SOLAR CYCLE 25, THE **IONOSPHERE AND PRECISE POINT** POSITIONING (PPP/RTX)

FRIMINIER PRECISION Bob Green, PLS

- Geospatial Analyst Frontier Precision / 5 + Years
- Professional Land Surveyor 32 years
 - 46 years Total Land Surveying Experience
- Past 2 Term Member of The Monitor Panel to the (NKA) Colorado State Board of Licensure for Architects, Professional Engineers and Professional Land Surveyors
- Past 2 Term Member of the Survey Engineering Industrial Advisory Committee – New Mexico State University
- Published Author, Public Speaker and Measurement Technology Advocate
- Government and Private Sector Trainer and Consultant
- Terrestrial Scanning Pioneer and Innovator

Solar Effects and CME's Impact the Ionosphere

EARTHS ATMOSPHERE

What are ionospheric disturbances and how do they affect GNSS?

TOTAL ELECTRON CONTENT and SCINTILLATION

Descriptive quantity

Total electron content is an important descriptive quantity for the ionosphere of the Earth. TEC is the total number of electrons integrated between two points, along a tube of one meter squared cross...

The change in the path and velocity of radio waves in the ionosphere has a big impact on the accuracy of satellite navigation systems such as GPS/GNSS. Neglecting changes in the ionosphere TEC can introduce tens of meters of error in the position calculations.

Ionospheric Scintillation - Space Weather Prediction Center

SFrom swpc.noaa.gov 🗅

1 What is ionospheric scintillation?

~

Ionospheric scintillation is the rapid modification of radio waves caused by small scale structures in the ionosphere.

Severe scintillation conditions can prevent a GPS receiver from locking on to the signal and can make it impossible to calculate a position. Less severe scintillation conditions can reduce the accuracy and the confidence of positioning results.

Honolulu, Hawaii Ionosphere Information June 21, 2024

HISTORIC SOLAR CYCLES

SPACE WEATHER LIVE APP

ANCHORAGE IONOSPHERIC TEC/INDEX/SCINTILLATION

SALEM, OR IONOSPHERIC TEC/INDEX/SCINTILLATION

Receiver WebUI GPS Tracking

Satellites - Tracking Information

	L	GPS	GLON	IASS G	alileo	BeiDou	QZSS	SBAS	M	ss			
sv	Туре	Elev. [°]	Azim. [°]	L1-C/No [dBHz]	L1	L2-C/No [dBHz]	L2	L5-C/No [dBHz]	L5	lono	IODE	URA [m]	Туре
5	GPS	13.68	179.48	38.9	CA	25.1/39.0	E/CM+CL	-	-		3	2	IIR-M
6	GPS	47.47	39.95	48.1	CA	38.5/47.3	E/CM+CL	50.0	l+Q		35	2	IIF
11	GPS	86.37	281.62	48.5/51.1	CA/BOC	44.5/53.8	E/CM+CL	55.7	l+Q		122	2	Ш
12	GPS	58.06	314.93	48.7	CA	40.9/47.2	E/CM+CL	-	-		14	2	IIR-M
17	GPS	10.49	82.45	39.9	CA	19.9/33.5	E/CM+CL	-	-		108	2.8	IIR-M
19	GPS	31.08	69.48	42.8	CA	30.8	E	-	-		21	2	IIR
20	GPS	38.67	162.51	46.4	CA	34.0	E	-	-		50	2	IIR
22	GPS	15.69	135.55	37.9	CA	23.8	E	-	-		51	2	IIR
24	GPS	24.25	230.16	43.2	CA	29.5/42.8	E/CM+CL	47.3	l+Q		96	2.8	IIF
25	GPS	27.48	315.14	42.1	CA	26.9/40.3	E/CM+CL	44.5	l+Q		20	2	IIF

FR MTIER PRECISION

2024-06-07T16:19:14Z (UTC)

Current GPS Satellite Constellation

LEGACY S	ATELLITES		MODERNIZED SATELLITES	
BLOCK IIA	BLOCK IIR	BLOCK IIR-M	BLOCK IIF	GPS III/IIIF
0 operational	6 operational	7 operational	12 operational	6 operational
 Coarse Acquisition (C/A) code on L1 frequency for civil users Precise P(Y) code on L1 & L2 frequencies for military users 7.5-year design lifespan Launched in 1990-1997 Last one decommissioned in 2019 	 C/A code on L1 P(Y) code on L1 & L2 On-board clock monitoring 7.5-year design lifespan Launched in 1997-2004 	 All legacy signals 2nd civil signal on L2 (L2C) LEARN MORE New military M code signals for enhanced jam resistance Flexible power levels for military signals 7.5-year design lifespan Launched in 2005-2009 	 All Block IIR-M signals 3rd civil signal on L5 frequency (L5) <i>LEARN MORE</i> Advanced atomic clocks Improved accuracy, signal strength, and quality 12-year design lifespan Launched in 2010-2016 	 All Block IIF signals 4th civil signal on L1 (L1C) LEARN MORE Enhanced signal reliability, accuracy, and integrity No Selective Availability LEARN MORE 15-year design lifespan IIIF: laser reflectors; search & rescue

GPS L1-band civilian signals on 2020-01-20

Receiver WebUI GLONASS Tracking

	LL GPS	GLO	ONASS	Galileo	Be	iDou G	ZSS	SE	BAS	M	SS
sv	Туре	Elev. [°]	Azim. [°]	L1-C/No [dBHz]	L1	L2-C/No [dBHz]	L2	lono	IODE	URA [m]	Туре
7	GLONASS	13.30	81.24	42.8/41.3	CA/P	39.9/41.7	P/CA		77	2	М
12	GLONASS	46.21	181.29	50.8/49.9	CA/P	46.8/48.6	P/CA		77	2	М
13	GLONASS	67.40	278.20	39.2/38.4	CA/P	43.4/41.9	P/CA		77	5	М
14	GLONASS	16.06	329.75	42.2/41.7	CA/P	37.1/39.1	P/CA		77	2.5	М
22	GLONASS	32.60	34.49	47.0/46.4	CA/P	42.6/44.3	P/CA		77	4	М
23	GLONASS	58.95	321.54	48.9/47.0	CA/P	-	P/CA		77	4	М
24	GLONASS	22.28	257.73	46.4/45.1	CA/P	39.9/41.7	P/CA		77	5	М

2024-06-07T16:29:17Z (UTC)

Receiver WebUI GALILEO Tracking

Satellites - Tracking Information

Receiver Status

Satellites

General Tracking (Table) Tracking (Graph) Tracking (SkyPlot) Enable/Disable Satellite Almanacs Predicted Elevation Predicted Constellation Current Constellation Ground Track Rise/Set (Table) Rise/Set (Graph)

Data Logging

Receiver Configuration

I/O Configuration

Bluetooth

Radio

GSM/GPRS Modem

MSS Corrections

Network Configuration

L	ALL	. GPS	GLONA	SS Galil	eo Beit	Dou QZS	S Navi	: [SBAS	MSS
	sv	Туре	Elev. [°]	Azim. [°]	E1-C/No [dBHz]	E1	E5-C/No [dBHz]	E5	IODE	URA [m]
L	13	Galileo	58.38	59.88	45.9	CBOC	51.0	Alt	50	3.12
L	21	Galileo	62.57	130.87	44.9	CBOC	51.2	Alt	48	3.12
L	26	Galileo	58.04	191.86	49.4	CBOC	54.6	Alt	50	3.12
	27	Galileo	10.38	128.71	34.3	CBOC	37.7	Alt	49	3.12
L	33	Galileo	11.75	211.08	40.7	CBOC	43.7	Alt	50	3.12

2024-06-21T15:32:33Z (UTC)

Galileo Satellite Constellation Update

SpaceX successfully launches Galileo GNSS satellites

April 30, 2024 - By Jesse Khalil

On April 27, 2024 the SpaceX Falcon 9 medium-lift launch vehicle launched into orbit Galileo satellites GM25 and FM27 from Kennedy Space Center in Florida. This was Falcon 9's 20th and final launch.

The EU Agency for the Space Programme (EUSPA) confirmed in a statement that it is now in the Launch and Early Orbit Phase (LEOP) stage of the two new L12 Galileo satellites. They will join the current Galileo operational fleet in the upcoming months. The latest batch of

APPLICATIONS

Galileo satellites

58393 VIEWS 92 LIKES

ESA / Applications / Satellite navigation / Galileo

The Galileo Space Segment will comprise a constellation of a total of 30 Medium Earth Orbit (MEO) satellites, of which 3 are spares, in a so-called Walker 27/3/1 constellation.

Currently, 23 satellites are operational, 2 are under commissioning, 4 are not usable and 1 was retired. The remaining 8 FOC satellites have completed manufacturing and testing. They are currently in storage awaiting launch by Falcon 9 and Ariane 6.

Receiver WebUI BeiDOU Tracking

Satellites - Tracking Information

Receiver Status

Satellites

General Tracking (Table) Tracking (Graph) Tracking (SkyPlot) Enable/Disable Satellite Almanacs Predicted Elevation Predicted Constellation Current Constellation Ground Track Rise/Set (Table) Rise/Set (Graph)

Data Logging Receiver Configuration I/O Configuration Bluetooth Radio GSM/GPRS Modem MSS Corrections Network Configuration

	L GF	rs (GLONAS	S Galil	eo Beil	Dou	QZSS	Nav	IC	SBA	<u>د</u>	MSS
sv	Туре	Elev. [°]	Azim. [°]	B1-C/No [dBHz]	B1	B2-C/No [dBHz]	9 В2	B3-C/No [dBHz]	B3	IODE	URA [m]	Туре
26	BeiDou	48.31	293.55	47.9/46.8	B1I/B1C	49.6	B2A	44.1	B3I	1	2.4	MEO
29	BeiDou	70.37	47.51	51.5/49.0	B1I/B1C	50.2	B2A	49.1	B3I	1	2.4	MEO
30	BeiDou	15.25	59.95	29.4/36.1	B1I/B1C	39.6	B2A	38.7	B3I	1	2.4	MEO
35	BeiDou	45.05	247.33	47.0/46.5	B1I/B1C	48.1	B2A	45.3	B3I	1	2.4	MEO
36	BeiDou	11.11	158.65	28.0/31.7	B1I/B1C	34.4	B2A	-	B3I	1	2.4	MEO
39	BeiDou	14.45	326.49	35.8/38.1	B1I/B1C	36.9	B2A	31.3	B3I	1	2.4	IGSO
45	BeiDou	53.97	191.58	50.7/49.2	B1I/B1C	51.9	B2A	49.0	B3I	1	2.4	MEO
				-								

2024-06-21T15:32:13Z (UTC)

BeiDOU Satellite Constellation Update

China's BeiDou challenges US GPS dominance

Recent launch and surveillance fears

October 26, 2023 - By Jesse Khalil

Image: imaginima/iStock/Getty Images Plus/Getty Images

^{Est}On May 16, 2023, China <u>launched</u> its most recent BeiDou satellite to replenish the constellation, bringing its total to 56 satellites, nearly
 twice as many as the 31 GPS satellites.

The latest BeiDou satellites also feature two-way messaging, a feature that GPS does not have. It is mainly available in China and requires special chips that are not widely available in the consumer market. It enables users to send short messages in areas without ground network cell coverage and can be used for search and rescue operations.

The CNBC report noted the fear that, with its most recent enhancements, the BeiDou system could be used as a surveillance device — as the two-way messaging feature reveals a user's locations as well as other types of data.

Trimble lonoGuard

Protecting RTK GNSS from Ionospheric disturbances Minimum Receiver Firmware Version 6.23/ProPoint

IONOSPHERIC MITIGATION PLATFORMS

TRIMBLE NAVIGATION

NOVATEL

Trimble IonoGuard Testing in Anchorage 2-3-24

No IONOGUARD at Base and Rover

Trimble IonoGuard Testing in Anchorage 2-3-24

IONOGUARD Base and Rover

Trimble IonoGuard Testing in Anchorage 6-1-24

<u>No</u> IONOGUARD at Base and Rover

Trimble IonoGuard Testing in Anchorage 6-1-24

IONOGUARD at Base and Rover

Trimble IonoGuard Testing in Anchorage 6-1-24 Precision Histogram Details

NON -IONOGUARD

IONOGUARD

WHAT IS PRECISE POINT POSITIONING (PPP)RTX.

FRONTIER PRECISION

Wide Area Augmentation System WAAS was Certified By the FAA in 2003. Currently 3 Satellites in orbit. Prior to President Bill Clinton discontinuing Selective Availability autonomous GPS was +/- 100meters.

OmniSTAR is a satellite-based augmentation system (<u>SBAS</u>) service provider. OmniSTAR correction signals are proprietary, and a subscription must be bought from the OmniSTAR corporation to receive a subscription authorization. OmniSTAR uses <u>geostationary satellites</u> in eight regions covering most of the landmass of each inhabited continent on Earth:

HEXAGON TERRASTAR "RTK From The Sky" PPP Technology **Sub-Inch Accuracy**: TerraStar offers centimeter-level positioning accuracy for applications like **precision agriculture**. This high precision is available **worldwide**.

Multi-Constellation Corrections: TerraStar provides corrections for multiple satellite constellations. These corrections are accessible through compatible **NovAtel GNSS/GPS receivers**

TRIMBLE RTX – HOW IT WORKS

ND | SD | MN | CO | AK | MT | ID | HI | WY | UT | OR | WA

RMS performance based on repeatable in field measurements. Achievable accuracy and initialization time may vary based on type and capability of receiver and antenna, user's geographic location and atmospheric activity, scintillation levels, GNSS constellation health and availability and level of multipath including obstructions such as large trees and buildings.

RTX FAST SERVICE COMPLETED FOR CONUS!!

ND | SD | MN | CO | AK | MT | ID | HI | WY | UT | OR | WA

FRENTIER PRECISION

NO BASE STATION, VRS OR CELL REQUIRED

Topography, boundary work, stakeout or as-built Large Boundaries & Asset Mapping, Cadastral Mapping

RTX Requirements

- GNSS Satellite visibility
- Good view of the southern sky (Location of the L-band satellite)
- RTX Compliant GNSS Receiver
- Mission Planning
- Be Careful working around Obstrucations
 - Tall Buildings, Canyons and Heavy Canopy

Ξ	≡│				
	2	RTX+	·IMU H:0.	05ift V:0.18if	6.562
Sa	tellite	s			
					\sim
	SV R20	Az 38°	Elev 32°▼	L1 CA/ L 37.7	_2E/L2 L
-	R21	300°	80°▲	50.2	
-	R22	231°	31°▲	47.2	
-	E13	62°	60°▼	48.5	
-	E21	129°	64° ▼	50.8	
-	E26	191°	56°▲	49.0	
-	E27	128°	12°▼	42.5	
	E33	210°	10°	37.2	
-	C26	296°	47°▲	49.5	50.2
-	C29	47°	72°▼	49.5	50.8
-	C30	59°	17°▼	37.5	34.7
	C35	246°	44°▲	46.7	48.0
-	C36	158°	13° ▼	38.7	43.5
-	C39	327°	14°	32.0	34.7
-	C45	<u>192°</u>	56° V	10.7	50.8
	RTX	150°	34°	44.5	
	Info	F	Reset	Options	Plot

Sun	Reset	Options	List
•			

ND | SD | MN | CO | AK | MT | ID | HI | WY | UT | OR | WA

INCORPORATION OF HTDP 3.2.9 TA 2020.20

White Paper

Deformation models in Trimble Acces: 2020.20 and Trimble Business Center 5.40

Prepared by Dr. Chris PEARSON, School of Surveying, University of Otago

Our support for deformation models allows TGL to develop accurate coordinates in tectonically active
areas. In practice both the velocity and earthquake shifts are stored as a series of grid files, which are
used to estimate the appropriate values for an arbitrary point by linear interpolation. The basic idea
of a National Deformation Model is illustrated in Figure 1, which shows the trajectory of a point
affected by a constant velocity and two earthquake shifts which are combined to estimate the total
displacement. These are then used to correct the coordinates back to the reference epoch. In
addition, the models can also correct for post-seismic deformation.

The correction equation is:

 $m_{k}(t,\theta,\varphi) = v(\theta,\varphi)_{k}t + E(\theta,\varphi)_{ki}H(t-t_{i}) + P(\theta,\varphi)_{ki}H(t-t_{i})\left(1 - e^{\frac{(t-t_{i})}{tc_{i}}}\right)$

Equation 1

- Where m is the displacement
- v is the velocity (ndm)
- E is the earthquake shift (patch)
- P post-seismic decay
- H is the step function

Figure 1 Schematic diagram of a dynamic datum. Heavy dashed gray line shows the secular velocity. Yellow star indicates an earthquake. Thin gray dotted line co-seismic contribution the deformation model. The solid black line shows the deformation model with both contributions combined

QUALITY CONTROL QC1, QC2 AND QC3

ND | SD | MN | CO | AK | MT | ID | HI | WY | UT | OR | WA FRENTIER PRECISEDN AN EMPLOYEE-OWNED COMPANY

Receiver type	R12i					
Serial number	6042F00575		and the second	^	12	
Firmware version	6.1	OC3 = Sigma North, Fa	ist and Elevation with	n Correspoi	ndina	
Antenna type	R12i Internal				lang	
Measurement method	Bottom of quick release	Error Ellipson Componen	to			
Tape adjustment	0.000	Error Ellipse Componer	ILS			
Horizontal offset	0.000					
Vertical offset	0.588					
Point	RC SOUTH 1 RTX X	-4243289.263 RTX Y	-15892613.892 RTX Z	12899422.919	Code	HINGE SIDE CASING
	Method	RTX Type	Topo point Search class	Normal		
Antenna height	6.562 Type	Uncorrected Tilt distance	0.913 Hz Prec	0.043	Vt Prec	0.161
QC 1	PDOP	1.2 GDOP	2.0 HDOP	0.6	VDOP	1.0
	Base data age	4.8000001907349 Satellites	23 Positions used	7		
QC 3	σ North	0.009 o East	0.009 or Elevation	0.049	Covariance	0.000
	Semi-major axis	0.009 Semi-minor axis	0.009 Orientation	?	Unit variance	1.000
nitialization event: RTX not converge	ed					
	0.000 a		0.11.12	De al l'an		
GPS week	2188 Seconds	420945 Initialization type	On the fly Survey type	Real-time		
GPS week	2188 Seconds	421040 Initialization type	On the fly Survey type	Real-time		
nitialization event: RTX not converge	ed					
GPS week	2188 Seconds	421108 Initialization type	On the fly Survey type	Real-time		
nitialization event: RTX converged						
GPS week	2188 Seconds	421391 Initialization type	On the fly Survey type	Real-time		
Point	RC SOUTH 2 RTX X	-4243562 620 RTX Y	-15893166 803 RTX Z	12898681 842	Code	HINGE SIDE CASING
	Method	RTX Type	Topo point Search class	Normal		
	6 562 Type	Lincorrected Tilt distance		0.050	Vt Prec	0 123
Antenna height				0.000	VEFICE	0.125
Antenna height			19 4000	0.6		0.0
Antenna height QC 1	PDOP Base data age	1.1 GDOP 7.8000001907349 Satellites	1.9 HDOP 24 Positions used	0.6	VDOP	0.9
Antenna height QC 1	PDOP Base data age	1.1 GDOP 7.8000001907349 Satellites	1.9 HDOP 24 Positions used	0.6 7 -0.000218	VDOP	0.9
Antenna height QC 1 QC 2	PDOP Base data age VCV xx (m²)	1.1 GDOP 7.8000001907349 Satellites 0.000246 VCV xy (m²) VCV xy (m²)	1.9 HDOP 24 Positions used 0.000253 VCV xz (m²) 0.000789 VCV yz (m²)	0.6 7 -0.000218 -0.000512	VDOP	0.9
Antenna height QC 1 QC 2	PDOP Base data age VCV xx (m²)	1.1 GDOP 7.8000001907349 Satellites 0.000246 VCV xy (m²) VCV yy (m²) VCV yy (m²)	1.9 HDOP 24 Positions used 0.000253 VCV xz (m²) 0.000789 VCV yz (m²)	0.6 7 -0.000218 -0.000613 0.000655	VDOP	0.9

values used in a Network Adjustment

OREGON PPP/RTX ACCESS FIELD TEST ROCK QUARRY

OREGON PPP/RTX ACCESS FIELD TEST FOREST ROAD

OREGON PPP/RTX/ORGN ACCESS FIELD TEST NGS "PILOT BUTTE"

PILOT BU	TTE (NGS)								
RTX									
Point	PILOT BUTTE RTX	RTX X	-7822576.41	RTX Y	-12874352.89	RTX Z	14480918.81	Code	
		Method	RTX	Туре	Observed control point	Search class	Normal		
Antenna height	6.562	Туре	Uncorrected	Tilt distance	N/A	Hz Prec (1 sigma)	0.021	Vt Prec (1 sigma)	0.099
QC 1		PDOP	1.1	GDOP	1.8	HDOP	0.5	VDOP	0.9
		Base data age	8.800000191	Satellites	26	Positions used	182		
QC 3		σ North	0.007	σ East	0.006	σ Elevation	0.03	Covariance	0
		Semi-major axis	0.007	Semi-minor axis	0.005	Orientation	?	Unit variance	1
ORGN									
Point	PILOT BUTTE ORGN	Δx	1442.36	ΔΥ	-9917	ΔZ	-7162.398	Code	
		Method	Network RTK	Туре	Observed control point	Search class	Normal		
Antenna height	6.562	Туре	Uncorrected	Tilt distance	N/A	Hz Prec (1 sigma)	0.015	Vt Prec (1 sigma)	0.045
QC 1		PDOP	1.2	GDOP	1.7	HDOP	0.6	VDOP	1
		Base data age	2.799999952	Satellites	20	Positions used	183		
QC 2		VCV xx (m²)	0.000034	VCV xy (m²)	0.000041	VCV xz (m²)	-0.000037		
				VCV yy (m²)	0.000102	VCV yz (m²)	-0.000073		
						VCV zz (m²)	0.000094		
	SPC OR S	SPC OR S	NAVD 88	Feature	Horz Prec	Vert Prec			
Point ID	Northing iFT	Easting iFT	Elevation iFT	Code	1 Sigma iFT	1 Sigma iFT			
PB RTX	873436 748	4715356 307	4141 919	BRASS CAP	0 021	0 099			
PB ORGN	873436 777	4715356 331	4142 073	BRASS CAP	0.015	0.045			
Diff-Feet	-0.029	-0.024	-0 154	2. 4 100 0/1	0.006	0.054			
ent-reet	-0.020	-0.024	-0.104		0.000	0.004			

OREGON PPP/RTX/ORGN ACCESS FIELD TEST NGS "H 113"

Point H13 RTX KIN0 RTX 7059647 RTX 1-12834153.6 RTX 1499647109 Code MSS Bass Bass bass bass bass bass bass bass	1	A	В	C	D	E	F	G	НІ	J		
Point H133 kIX kit/kit/kit -//0596// KiX // -//25241536 KiX // 14896/1/109 Code Brass		- · ·		BT ()(100011			NGS		
Antenna Method RIX Type Observed control point data serich bage Normal Antenna Outpoint Outpo	2	Point	H113 RTX IONO	RIXX	-7059647.7	RTXY	-12834153.6	RIXZ	14895471.09 Code	Brass		
Antenna 6 522 Type Uncorrected Title Italice 0.022 (PFRe) 0.03 VFPec (1 sigma) 0.073 0 C 1 POOP 1.1 GOOP 1.7 HODP 0.6 VOOP 0.0 2 C 3 C 7 North 0.007 0.6 VOOP 0.0 3 C 3 C 7 North 0.007 G East 0.002 Covariance 0 9 Semi- axis 0.007 Semi- axis 0.007 G East 0.000 Cientation Point variance 1 10 H113 ORGN AX -11751.948 AY S779.011 AZ 1574.698 Code Brass Brass Point mane	4			Method	RTX	Туре	Observed control point	Search class	Normal	Cap	A HTT3NGS	80% 29%
6 OC1 PDOP 1.1 GDOP 1.7 HDOP 0.6 VDOP 0.9 7 3 3 7 <td>5</td> <td>Antenna height</td> <td>6.562</td> <td>Туре</td> <td>Uncorrected</td> <td>Tilt distance</td> <td>0.022</td> <td>Hz Prec (DRMS)</td> <td>0.03 Vt Prec (1 sigma)</td> <td>0.073</td> <td>0,103 ft</td> <td>RTX H:0.0</td>	5	Antenna height	6.562	Туре	Uncorrected	Tilt distance	0.022	Hz Prec (DRMS)	0.03 Vt Prec (1 sigma)	0.073	0,103 ft	RTX H:0.0
Rase data Actional beight Actional Base data Actional Base data Base data	6	QC 1		PDOP	1.1	GDOP	1.7	HDOP	0.6 VDOP	0.9	utili3 prgn	Measure points
δ C 3 σ North 0.007 σ East 0.008 σ Elevation 0.022 Covariance 0 9 Semi-major axis 0.007 Semi- axis 0.007 Semi- class Normal 1 9 Point H113 ORGN ΔX .11751.948 ΔY 8779.611 ΔZ 1574.698 Code Brass Brass Brass Brass Brass Normal Observed control point Class Observed control point C	7			Base data age	7.80000019	Satellites	26	Positions used	194		0 133 R	Point name
9 Semi-major axis 0.007 minor axis 0.006 Orientation 2 Unit variance 1 10 Data://	8	QC 3		σNorth	0.007	σ East	0.006	σ Elevation	0.022 Covariance	0	0 105 n	H113 SC Code
10 ORGN Point H113 ORGN AX .11751.948 AY 8779.611 AZ 1574.698 Code NGS Brass Cap 11 Antenna 6.562 Type Uncorrected Titt distance 0.022 VI Prec (1 sigma) 0.038 14 OC 1 PDOP 1.1 GDOP 1.5 HDOP 0.6 VDOP 0.9 15 GC 3 σ North 0.006 σ East 0.004 σ renetation 2 Unit variance 1 18 SPC OR N NAVD 88 Feasting 0.033 2 Unit variance 1 17 SPC OR N NAVD 88 Feasting 0.004 0.073 0.073 0.073 0.073 18 Point N Point N Point N Point N 0.008 0.073	9			Semi-major axis	0.007	Semi- minor axis	0.006	Orientation	? Unit variance	1		NGS Brass Cap
Point H113 ORGN ΔX -11751.948 ΔY 8779.811 ΔZ 1574.698 Code NGS Brass Cap 12 Method Network RTK Type Observed control point Search Class Normal Cap	10	ORGN										Observed sectors as
12 Method Network RTK Type Observed control point Search class Normal Interstration 13 Antenna 6.562 Type Uncorrected Tilt 0.022 Vt Prec (1 sigma) 0.038 14 OC 1 PDOP 1.1 GDOP 1.5 HDOP 0.6 VDOP 0.9 15 OC 3 or North 0.006 or Satellites 2.3 Positions 192	11	Point	H113 ORGN	ΔX	-11751.948	ΔΥ	8779.611	ΔZ	1574.698 Code	NGS Brass Cap		
Anterna 6.562 Type Uncorrected Title 0.023 C2 Prec (1 sigma) 0.038 Act 1 PDOP 1.1 GDOP 1.5 HDOP 0.022 Vt Prec (1 sigma) 0.038 5 Image: Arrow age: Arr	12			Method	Network RTK	Туре	Observed control point	Search class	Normal	·	S HIIZ	Epochs remaining
All QC 1 PDOP 1.1 GDOP 1.5 HDOP 0.6 VDOP 0.9 1 Age 3.79999995 Satellites 23 Positions 192 192 192 1111 192 1111 192 1111 192 1111 192 1111 192 1111 192 1111 192 1111 192 1111 192 1111 192 1111 192 1111 192 1111	13	Antenna height	6.562	Туре	Uncorrected	Tilt distance	0.023	Hz Prec (DRMS)	0.022 Vt Prec (1 sigma)	0.038	LEVATION	
Instruction Base data age 3.7999995 Satellites 2.3 Positions used 192 Instruction C 3 C North 0.006 C East 0.004 Covariance 0 Instruction Semi-major axis 0.006 Semi-major axis 0.006 Creation axis 0.0012 Covariance 0 Instruction SPC OR N SPC OR N NAVD 88 Feature Horz Prec Vert Prec V	14	QC 1		PDOP	1.1	GDOP	1.5	HDOP	0.6 VDOP	0.9	A BANNE UN	A LANCE
AC 3 σ North 0.006 σ East 0.004 σ'' Elevation 0.012 Covariance 0 AC 3 Semi-major axis 0.006 Semi-major axis 0.006 Semi-major axis 0.006 Semi-major axis 0.004 Orientation 2 Unit variance 1 AC 3 SPC OR N axis SPC OR N back is an information if T bevation if T bevation if T code DRMS if T 1 sigma if T bevation if T code DRMS if T 1 sigma if T 1 sigma if T 1 bigma	15			Base data age	3.79999995	Satellites	23	Positions used	192		ADVVE MEAN	
Image: semi-major axis Semi-major axis Semi-major axis 0.006 Minor axis 0.004 Orientation ? Unit variance 1 Image: semi-major axis SPC OR N SPC OR N SPC OR N NAVD 88 Fature Horz Prec Vert Prec <td>16</td> <td>QC 3</td> <td></td> <td>σ North</td> <td>0.006</td> <td>σ East</td> <td>0.004</td> <td>σ Elevation</td> <td>0.012 Covariance</td> <td>0</td> <td>PATEVEL</td> <td>et all</td>	16	QC 3		σ North	0.006	σ East	0.004	σ Elevation	0.012 Covariance	0	PATEVEL	et all
18 SPC OR N SPC OR N NAVD 88 Feature Horz Prec Vert Prec 19 Point ID Northing iFT Easting iFT Elevation iFT Code DRMS iFT 1 Sigma iFT 20 H113_RTX 735946.26 8633113.255 1060.747 BRASS CAP 0.022 0.038 21 H113_ORGN 735946.33 8633113.208 1060.813 BRASS CAP 0.022 0.038 22 Diff-Feet -0.066 0.047 -0.066 0.035 0.073 23 - - - 0.01 0.022 0.038 0.005 24 - - 0.026 0.035 - <	17			Semi-major axis	0.006	Semi- minor axis	0.004	Orientation	? Unit variance	1	057 - FFE	a 5500
19 Point ID Northing iFT Easting iFT Elevation iFT Code DRMS iFT 1 Sigma iFT 20 H113_RTX 735946.264 8633113.255 1060.747 BRASS CAP 0.03 0.073 21 H113_ORGN 735946.33 8633113.206 1060.813 BRASS CAP 0.022 0.038 22 Diff-Feet -0.066 0.047 -0.066 0.047 -0.066 0.022 0.038 23 - - - 0.008 0.035 -	18		SPC OR N	SPC OR N	NAVD 88	Feature	Horz Prec	Vert Prec				A 100 - 1
CU HI13_NA 735946.204 0033113.205 1000.141 BRASS CAP 0.03 0.013 21 H13_ORGN 735946.33 8633113.208 1060.813 BRASS CAP 0.022 0.038 22 Diff-Feet -0.066 0.047 -0.066 0.008 0.035 23	19	Point ID	Northing iFT	Easting iFT	Elevation iFT	Code	DRMS IFT	1 Sigma iFT				
Product	20		735946.264	8633113.255	1060.747	BRASS CAP	0.03	0.073				
23 24 25 26 26 26 26 26 26 26 26 26 26 26 26 26	22	Diff_Feet	1 35946.33 _0 066	0033113.208	0.066	DRASS CAP	0.022	0.038				
eBubble Op	23	Din-1 CCL	-0.000	0.047	-0.000		0.000	0.000				
eBubble Op	24											
	25											eBubble Options

CENTERPOINT RTX POST-PROCESSING SERVICE

- Better than 2 cm horizontal accuracy (1 hour of observation recommended, 24hr max)
- Now with BeiDou data
- Supports a variety of receivers and file formats
- User selectable reference frames
- Use now at <u>www.trimblertx.com</u>

🔡 Apps 🧻 Microsoft Office Ho... 🦃 Zoho CRM - Home...

☆ 💿 I 台 🗄

CenterPoint RTX Post-Processing

WELCOME TO TRIMBLE CENTERPOINT® RTX POST-PROCESSING SERVICE

Trimble RTX® is a global GNSS technology that provides centimeter-level positioning, worldwide, at any time.

This application allows you to upload GNSS observation data to the CenterPoint RTX post-processing service and receive positioning calculations. The positioning calculations are performed in the observation epoch (current epoch) of ITRF2008 for data sets that were collected prior to March 23rd 2017, and ITRF2014 for data sets that were collected on or after March 23rd 2017. Transformation can be performed by selecting a different coordinate system and tectonic plate. Complete the form below to receive your calculations via email.

1: Select a coordinate sy	stem and tectonic plate:
Coordinate System:	NAD83-2011
Tectonic Plate:	North America

2. Select a file to upload:

Choose File 62732400.T02

New Enhancements

The CenterPoint RTX post-processing service now supports all dual frequency GNSS receivers.

Antennas must be on the Supported Antennas list. The post-processing service will not process unsupported antennas. See also: Supported Antennas

Observation files must meet the following requirements:

- Data formats accepted include Trimble proprietary data formats (e.g. DAT, T01, T02, T04, Quark) and the standard RINEX 2 and RINEX 3 data formats
- For optimal processing results, it is recommended to provide at least 60 minutes of observations.
- Data files cannot exceed 24 hours in length
- Data files must be static only
- Data files must contain dual frequency pseudorange and carrier phase observations (L1 and L2)
- Data must have been collected after 14 May 2011
- BeiDou data is included since 04 Jun 2014
- Galileo data is included since 01 Jan 2017
- If your observation data consists of several files, please compress them to a ZIP archive and upload the zipped file. All files in the ZIP archive must belong to the same station.

3. Provide your email address:

0

Email: bob@frontierprecision.com

ø

I accept the terms of use listed in the Disclaimer section below.

O 🛱

10

へ 増画 (小)) マ 1:10 PM 4/1/2020 日2

ND | SD | MN | CO | AK | MT | ID | HI | WY | UT | OR | WA

TRIMBLE RTX PP REPORT

Trimble.

Post-Processing Service Based on RTX Technology

TrimbleRTX.com

Contributor: Reference Name: Upload Date:

Report Time Frame: Start Time: End Time: Observation File Type(s): Observation File(s): Antenna: Name: Height: Reference: Receiver Name: Coordinate Systems: Tectonic Plate: Tectonic Plate Model: Processing Interval: bob@frontierprecision.com 62732400.T02 04/01/2020 18:56:52 UTC

08/28/2019 16:03:45 UTC 08/28/2019 20:54:05 UTC T02 62732400.T02

TRM55971.00 NONE 5.582 m Bottom of antenna mount TRIMBLE R7 GNSS NAD83-2011 & ITRF2014 North America MORVEL56 10 s

Statistics

# Total Obs	# Usable Obs	# Used Obs	Percent
3485	1742	1742	100

Used Satellites

# Total Satellites:	30
GPS:	G02 G05 G06 G10 G12 G13 G15 G16 G17 G19 G20 G21 G24 G25 G26 G27 G29
GLONASS:	R01 R02 R03 R05 R09 R15 R16 R17 R18 R19 R20 R21 R24

Processing Results

NAD83-2011 at Epoch 2010.0				
Coordinate	Value	σ		
x	-1212197.436 m	0.004 m		
Y	-4436066.494 m	0.008 m		
z	4406770.819 m	0.008 m		
Latitude	43° 58' 16.52246" N	0.004 m		
Longitude	105° 17' 0.59850" W	0.004 m		
El. Height	1407.427 m	0.011 m		
		_		

ITRF2014 at Epoch 2019.66				
Coordinate	Value	σ		
×	-1212198.380 m	0.004 m		
Y	-4436065.241 m	0.008 m		
z	4406770.712 m	0.008 m		
Latitude	43° 58' 16.54156" N	0.004 m		
Longitude	105° 17' 0.65418" W	0.004 m		
El. Height	1406.662 m	0.011 m		

Report Information

Trimble RTX Solution ID: Solution Type: Software Version: Creation Date: 22982339 Static 8.5.0.19198 04/01/2020 18:57:35 UTC

FR NTIER PRECISION – How You Measure Matters

ITRF2014 (CURRENT EPOCH) TO NAD83 (2011)

Horizontal adjustment PRIOR TO TA 2020.00

Origin north	1716489.618
Origin east	3104469.462
Translation north	-2.303
Translation east	3.256
Rotation	0°00'00.0000"
Scale factor	1.0000000

Earth's

Surface

Horizontal adjustment PRIOR TO TA 2020.20

Origin north	1386088.649
Origin east	3192012.612
Translation north	-0.163
Translation east	-0.026
Rotation	0°00'00.0000
Scale factor	1.0000000

FR NTIER PRECISION – How You Measure Matters

FYI: Data Collection/Coordinate System Settings

0atum Properties - NAD83(20)11)		? ×				Datum Properties - ITRF to NAD83(20	011)			? ×
Datum Parameters Molodensky Seven Parameter Multiple Regression Deters Code	Allow Molodensky to be an alternate datum transformation method O Global to local Translation X (m):			20			Datum Parameters Molodensky Seven Parameter Multiple Regression Datum Grid	Allow Seven Parameter) Local to global Translation X (m):	er to be a an alter Global to local 0.99343	nate datum transformation method	
Broadcast RTCM	Translation Y (m):			3P		Ρ	Broadcast RTCM	Translation Y (m): Translation Z (m):	-1.90331		
	Translation Z (m): 0							Rotation X (sec):	0.02591467		
	From global reference: NAD83(2011) at epoch 2010		\sim					Rotation Y (sec):	0.00942645		
	Metadata:							Rotation Z (sec):	0.01159935		
	Global Geographic System EPSG ID: 6318 Global Datum EPSG ID: 1116							Scale factor (ppm):	0.00171504		
	EPSG Geodetic Parameter Registry			_				Metadata:	WG3 1364		
				14	P			Global Geographic Syst	tem EPSG ID:	<u>4326</u>	
					•			Global Datum EPSG ID	l: stor Posistar	6326	
		Parameter	Unit	IG	S08 to SHF	RF	IG'S08 to NAD83(2	011)*			OK Cancel
				t0=2000.0	t0=2005.0	t0=2012.0	t0=1997.0				
		$T_X(t_0)$	cm	12.87003	7.50752	0.00000	99.34300				
		$T_Y(t_0)$	cm	12.70517	7.41135	0.00000	-190.33100				
		$T_Z(t_0)$	ст	42.54889	24.82019	0.00000	-52.65500				
		$R_X(t_0) * *$	mas***	-13.88693	-8.10071	0.00000	25.91467				
		$R_Y(t_0)$	mas	11.26615	6.57192	0.00000	9.42645				
		$R_Z(t_0)$	mas	3.98693	2.32571	0.00000	11.59935				
		$s(t_0)$	ppb****	-16.46596	-9.60514	0.00000	1.71504				

ITRF2014 – constant frame, rotating plate

NAD83 – rotating frame, constant with plate

ITRF2014 to/from NAD83

North American and Pacific Plate Velocities

DISPLACEMENT MODELS: HTDP 3.2.9 3.50

at https://frontierprecision.com/wp-content/uploads/Trimble-Def-Models.pdf

NGS Home About NG	S Data & Imagery	Tools	Surveys	Science & Education	Search			
Tools & Software	HTDP - Horiz	ontal Tim	ne-Depende	nt Positioning				
Geodetic Tool Kit Web Services	HTDP is a utility reference frames	HTDP is a utility that allows users to transform positional coordinates across time and betwee reference frames.						
Other Products & Programs	*** HTDP should NOT be used to transform between NAD 83 realizations (2011, NSRS2007, HARN, etc.). It will not give correct results. To transform between NAD 83 realizations, use the NGS Coordinate Conversion and Transformation Tool (NCAT) instead. ***							
	Interactive Com 1. Estimate 2. Estimate 3. Transfor 4. Transfor 5. Transfor	putations (horizontal horizontal m observat m positions m velocitie	using HTDP v dispracement velocities. ions to a spec s between refe s between refe	ersion 3.2.9): Is between two dates, cified reference frame and/or erence frames and/or dates, erence frames,	r date. (Note) (Note)			
	More Info:	More Info:						
	 View Use Download source co Relevant 	 View User's Guide [pdf] and/or Revision Log [pdf] Download a Zip'ed (md5 43f354f187a9c6a2901687a5979ae267) archive of the HTDP Fortran-90 source code, the User's Guide, Revision Log, and sample data files Relevant publications 						
	Maps of Horizon							

DISPLACEMENT MODELS: HTDP 3.2.9 3.50

Maps of Horizontal Velocities:

35°

4.5

Maps of Horizontal Velocities:

Local displacement models

Country	Reference frame	Local displacement model
Brazil	SIRGAS2000	VEMOS2009
Denmark	EUREF-DK94	NKG-RF03
Estonia	EST97	NKG-RF03
Finland	EUREF-FIN	NKG-RF03
Sweden	SWEREF99	NKG-RF03
Norway	EUREF89	NKG-RF03
Iceland	ISN2016	ISN2016
New Zealand	NZGD2000	NZGD2000 Deformation Model
USA	NAD83(2011)	HTDP V3.2.9
Canada	NAD83(CSRS)v7	CSRS Velocity Grid V7.0

Select coordinate system System Zone Sweden/SWEREF99 \mathbf{v} 17 15 -Local datum SWEREF 99 (Mol) Global reference datum Global reference epoch SWEREF99 1999.50 Displacement model NKG-RF03 2019-07-01 Use geoid model No Coordinates Use datum grid Grid • No Project height 15.000m • Esc Key in Store Select coordinate system Zone System United States/State Plane 1983 -Colorado North 0501 -Local datum NAD 1983 (Conus) (Mol) Global reference datum Global reference epoch NAD83(2011) 2010.00 Displacement model HTDP V3.2.9 Geoid model Use geoid model GEOID18 (Conus) Fixed (g18us.ggf) 🔻 Yes Coordinates Use datum grid Grid -No Project height 1620.000m • Esc Key in Store

Precise Point **Positioning RTX Test** Arvada, CO 6/7/2024 **Trimble lonoGuard**

Protecting RTK GNSS from lonospheric disturbances

Minimum Receiver Firmware Version 6.23/ProPoint

PPP/RTX TESTING – SOLAR AND IONOSPHERIC ACTIVITY 6/7/2024

PPP/RTX TESTING – DELTAS FROM CONTROL WITHOUT IONOGUARD TECHNOLOGY

NON IONOGUARD DELTAS FROM CONTR NON IONOGUARD PRECISIONS IONOGUARD DELTAS FROM CON + : .

PPP/RTX TESTING – PRECISIONS WITHOUT IONOGUARD TECHNOLOGY

PPP/RTX TESTING – DELTAS FROM CONTROL WITH IONOGUARD TECHNOLOGY

PPP/RTX TESTING - PRECISIONS WITH IONOGUARD TECHNOLOGY

THANK YOU

- Bob Green, PLS Geospatial Analyst
- Bob@FrontierPrecision.com
- •303-728-4984