Proper equilibrium further refines Reinhard 

Selten's notion of a trembling hand perfect equilibrium by 

assuming that more costly trembles are made with significantly 

smaller probability than less costly ones.

• Given a normal form game and a parameter ϵ > 0, a totally 

mixed strategy profile σ is defined to be ϵ-proper if, whenever a 

player has two pure strategies s and s' such that the expected 

payoff of playing s is smaller than the expected payoff of 

playing s' (that is u(s, σ−i) < u(s′, σ−i)), then the probability 

assigned to s is at most ϵ times the probability assigned to s'. A 

strategy profile of the game is then said to be a proper 

equilibrium if it is a limit point, as ϵ approaches 0, of a sequence 

of ϵ-proper strategy profiles.
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Matching pennies with a twist

Guess 

heads up

Guess Tails 

up

Grab penny

Hide Heads 

Up

-1,1 0,0 -1,1

Hide Tails 

Up

0,0 -1,1 -1,1
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• The Nash equilibria of the game are the strategy profiles where Player 2 

grabs the penny with probability 1. Any mixed strategy of Player 1 is in 

(Nash) equilibrium with this pure strategy of Player 2. Any such pair is even 

trembling hand perfect. Intuitively, since Player 1 expects Player 2 to grab the 

penny, he is not concerned about leaving Player 2 uncertain about whether it 

is heads up or tails up. However, it can be seen that the unique proper 

equilibrium of this game is the one where Player 1 hides the penny heads up 

with probability 1/2 and tails up with probability 1/2 (and Player 2 grabs the 

penny). This unique proper equilibrium can be motivated intuitively as 

follows: Player 1 fully expects Player 2 to grab the penny. However, Player 1 

still prepares for the unlikely event that Player 2 does not grab the penny and 

instead for some reason decides to make a guess. Player 1 prepares for this 

event by making sure that Player 2 has no information about whether the 

penny is heads up or tails up, exactly as in the original Matching Pennies 

game.



23

Critiques of Nash equilibrium

• Is it too strict?

– Does not exist in all games

– Might rule out some more “reasonable” strategies

• Not strict enough?

– Potentially many equilibria to select through

• Just right?
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Repeated games

• In many cases, interaction between players does not 

end after only one encounter; players often meet each 

other many times, either playing the same game over 

and over again, or playing different games. There are 

many examples of situations that can be modeled as 

multistage interactions: a printing office buys paper 

from a paper manufacturer every quarter; a tennis 

player buys a pair of tennis shoes from a shop in his 

town every time his old ones wear out; baseball teams 

play each other several times every season.
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• The very fact that the players encounter each other 

repeatedly gives them an opportunity to cooperate, by 

conditioning their actions in every stage on what 

happened in previous stages. A player can threaten his 

opponent with the threat “if you do not cooperate now, 

in the future I will take actions that harm you,” and he 

can carry out this threat, thus “punishing” his 

opponent. For example, the manager of a printing 

office can inform a paper manufacturer that if the price 

of the paper is not reduced by 10% in the future, he 

will no longer buy paper from that manufacturer.



26

• Γ= (N, (Si) i in N, (ui) i in N)

• Players play Γ over and over. 

• Three cases:

– Finite number of stages T, and every player wants to 

maximize his average payoff.

– The game lasts an infinite number of stages, and every player 

wants to maximize the upper limit of his average payoffs

– The game lasts an infinite number of stages, and each player 

wants to maximize the time-discounted sum of his payoffs.

• Let M = maxi in N maxs in S |ui(s)|
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D C

D 1, 1 4, 0

C 0, 4 3, 3
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• At every equilibrium of the two-stage repeated game, 

the players play (D,D) in both stages.

• Proof:

– Suppose instead there exists an equilibrium in which the 

players do not play (D,D) with positive probability in some 

stage. Let t in {1,2} be the last stage in which there is 

positive probability they do not play (D,D) and suppose that 

in this event, Player I does not play D at stage t. This means 

that if the game continues after stage t the players will play 

(D,D). We will show that this strategy cannot be an 

equilibrium strategy.
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• Case 1: t = 1.

– Consider the strategy of Player I at which he plays D in both 

stages. We will show that this strategy grants him a higher 

payoff. Since D strictly dominates C, Player I’s payoff rises 

if he switches from C to D in the first stage. And since, by 

assumption, after stage t the players play (D,D) (since stage t 

is the last stage in which they may not play (D,D)), Player I’s 

payoff in the second stage was supposed to be 1. By playing 

D in the second stage, Player I’s payoff is either 1 or 4 

(depending on whether Player II plays D or C); in either case, 

Player I cannot lose in the second stage. The sum total of 

Player I’s payoffs therefore rises.
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• Case 2: t = 2.

– Consider the strategy of Player I at which he plays in the first 

stage what the original strategy tells him to play, and in the 

second stage he plays D. Player I’s payoff in the first stage 

does not change, but because D strictly dominates C, his 

payoff in the second stage does increase. The sum total of 

Player I’s payoffs therefore increases.



32

Next lecture
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Assignment

• HW2 due today.

• HW3 out 2/21 (due 3/2). 

• Midterm on 3/7 (midterm review on 3/2).

– Will cover material from lectures and homeworks (will not cover material 

from the textbooks that was not covered in lectures or homeworks).

– 3 parts: multiple choice, true/false with explanation, analytical exercises

• Reading for next class: chapter 7 from Shoham textbook


